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Abstract

TV news are important sources of information for most people. They allow a better un-
derstanding of the social and political events punctuating our everyday life. Today, we can
save big amounts of digital news videos thanks to the availability of low-cost mass storage
technology. As video archives are growing rapidly, making manual video annotation imprac-
tical, the need for efficient indexing and retrieval systems is evident. Text displayed in news
video is one of the most important high-level information of video content. Actually, it can
be used as powerful semantic clues for automatic broadcast annotation. Nevertheless, ex-
tracting text from videos is a non-trivial task due to many challenges like the complexity of
backgrounds and the variability of text regions in scale, font, color and position. Over the
past two decades, interest in this area of research has led to a plethora of text detection and
recognition methods. So far, these methods have focused only on few languages such as Latin
and Chinese. For a language like Arabic, which is used by more than one billion people around
the world, the literature is limited to very few studies.

This thesis aims to contribute to the current research in the field of Video Optical Char-

acter Recognition (OCR) by developing novel approaches that automatically detect and rec-
ognize embedded Arabic text in news videos.
We introduce a two-stage method for Arabic text detection in video frames. In the first stage,
which represents the CC-based detection part of this method, text candidates are firstly
extracted, then filtered and grouped by respectively applying the Stroke Width Transform
(SWT) algorithm, a set of heuristic rules and a proposed textline formation technique. In
the second stage, which represents the machine-learning verification part, we make use of
Convolutional Auto-Encoders (CAE) and Support Vector Machines (SVM) for text/non-text
classification.

For text recognition, we adopt a segmentation-free methodology using multidimensional
Recurrent Neural Networks (MDRNN) coupled with a Connectionist Temporal Classification
(CTC) decoding layer. This system includes also a new preprocessing step and a compact
representation of character models. We aim in this thesis to stand out from the dominant
methodology that relies on hand-crafted features by using different deep learning methods,
i.e. CAE and MDRNNSs to automatically produce features.

Initially, there has been no publicly available dataset for artificially embedded text in Ara-
bic news videos. Therefore, creating one is unquestionable. The proposed dataset, namely
AcTiV, contains 189 video clips recorded from a DBS system to serve as a raw material for
creating 4,063 text frames for detection tasks and 10,415 cropped text-line images for recogni-
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tion purposes. AcTiV is freely available for the scientific community. It is worth noting that
the dataset was used as a benchmark for two international competitions in conjunction with
the ICPR 2016 and ICDAR 2017 conferences, respectively.

Keywords: AcTiV dataset, Arabic Video Text Detection, SWT, Auto-Encoders, Arabic
Video Text Recognition, MDRNN, CTC layer, OCR
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Chapter 1

Introduction

mong the pattern recognition fields, automatic text recognition, known as Optical Char-
A_ acter Recognition (OCR) has been widely studied for its prominent position in our ev-
eryday life. The aim of this research area is to design a system that converts text images to
readable text codes. OCR has a long history of research that started from printed character
recognition, extended to handwriting character recognition, and later to printed document
recognition, and finally evolved to handwriting document recognition. By the 1960’s, OCR
technology had found applications for automated data processing in several industries includ-
ing government, banking and mail. In the middle of the 80s, Toshiba commercialized the first
world’s OCR technology able to read Chinese characters. Thus, great progress has been made
in processing printed/handwriting text against clean background. Today, OCR is considered
as a mature technology. There are several commercial products like ABBYY !, OmniPage 2
and Tesseract 3, which have demonstrated successes in large-scale book scanning.

Recently, embedded texts in videos and natural scenes have received increasing attention
as they often give crucial information about the media content. For instance, text captions in
news videos can provide concise information about the ‘when’, ‘where’ and ‘who’ elements in
relation to the current content. Sometimes this information is not present in the audio or it
cannot be acquired through other video understanding methods. Detecting and recognizing
text in videos, often called Video OCR, is an essential task in a lot of applications like
content-based multimedia retrieval. Actually, broadcast news and public-affairs programs
represent a prominent source of information that provides an overview of what is happening
at local and world levels. The analysis of public newscast by national and foreign news TV
channels is of capital importance for media analysts in several domains such as politics and
security. Nowadays, TV newscasters archive a tremendous number of news videos thanks
to the rapid progress in the mass storage technology. As the archive size grows rapidly, the
manual annotation of huge multimedia databases becomes impractical. This situation creates
an urgent need for efficient indexing and retrieval algorithms.

Text displayed in news videos is one of the most important high-level information of video
content. Most videos contain two kinds of text. The first type is caption text, which is

'http://finereader.abbyy.com/
2https://nuance.com /print-capture-and-pdf-solutions /optical-character-recognition /omnipage.html
3http://code.google.com/p/tesseract-ocr/
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Figure 1.1: Frame samples from different TV channels depicting typical characteristics of
artificial text.

artificially superimposed on the video during the editing process, as shown in Figure 1.1,
where the video frames include caption/artificial/superimposed text. This text can provide
a brief and direct description of video content (e.g. subtitles, location, event information,
sports scores, etc) and hereby suitable for indexing and retrieval. The second type is scene
text, which is naturally recorded as a part of scene during video capturing, such as traffic
signs, shop names, and text on T-shirts. As depicted in Figure 1.2, scene text mostly appears
accidentally and is seldom intended.

Figure 1.2: Examples of scene text video frames.

It is evident that applying a conventional OCR system for video frames leads to poor
recognition rates due to the limitations of such systems and the nature of video content
[COO05]. Compared to scanned documents, text detection and recognition in video frames are
more challenging. The major challenges are:

e Text pattern variability: Text in videos mostly has an unknown font-size and font-family,
various positions and differ in color and alignment even within the same TV channel.

e Background complexity: Backgrounds are cluttered with noise and blur. There are
objects that have a similar appearance with video text, such as bricks and foliage, and
some objects that own similar texture characteristics with video text like fences or stripes
of clothes.

e Video quality: The acquisition conditions of videos like compression artifacts, low reso-
lution, distortions and degradation make the task harder.

The recognition of Arabic text for indexing Arabic documents has recently become a com-
pelling research domain. Widely used, Arabic represents the official language of 22 countries,
the native language of over 280 million people residing in the Arab World, and the liturgical
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language of over 1.5 billion Muslims around the world. Behind this huge population, more
images and videos are being collected and stored than ever before, especially with the sig-
nificant changes and big events during the last seven years of the "Arab Spring", referred
to as a revolutionary wave of both violent and non-violent protests, coups and civil wars in
North Africa and the Middle East, which began on December 2010 in Tunisia. Subsequently,
the contemporary mass of multimedia documents resulting from the widespread use of digi-
tal cameras and video recorders is increasing day after day at a rapid pace, and the various
amount of visible text has the potential to surpass all previous scanned book sources. Thus,
the ability to automate the interpretation of graphically-embedded Arabic texts will have a
broad range of benefits. Compared to Latin text, the Arabic one has special characteristics:

= Algebra — News
. r\ ’?‘I - -
= %j\} — {}
=Space _ = Bread
J?k}' =G‘E)od
=In

Figure 1.3: Impact of dots on a basic form of an Arabic word: A sample word that leads to
six different ones.

e [t is cursive with high connectivity between characters; i.e., most of them have a right
and /or left connection point linked to the baseline.

e In the Arabic alphabet, 22 out of the 28 letters have four shapes each (word-initial,
-medial, -final and -isolated), and six have two shapes each (final and isolated).

e Arabic characters may have exactly the same shape and are distinguished from each
other only by a diacritic mark, which may appear above or below the main character
such as letters Baa ( w ), Taaa (& ) and Thaa (& ). These diacritics are normally a

dot, a group of dots, a Hamza (s ) or a Tild ( ~ ). It is worth noting that any deletion
or erosion of these diacritic marks results in a misrepresentation of the character. Hence,

any binarization algorithm needs to efficiently deal with these dots so as not to change
the identity of the character. A typical example is illustrated in Figure 1.3.

e The spaces between parts of Arabic words are not uniform and vary in size, making
ambiguities to distinguish between stroke ends or word ends in the segmentation phase.

e Arabic has several standard ligatures formed by combining two or more letters; e.g.,
LaamAlif (N), a combination of Laam ( ) and Alif ().

The first published work on Arabic OCR dates back to 1975, and was by Nazif [Naz75]|.
Since then, several techniques have been proposed for printed and handwriting Arabic text
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recognition, and have acquired great improvement [AB96, LG06, MEA12, KEBE15, KEBE16].
A lot of progress of such methods has been triggered thanks to the availability of benchmarking
databases [PMM102, SIKT09, MKKEA12, MAAK™14] and the organization of international
competitions [MEA08, EAMKA(09, KTAT11, SKEAT11, SAM™14].

Although more than three decades have passed, there has been a lack in the analysis and
recognition of Arabic video text. Despite the presence of several Arabic news channels with
very high viewing rates in the Arabic world and outside of it, there have been only very
few attempts to develop detection and recognition systems for overlaid text in Arabic news
videos [HAV 12, YBG14, SWTF16]. So far, most of these systems have been tested on pri-
vate datasets with non-uniform evaluation protocols, which makes objective comparison and
scientific benchmarking rather impractical. In this thesis, we aim to fill the aforementioned
gap by providing a standard dataset and accurate methods for detecting and recognizing Ara-
bic video text. Technically speaking, the goal of text detection is to identify candidate text
regions in a video frame by filtering out non-text objects. The target of text recognition is to
transform already detected text regions (i.e. pixels) into readable text codes.

Contributions:
The main contributions of this work are as follows:

1. Detailed study about text detection and recognition in natural scenes and videos in
terms of existing datasets and proposed methods.

2. Development of a hybrid system for Arabic video text detection based on a modified ver-
sion of the Stroke Width Transform (SWT) [EOW10] for text component extraction, a
new grouping procedure for textline construction, a Deep Convolutional Auto-Encoders
for unsupervised feature-learning and an SVM classifier for text/non-text discrimina-
tion.

3. Elaboration of a semi-automatic framework for Arabic text annotation in news video.
The framework includes two different levels of annotation: a global (manual) level,
which concerns the entire video clip and a local (automatic) level for any specific frame
extracted from that video.

4. Development of an evaluation tool for text detection tasks. The tool takes as input a
video file, a frame or a set of frames to assess the performance of a detection system in
terms of precision recall and F-score metrics.

5. Development of an innovative text recognition system based on the combination of a
new preprocessing step, a compact representation of character models, and the use of
Multidimensional Recurrent Neural Networks (MDRNNSs) coupled with a Connectionist
Temporal Classification (CTC) layer to recognize textlines without any prior segmenta-
tion or binarization step.

6. Design of a large dataset, namely AcTiV, of news videos, hand-selected text frames and
cropped textline images. These multimedia documents are collected from two sources,
a satellite receiver and the YouTube website (7%). The video clips are from four TV
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news channels and are in three different resolutions. AcTiV represents the first publicly
available annotated dataset for Arabic Video OCR systems and was used as a benchmark
in two previous international competitions.

Figure 1.4 illustrates the timeline of our research work.

Text recognition systems
Evaluation Tool AICCSA, Oct. 2017
IPTA, Oct. 2014 ATSIP, March 2016 IET Computer Vision journal
2018

Annotation Framework

AcTiVComp 1+t Edition
ICPR, Dec. 2016

AcTiVComp 2s¢ Edition

ICDAR, Nov. 2017
Open Datasets and Tools (AcTiV 2.0)
Journal of Imaging, January, 2018

AcTiV Dataset
ICDAR, Aug. 2015 Text detection system
DAS, April 2016

Figure 1.4: Timeline of the present thesis

Report outline:

The remaining parts of this thesis are structured as follows:

Chapter 2 (State of the Art in Text Detection and Recognition) gives a survey of
text detection in videos and images in terms of method category, underlying steps, and used
features / classifiers, followed by a review of some related work on text recognition with a
focus on video and scene Arabic text.

Chapter 3 (Proposed Dataset and Experimental Settings) presents a short survey
about the existing databases dedicated to scene and video text analysis, followed by a de-
tailed description of the proposed dataset in terms of characteristics, statistics and annotation
guidelines. This chapter also sums up the proposed annotation and evaluation tools and de-
fines the suggested evaluation protocols.

Chapter 4 (Text Detection by SWT and Auto-encoders) describes the proposed text
detection schemes. Furthermore, a detailed performance evaluation is discussed, and the ob-
tained results are compared to other recently published studies.

Chapter 5 (Text Recognition by MDLSTM Networks) presents the suggested sys-
tem for Arabic video text recognition. Several experiments are meant to analyze the impact
of the proposed preprocessing step and the effect of the model sets’ choice. The chapter
presents also a comparison of our results with some state-of-the-art methods.
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Chapter 6 (Conclusions and Future Work) includes the concluding remarks of the pro-
posed thesis. In particular, it summarizes the main contributions and outlines the potential
research directions in the future.



Chapter 2

State of the Art in Text Detection
Recognition

and

2.1 Inmtroduction . . . . . . . . ...
2.2 Text detection in images and videos . . . . . . .. ... ...
2.2.1 Connected component-based methods . . . . ... ... ... ..

2.2.2 Texture-based methods . . . . . . .. .. .. ... ... ... ...

2.2.3 Hybrid methods . . . . ... ... ... ... ..
2.3 Text recognition in multimedia documents . . . . . . . . ... ... ...
2.3.1 Robust binarization for better recognition . . . . . ... ... ..

2.3.2 Specific methods for text recognition in images and videos . . . . .

2.4 SUMMATY . . . o v v v o e e e e e e e
2.5 Conclusion . . . . . . . .,

2.1 Introduction

Since the 80’s research in OCR systems has been an active domain in computer vision and

pattern recognition communities. Prior studies have mainly focused on systems operating on

scanned documents. Recently, a great progress has been made in other fields of research such

as text recognition in historical documents, in scene images and in videos (Figure 2.1).

Embedded text in videos represents a rich source of information for automatic video analy-

sis and indexing. However, this kind of text is more difficult to extract and recognize than the

one in scanned documents. This is due to many challenges like the complexity of backgrounds

and the variability of text patterns (e.g., size, color, font and position). Hence, several ap-

proaches have been proposed to tackle these problems. This chapter presents an overview of

text detection and recognition methods in images and videos.
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- -
eay | )

Historical documents Scanned documents Handwriting Scene images Videos

oy M .
> P
Text Recognition

Figure 2.1: Some examples of text recognition tasks

A Video OCR system is generally composed of two main phases: text detection, which
may include the localization and tracking of video text regions, and text recognition, which
may include the extraction, segmentation and recognition of already detected text regions.
As depicted in Figure 2.2, the two first tasks consist in locating text regions in video frames

Video-OCR
A

2 [ Detection J [ Tracking J [ Extraction J [ Recognition J
K
UL
o | s _ dale
E_ Fz Frame uo FL: mmﬂ TR Ty
E '_.: 5k | _ Al o L8l sl

Frame 150 Frame 208  Frame 243

Figure 2.2: Main steps of a Video OCR system

and generating the bounding boxes of text lines as an output. Text extraction operates to
extract text pixels and remove background ones. The recognition task converts image regions
into text strings.

Decomposing the Video OCR problem into text detection and text recognition dates back
to the 90s. Researchers have subsequently worked solely on text detection [LPTL14| or text
recognition |[RSR*15|, or on combining both of them in an end-to-end system |[YD15].
These fundamental tasks have been differently referred to in the literature according to the
category of the processed text. For instance, several methods have included detection of
artificial text in videos [WJWO04], and recognition of video captions [SKH'99, TGLZ02],
which narrows the focus to superimposed video text analysis. Some others have included
scene text detection, and scene text recognition in the wild [ZYB16|, which mainly work on
natural scene images. This choice has been also driven by the targeted application; e.g., the
recognition of video captions has enhanced multimedia retrieval systems, and the recognition
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of text on maps and houses has been applied in assistive navigation and automatic geocoding
systems [MTC™14].

Despite these differences, these methodologies have shared similar points in terms of used
techniques, features and classifiers. Thus, we survey in the following previous studies in
relation to text detection and recognition in multimedia documents in general, with a focus
on Arabic video/scene text.

2.2 Text detection in images and videos

Recently, several approaches have been proposed to detect text in videos and natural scene
images [LPTL14, YD15, YZTL16]. These approaches are generally grouped into texture-based
methods, connected component (CC)-based methods or a combination of them, namely hybrid
methods.

Input
image

:

Preprocessing

cc exirachon]—»[CC filtering H Word/Line ’ )| Detected
grouping rectangles

- Edge detection - SWT - Heuristics

- Gradient - MSER - Classmer (Char.> Word )
- Color - Superpixel E| Eﬂ Word= Line

T CCText CC Non-text

Figure 2.3: Flowchart of a typical CC-based text detection method. Yellow rectangles corre-
spond to optional stages. The ‘<4’ symbol indicates that the order of these two steps can be
reversed.

2.2.1 Connected component-based methods

These methods work in a bottom-up manner by grouping neighboring pixels into successively
larger components through a variety of ways such as color clustering, edge-based analysis
and gradient-based analysis. Non-text components are then filtered out using heuristic rules

[CTST11, XXS14, ZL15, SWTF16] or trained classifiers [HLYW13, THA15, WFCL17].
other words, these methods focus on the following problems:

e Problem (A): Text-like components extraction.
e Problem (B): CC analysis and linking.
e Problem (C): Non-text CC filtering.

Figure 2.3 depicts the flowchart of a typical CC-based method. It is worth noting that several
researchers infer text lines from CCs before performing the filtering stage. Some others have
applied the filtering stage before and after the grouping of CCs; that is, they filter out twice
the non-text objects at the component level and at the word/line level, respectively, by using
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trained classifiers or heuristic checks. For example, Yao et al. [YBL 12| proposed a two-level
filtering scheme for scene text detection. The first filter employed a set of geometric rules and
the second one ran a Random Forest (RF) classifier on a set of component-level features. After
linking character candidates, the RF classifier was again used with 11 chain-level features to
reject false positive lines.

To better understand this category of methods, an outline of its main steps (Figure 2.3)
is presented in the following paragraphs.

Preprocessing

As mentioned before, the video environment has many problems to deal with in regards to
background complexity, low contrast, color bleeding, etc. Therefore, several researchers have
applied a preprocessing step prior to CC extraction in order to enhance the input image
quality.

To cope with blurred edges, Chen et al. [CTST11] proposed to remove MSER ! pixels, located
outside the boundary of Canny edges. This was done by pruning MSER along the gradient
directions, calculated from the input gray-scale image, (blue arrows in Figure 2.4).

itee|Committee

(@

Figure 2.4: Edge-enhanced MSER, from [CTS*11]. (a) Detected MSER for blurred text.
Canny edges are shown in red lines, and blue arrows indicate gradient directions. (b) MSER
after pruning along the gradient.

To address the above problems, Tsai et al. [TPB™| performed a combination of judicious
parameter selection and a computationally efficient multi-scale analysis of MSER regions. In
the same context, Li et al. [LIJSvdH14] put forward an edge-preserving algorithm. Given an
intensity image I smoothed by the guided filter [HST13|, a new image I* was computed based
on its normalized gradient amplitude map (GAM), denoted by VI (Equation (2.1)).

I* =1+05xV] (2.1)

where 4+ was chosen to detect dark characters on light background, and — was for detecting
light characters in dark background. Zhuge and Lu |ZL15] exploited the GAM to overcome the
problems of color bleeding and fuzzy boundaries. Furthermore, they applied a top/bottom-
hat morphological filtering, prior to MSER treatment, to avoid background noise and enhance
the contrast between text and background.

Ghanei and Faez [GF15] exploited the weighted median filtering (WMF) as a nonlinear

'MSER, for Maximally Stable Extremal Regions, is basically a method for blob detection in images, and
has been shown suitable for detecting perceptually homogeneous characters in scene images and videos. The
next subsection presents more details about it.
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Figure 2.5: Color-to-gray conversion for a low luminance contrast image, from|GF15|. (a) RGB
Image, (b) intensity part of the HSI space and (c) color-contrast preserving decolorization.

edge-preserving smoothing filter and then the color Contrast Preserving Decolorization (CPD)
[LXJ12] to make the text detection system more robust for low luminance contrast and poor
quality text (see Figure 2.5 for an illustration).

Stroke Width Transform (SWT), as noted and introduced by Epshtein et al. [EOW10], is a
smart operator that calculates for each pixel the width of the most likely stroke containing the
pixel. This algorithm can achieve high precision and recall rates with a very short processing
time. However, it is sensitive to the defection of edges. Thus, before performing SWT,
several researchers [EOW10, KP10, YQS12| applied a Gaussian smooth filter (Equation 2.2)
to increase robustness against fine noise.

1 :1:2+y2

Gla,y) = 5-ge o (2.2)

where o is the standard deviation of the distribution. Felhi et al. [FTBI12] performed an
anisotropic diffusion filtering that smooths away textures whilst retaining sharp edges. Tak-
ing advantages from the geometric features revealed by the bandlet transform [MPO07], a novel
bandlet-based edge detector was introduced by Mosleh et al. [MBH13] to enhance the accu-
racy of SWT that originally uses the Canny edge detector. Xu et al. [XXS14| exploited the
complementary properties of the gradient-based and smoothness-based edge information for
generating high quality edge images and exploited various edge cues in CC analysis to over-
come inter/intra-character errors. In [SK17|, Shahzad and Khurshid proposed to preprocess
the input frame using the YUV color space conversion and an edge sharpening filter.

[ AR T

Intensity change

BRI

(a)
Intensity of three consecutive pixels at the boundary

Figure 2.6: Change of intensities in transition region (from [KKO09]).
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Connected-component extraction

Several techniques have been suggested to extract CCs from video frames and scene images,
making use of text characteristics such as color uniformity and gradient distribution. Kim
et al. [KK09] proposed to detect text in videos by means of a background-text transition
map. The idea was to firstly compute the intensity changes for each three consecutive pixels,
as shown in Figure 2.6. If the difference between two changes is larger than a predefined
threshold, the central pixel will be labeled as a transition pixel. Next, the small gaps between
transition pixels were filled to generate CCs. This method may encounter difficulties when
the text is multicolored or textured. Yi and Tian [YT11] introduced a color-based partition
scheme, which applied a weighted mean-shift clustering in the RGB space to separate text
from background pixels, and subsequently generate candidate character components.

255
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Figure 2.7: MSER detection process. All pixels with an intensity value less than the threshold
g are assigned a black color. Note that for g=b, there are no pixels with an intensity value less
than five. Subsequently, when g increases, black regions will start to appear. CC region ‘1’
remains constant from g = 50 until g = 90. Such regions will be classified as ER and those ERs
with minimal change in area over the range of thresholds are known as MSERs.

Among the recently published CC-based methods we can observe an increasing use of
MSER for character candidate extraction. This technique was first introduced by Matas et
al. [IMCUPO4] as a blob detection tool for stereo matching. MSERs are regions that are stable
across a wide range of thresholds and that are either brighter or darker than all the pixels
on their outer boundary. Figure 2.7 explains the process of MSER detection. The grayscale
image is thresholded at multiple increasing thresholds. Each thresholded image consists of
several CCs that are called an Extremal Region (ER). ERs in images of different thresholds
form a parent-child relationship where child-regions are nested in parent regions. Hence, a
component-tree is built. For each ER, R; within the tree, a stability value ¥ is defined as
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Figure 2.8: Binary map generation. The binary map is generated by assigning the value ‘1’ for
the pixels belonging to the interval while fixing the remaining pixel values to ‘0’

follows: A A
[R™7| — R

(2.3)

where |.| represents cardinality, RY is a region obtained by thresholding at a gray value g, and
A is a stability range parameter. R ~2 (respectively Ri+A) is an ER obtained by moving
upwards (respectively downwards) in the component-tree from region R{ until reaching a
region with gray value g — A (respectively g + A). ERs that have local minima of ¥ are
defined as MSERs.

Neumann et al. [NM10] were the first to introduce MSER into the field of text detection.
They proposed to extract MSERs from the original image as potential candidate regions, and
eliminate invalid candidates using a trained classifier. Chen et al. [CTST11] employed edge-
enhanced MSERs to find letter candidates, and geometric filtering as well as stroke width
information were used to exclude non-text objects. A similar method was recently proposed
by Mansouri et al. [MCZ18] but using a baseline estimation technique and some morphological
operations to filter out non-text objects from Arabic video frames.

The ICDAR 2013 competition winning approach |YYHHI14| utilized a pruning algorithm
to select appropriate MSERs as character candidates and a superior AdaBoost classifier to
validate true candidates. The effectiveness of MSER was also exploited for video text detection
by Jain et al. [JPZ"14] and Zhuge et al. [ZL15], among others, while Huang et al. [HQT14]
introduced a novel framework, which exploited geometric grouping over MSER regions and
classified the regions using Convolutional Neural Networks (CNN). Despite their success in
recent years, the MSER-based methods have several open problems that need to be dealt
with. First, these methods are difficult to achieve high text detection accuracies due to their
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requirement for maximum stability. Second, some text objects are not ERs, whose pixels have
either higher or low intensity than their outer boundary pixels, and cannot be extracted by
the MSER operator directly. Whereas the second problem is an intrinsic limitation of ER-
based approaches, the first one has been addressed by some researchers. In [SHJC15], Sun et
al. proposed a generalized color-enhanced Contrasting ER (CER), and in [HHQY16|, He et
al. put forward Contrast-Enhancement MSERs (CE-MSERs). Moreover, Cho et al. [CSJ16]
employed efficient and effective ER tree pruning techniques.

Gaddour et al. [GKV16] proposed a region representation derived from MSER to detect
Arabic scene text. Instead of relying on a range of unique thresholds, this approach calculated
a range of pairs of thresholds for each channel in the RGB color space using the k-means
algorithm. This range constructed a set of binary images, each belonging to a color interval
[Si, Sj] (see Figure 2.8). For all CCs of each binary map a two-stage filtering was applied to
eliminate non-text CCs. At a later stage, the remained candidates were grouped into textlines
through a series of connection rules.

‘ 3 s o
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Figure 2.9: Stroke Width Transform. (a) Scene text detection examples from Epshtein’s work
[EOW10]. (b) Example of SWT computation [YT12].

The stroke serves as a basic element to construct text characters. It is defined as a contigu-
ous zone of text that forms a band of approximately constant width. Therefore, in addition
to color uniformity and character alignment, stroke width consistency represents a significant
characteristic of text. Based on this observation, a regional stroke width distribution can be
utilized to check whether the localized areas contain text or not [SNDC07, DCCT07].

Being one representative approach of the CC-based category, specifically, the Epshtein’s
SWT method [EOW10] has shown particular effectiveness and computational efficiency in
scene text detection. The SWT operator uses the information of stroke edges to extract
candidate text components from the input image. The key insight is that letters have roughly
parallel sides. The stroke width (SW) is calculated as a distance between two edge pixels with
similar gradient magnitudes and opposite gradient directions (Figure 2.9(b)). SWT labels the
pixels located inside the torso of a stroke by its width and transforms the input image into a
width image (called hereafter SWT map). This algorithm has constituted the basis of a lot of
subsequent work [YBLT12, MBH12, HLYW13, KJM13, IP13, XXS14, JJ 715, SX15, FSZ16] in
the field of text detection. However, the SWT has its own pros and cons. As mentioned above,
the original SWT and CC labelling algorithms were sensitive to edge noise. Furthermore, they
are usually insufficient for complicated scenarios like low resolution, cluttered background
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and cursive and/or interfered text. In order to recover the mismatch between edge points,
Huang et al. [HLYW13| proposed a new operator based on the SWT, called Stroke Feature
Width (SFT). This operator exploited the color consistency and constraint relations of local
edge points, yielding to a better component extraction result. In [KJM13], a learning-based
framework was proposed to obtain text attention maps from multiple bottom-up saliency
features. These text attention maps helped prune the search space for the SWT algorithm
and limited its processing only closer to text edges, resulting in more accurate detection
performances and efficient computation time. However, this approach was unable to handle
regions where the text blended with the background. Su et al. [SX15] introduced seed-based
SWT for scene text detection. First, seed stroke segments were extracted from the SWT map
based on a set of heuristic rules. After that, the defective strokes were recovered with the help
of the obtained seed stroke segments, and the initial inaccurate stroke width was consequently
rectified. Some other researches [IP13, WPW16, FSZ16] extended the SWT by incorporating
color cues of text pixels to achieve a better detection performance even when the Canny
detector fails. For example, Feng et al. [FSZ16] introduced a multi-scale SWT technique.
The multi-scale mechanism first computed five color channels (RGB, Hue and Intensity) from
the input image, and then built a scale pyramid for each channel by successively smoothing
and downsampling the image with a scale factor of 2/3. SWT was next performed on each
level of the pyramid.

CC extraction algorithms may also include local binarization methods [PHL11, CYHL15,

SWTF16]. In [SWTF16], Iwata et al. introduced an approach for Arabic news text detec-
tion. They utilized the Otsu’s discriminant analysis technique to binarize the input frame
and extract text candidate components. Recently, superpixel-based methods have achieved
remarkable success in object detection problems |YYZ ' 15]. Superpixels, as introduced by Ren
and Malik [RMO3|, are groups of connected and perceptually homogeneous pixels, obtained
by over-segmenting the original image. Wang et al. [WFCL17| proposed a new superpixel
segmentation algorithm based on color and edge information and a single-link clustering al-
gorithm to extract character candidates in scene images.
It is to note that some edge-based detection methods [YT12, YQS12, YSM 15, FSZ16], in
which edge components instead of regions are treated as text candidates, can also be catego-
rized as a CC-based method. For instance, in [YT12|, a color-pair boundary clustering was
firstly performed based on Gaussian Mixture Model (GMM) and Expectation-Maximization
(EM) algorithms. As a result, character edges with similar colors were grouped into identical
boundary layers. Afterwards, a structural analysis took place by combining a stroke boundary
and color assignment to extract character candidates in each boundary layer.

Connected-component filtering

Many components extracted at the previous stage are not part of text. Thus, most of text
detection systems use classifiers or perform a set of geometric checks on each CC to filter out
non-text objects. In the literature, we find a large number of statistical and geometrical rules
based on different extrovert characteristics of text components such as stroke width similarity
and color uniformity. In what follows, we present some frequently-used heuristic rules.
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1. Component size: CCs whose sizes are too large or too small to be readable text should

be rejected.

2. Component position: Objects located at the border of the image are discarded.

3. Aspect Ratio (AR): The ratio 3)((?) of a text CC’s bounding box (BB) should be located
in a reasonable range. Else, it is regarded as background noise.

4. Occupation Ratio (OR): The ratio WMC) of foreground pixels (e.g. black pixels in
the SWT map) to the total pixels of a given CC should be greater than a predefined
threshold.

5. Stroke Width Variance (SWV): A text candidate is discarded if its SWV, defined by

‘;8, exceeds a fixed threshold range, where o(c) and pu(c) are respectively the mean and

standard deviation of the stroke widths in the component c.

6. Stroke Color Variance (SCV): The SCV within a true positive component should be
less than the half of the average stroke color.

In addition to the above constraints, other heuristics have been proposed to wipe off distinct
false candidates. For instance, Chen et al. [CTST11| removed objects that contained a
large number of holes, because CCs with many holes were unlikely to be text candidates. To
remove false lines from Arabic video frames, Iwata et al. [SWTF16| calculated the eccentricity
e = %{W of all CCs in a textline. The line would be removed if the average of e was
less than a predefined threshold (= 30). Furthermore, crossing counts (number of transitions
from white to black pixels) above, in and below the baseline, denoted respectively by Ny,
Ny and Np, are computed and the line would be discarded if the following conditions held:
Ng < Ny or Ng < Np. Based on the SW consistency of text candidates, Xu et al.
[XXS14] performed a set of simple rules including the stroke count ratio, which represented

the number of rays within CC in the SWT process divided by the CC height. Feng et al.
Nesp
Nep

and the edge density ED = Ny, where Ny, was the number of edge pixels which would

[FSZ16] designed two novel edge-based heuristics, namely the stroke pair ratio SPR =

find their stroke pairs in an edge component, N, was the number of pixels in an edge, and
Nernce was the number of edge components inside the BB on the stroke map. An edge would
be removed if its SPR was less than a predefined threshold 7). Furthermore, edges inside a
BB would be all removed if the CC’s ED was greater than a threshold T5.

Text components are rich of corners, which are uniformly distributed over text regions. Based
on this observation, Zhuge et al. [ZL15] conducted a corner detection in BBs of binary images,
and then counted the number of corners in each BB. If the ratio of this number to the area of
the box was below a fixed threshold Thr, than the BB would be considered as a false alarm
and discarded from the video frame. In |GKV16|, a first filtering was applied for all CCs in
the binary map according to a stability criterion of embedded text. This criterion tested the
surface evolution of a component Cy; by varying the two extremities of the corresponding color
interval [S1, 52] (see Gaddour et al. [GKV16] in the previous subsection), either increasing or
reducing it by a predefined factor a.. The surface of a text component would remain relatively
stable since the text is well contrasted compared to the rest of the image. Then, a second
filtering process was performed via a baseline estimation technique and other syntactic rules
about AR and ligature count considering the specificities of Arabic script.
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These heuristics have proved to be both simple and fast. However, their flexibility to
verify text candidates is limited. In other words, if the heuristics are strict, they may fail to
preserve text that does not comply with all the rules. If the heuristics are weak conditions
(i.e. relaxed), they may introduce false alarms.

On the other hand, several methods have built classifiers to distinguish text/non-text

components by combining multiple features. In [YBLT12|, the extracted components and
lines were respectively verified by two sets of features and a two-level classification scheme
based on the RF classifier. The proposed features were specially designed for capturing
the intrinsic properties of text, such as stroke width uniformity at the character level, and
characters’ similarity, in terms of colors, sizes and orientations, at the line level. In [MBH12],
an 8-clement vector of hand-crafted features was fed to the k-means clustering to identify text
components. This vector included the variance Vg of the gradient directions of all edge pixels
in one CC, the contrast, the AR, the variance SWV and the median SW M of the stroke
widths in one CC, and the skewness of the gradient directions SKg = /;—;, where pus and o3
denote the third moment about the mean and standard deviation of the gradient directions. In
[SWXT13], 13-dimensional features of gradient, stroke width, regularity and occupation were
combined to represent each MSER. Such CC-based features were input to the RF classifier to
distinguish text and non-text regions. Koo and Kim |[KK13| proposed to divide MSER regions
into normalized squares, from which the following features were extracted and classified with
a multilayer perceptron (MLP): the number of foreground pixels, the number of vertical
white-black transitions, and the number of horizontal black-white transitions. The average
of the classification responses from all sub-regions was subsequently used for text/non-text
classification. Chen et al. [CYHL15| utilized a lincar SVM trained with a set of 11 features
for text/non-text classification in born-digital images. The features were extracted based on
the contour, the area, the bounding box, the skeleton and the stroke width of one CC. The
remaining CCs underwent textline merging and text/non-text line classification. The linear
SVM classifier was again used at the line level. In [KJ11], the difference between middle and
upper zones, the distance between two lines, the CC max/min heights and AR as well as other
structural features were combined and trained with SVMs.
The standard deviations of colors and compactness, number of character candidates in a
region, AR and SWM values of an MSER region were extracted as candidate region features
in [YYHI12]. Using these features, an AdaBoost classifier was trained for distinguishing text
and non-text regions. Huang et al. [HLYW13] applied two RF classifiers at component and
line levels, sequentially, to discriminate text regions. The classifiers were built upon two Text
Covariance Descriptors (TCDs) that would capture the inherent correlations between multiple
features and encode the statistical characteristics of text strokes. Turki et al. [THA15] trained
a Dynamic Time Warping (DTW) classifier using the HOG and SIFT features to classify
MSER regions as text or non-text.

More recent efforts have focused on reducing the amount of hand-crafted features or
human-defined heuristics by adopting deep CNN [PYKY16, HHQY16, ZLC*17, WFCL17|
to design text detection systems. These deep learning-based approaches usually achieve supe-
rior performances over the conventional ones. A CNN model was utilized to filter out non-text
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components, which were generated by Edgebox detector in [JSVZ16]. Similarly, in [HHQY16],
He et al. proposed a novel approach for text detection, which integrated an improved CE-
MSER operator and a Text-Attentional CNN (TA-CNN) classifier. The CE-MSER detector
worked in the front-end to extract text candidates, while the TA-CNN model was employed
to correctly identify true text candidates. A similar method was also proposed by Sun et al.
[SHIC15] but using a Fully Connected Network (FCN). In [PYKY16], a multi-information
(multi-channels and multi-scales) MSER fusion algorithm was introduced to extract char-
acter candidates, which were then grouped and verified utilizing a hybrid filter with CNN,
AdaBoost and Bayesian classifiers. Recently, Wang et al. [WFCL17| utilized a new architec-
ture of deep CNNs and a double-threshold strategy to classify text/non-text components that
were extracted using the above-mentioned superpixel technique.

Connected-component grouping and textline construction

The challenging question to answer in this stage is how to group adjacent CCs, detected and
filtered in the previous steps, into separated meaningful words or lines. The existing methods
for CC grouping can be divided into two categories: rule-based [CTST11, YT11, LL12, BYL13,
Z1.15] and clustering-based [YYHH14, HYH"16] methods. Based on the assumption that
characters in one line typically appear in a linear form and usually have a similar color, height
and space between them, several heuristic rules have been commonly applied to connect text
components. For instance, two characters were paired in [CTST11] in case (1) the ratio of
their SW medians was lower than a threshold 71, (2) their height ratio was lower than a
threshold 72 and (3) they were not very distant. Li et al. [LLI12| calculated two maps,
namely the distance map and the orientation map, by measuring the Euclidean distance D
and the orientation angle 6 between each pair of CC. When D was lower than a predefined
threshold Max g, these two CCs were labeled as adjacent candidates. Next, 8 was checked
for each adjacent pair of CCs on the orientation map. Every pair of CCs satisfying this rule
was finally checked by a set of similarity constraints concerning height, width, SW mean and
intensity. According to their statistical analysis of text strings, Yi et al. [YT11] defined four
geometrical constraints to decide whether two CCs can be considered as sibling of each other:

e For text strings aligned horizontally, the difference between y-coordinates of the CC cen-
troids should not be greater than T times the height of the higher one, i.e. |coorY; —
coorYs| < Ty - maz(hy, hsa)

e Two adjacent letters should not be too far from each other, so the distance between two
CCs should not be greater than Ty times the width of the wider one, i.c. |coorX; —
coor Xs| < Ty - maz(wy, ws)

e The centroid of a CC ¢; should be located between the upper-bound and lower-bound of
the other candidate CC co, i.e. coorY, > coorYs—ho-T3 and coorY; < coorYs + ho- T3

e The color difference between them should be lower than a predefined threshold Ty, i.e.
lcl(c1) — cl(ea)| < Ty

A graphical illustration of this grouping method is depicted in Figure 2.10. Similarly, Bai et
al. [BYL13] applied four constraints based on the color, SW, distance and direction of a pair
of characters :
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Figure 2.10: (a) Sibling group of CC ‘r’ where ‘B’ and ‘0’ comes from left and right sibling sets
respectively. (b) Merging of sibling groups to an adjacent character group (e.g., “Brolly?”). (c)
Two detected adjacent character groups [YT11].

ma:z:((m — 7"2), (gl — bg), (b1 — bg)) <t
|sw1 — sw2| < 19

distance(cy, c2) < tg - max(hy, hg)

angle(cy, co) < t4

where (r,g,b), h,distance(.) and angle(.) respectively denote the RGB values, height, dis-
tance between the centers of two CCs ¢1 and cg, and the directional angle (between the line
connecting CC centers and the horizontal axis).

In [VTPEK16], a raycast-based textline grouping method was proposed, where a horizontal
ray was cast to the right, starting from each character region until hitting an other character
region (Figure 2.11). If this happens those regions would be grouped and the scan would
continue till the ray would exit the image or hit another too faraway region, according to the
criteria given by Equation (2.4).

distance(Ac, B.)
min(Aw , Bu;)

v(A, B) = (24)

where A, and B, are the corresponding region center, and A,, and B, are the corresponding

Eyjatiallajoku

Figure 2.11: Raycast-based text line grouping from [VIPEK16].

region widths.

To construct a text line given the obtained character’ pairs, the previous methods [CTST 11,
LL12, BYL13, VTPEKI16] were generally inspired by the observation that the centers of the
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letters’” BBs are usually in a straight line. This worked well for English characters, but did
not perform so well for Arabic and Chinese ones, whose centers are not in a straight line. Fur-
thermore, most of these methods assumed that a text character and its siblings have similar
sizes and proper distances (see the work of [YT11] in Figure 2.10). This is not the case for
cursive scripts like Arabic, which usually has a non-uniform inter/intra-word distance and a
variable size of characters’ BB.

Zhuge et al. |Z1.15] suggested to form video textlines (Chinese/Latin) by using a more flexible
method. Specifically, the Run Length Smoothing Algorithm (RLSA) was applied on CCs of
a binary image, as follows:

CCsImg(i,j) = Hyisa(i,7) * Virsa (i, 7) (2.5)

where H,js,(i,7) was acquired by RLSA to merge CCs whose Euclidean distance was less
than a fixed threshold in the horizontal direction, and Vs, (7, j) was acquired by RLSA in
the vertical direction.

On the other hand, the clustering-based method presented by Pan et al. [PHL11] con-
structed text lines by minimizing energy functions of a learned distance metric. To group
multi-oriented text components, Yao et al. [YBLT12] made use of a greedy agglomerative
clustering method, in which neighboring pairs would be grouped together if their average
alignment was under a certain threshold. Yin et al. [YYHHI14| proposed to group charac-
ters into text candidates by using the single-linkage clustering algorithm, where the distance
weights and clustering thresholds were automatically learned by a self-training distance metric
learning algorithm. The merging process was treated as an assignment problem on top of a
character component graph in [HYH 16|, and the best assignment without conflicts was cho-
sen based on scores calculated using several textline features concerning the color histogram
of both z and y regions (Equation 2.6), their height ratio, AR and SW ratio. Utilizing these
features, a logistic regression was trained to determine whether two given regions are similar.
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The above rule-based techniques usually require hand-tuned parameters, while the clustering-
based ones are complicated by the incorporation of a post-processing stage, where one has to
specify a rather complicated energy model.

In summary, CC-based methods first extract candidate components through a variety of
ways including SWT, MSER, color clustering and superpixel segmentation, and then filter out
non-text components utilizing human-defined rules or automatically trained classifiers. The
remaining CCs are finally grouped into textlines. Table 2.1 presents a selection of recently
published methods under this category and summarizes for each work how information is
preprocessed, extracted, classified and grouped. This table also gives, for each algorithm, a
brief highlight in terms of used dataset and obtained F-score.
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Table 2.1: A selection of CC-based methods proposed since 2010.

Method

(Year) Preprocessing CC extraction CC filtering CC grouping Highlights
Epshtein Canny edge . Geometric constraints . Intr'oducmg the SWT;
[EOW10] detector SWT (SW ratio, CC size, ...) Heuristic checks Latin scene text,

Sobel gradient ’ T (F=0.66, ICDAR’05 dataset)
Mosleh Bandlet-based . e e Introducing Bandlet-SWT;
[MBHI3| edge detection SWT Hybrid feat.” + K-means  Heuristic checks (F~0.71, ICDAR 05 dataset)
Yao Canny edge - CCulevel feat. + RF T Latin/ Chinese multi-oriented
[YBLT12] dliesior BT Chain-level feat. + RF clustering e et

Sobel gradient (F=0.6, MSRA-TD500 dataset)

. Canny edge D Introducing SFT and TCD;

[PE‘L‘?%VH] detector SFT iégﬁ i g Heuristic checks (F=0.72, ICDAR05 dataset),
’ Sobel gradient (F=0.73, ICDAR’11 dataset)
Chen Local CC-level feat. + SVM Heuristic check Latin born-digital text,
[CYHL15] i binarization Chain-level feat, + SVM o oue CHECRS (F—0.88, ICDAR’13 dataset)
AN Corner detection + . p
o i NS flo whain (e
o P ' Multi-frame verification R '
Ghanei WMF SWSR Projection profiles Meanshift Arabic and Latin scene text,
[GF15] CPD MSER via radon transform clustering (F=0.718, ICDAR’11 dataset)
Toro . Detect text on traffic panels;
- " L, © / . " L ~Ccas ’
[VTPEK16] MSER HSW feat. + SVM Ray-casting (F—0.69, ATPD dataset)
Twata Local . . Lo Arabic artificial text,
[SWTF16] - binarization Geometric constraints V. projection profiles ey
Gaddour MSER-like . . . Arabic scene text,
[ GKV1 (5] - algorithm Geometric constraints Heuristic checks (Private dataset)
huang CNN, L . Latin scene text,
[HQT14] - LTSRS NMS Heuristic checks (F=0.78, ICDAR’11 dataset)
Latin scene text
Wang . CNN, L :

T 17 - Super-pixel ) Heuristic checks (F=0.82, ICDAR’11 dataset),
|[WFCL17| Double-threshold (F—0.84, ICDAR'13 dataset)
Pei CNN, Latin/ Chinese multi-oriented
[PYKY16] Pyramid image  MSER AdaBoost, Heuristic checks scene text,

Bayesian classifier

(F=0.72, MSRA-TD500 dataset)

2.2.2 Texture-based methods

In texture-based methods, known also as sliding window-based methods, the input image is
scanned using multi-scale sliding windows to extract different texture proprieties and classify
image regions as text or non-text based on texture-like features. Some widely utilized features
include the Histograms of Oriented Gradients (HOGs) [HP09, ZLMZ11, GWX 13, KSR15],
wavelets [SPT09, SPT10, SDTP14, GGJ16], Discrete Cosine Transform (DCT) [QLWSO07,
AK09, KAJK16], Fourier transform [SPT10, SPT11, RSDE13], Gabor filters [FGGO05, YT11,
RSDE13, MFSS18] and Local Binary Patterns (LBP) [ZLMZ11, GWX 13, YBG14].

This kind of methods has focused on the binary classification, text versus non-text, of a small
image window. In other words, it has focused on the following problem:

e Problem (D): Determine whether a given window (block) is a part of a text region.

As shown in Figure 2.12, this methodology and the aforementioned one (CC-based) share
some common steps, i.e. the preprocessing, merging and refinement phases, which have been
already detailed in the previous section (2.2.1). Thus, in what follows, we mainly focus on
the key steps of this category, namely those of feature extraction and classification.

In an earlier work [QLWS07], Qian ef al. proposed a DCT? based method to find candidate
text blocks in compressed videos. Firstly, 8 x 8 block-wise DCT was performed on each video

2A common use of the DCT is in JPEG and MPEG compression.
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Figure 2.12: Flowchart of a typical sliding window-based text detection method. Yellow rect-
angles correspond to optional stages.

frame, producing a set of DCT coefficients (AC), given by Equation (2.7).

T

1 2z + 1) mu (2z+1) v
ACy,, = 8K“K” Z Z b(zx,y) - cos TG cos G (2.7)

=0 y=0

where b(z,y) represented the image block, u and v respectively denoted the horizontal and
vertical frequencies, and K was a coefficient. If u or v was 0, then K = 1/4/2. Otherwise,
K = 1. Seven AC coefficients were subsequently selected to capture the horizontal, vertical,
and diagonal textures and to represent the texture intensity of each image block. Next, two
empirically chosen thresholds were utilized to determine whether or not each block contained
text, based on the observation that the texture intensity of text blocks was higher than that of
background ones. Morphological operators and projection profiles were finally used to bridge
the gaps in the region of characters and to remove background noise. Other methods based
on DCT features were proposed by Hsia et al. [HHL14| and Kim et al. [KAJK16|, among
others.

In [AKO09], Angadi et al. firstly divided the input scene image into 8 x 8 blocks and then
applied a DCT-based high-pass filter on every block to eliminate constant background. A set
of 8 texture features (e.g., homogeneity and contrast) was then computed on every 50 x 50
block of the processed image, and a newly defined discriminant function was employed to
classify potential text blocks. Finally, the survived blocks were incrementally merged and
then refined by using a set of geometrical constraints.

Shivakumara et al. [SPT09| proposed to transform the input grayscale frame into three
high-frequency subband images, LH, HL. and HH, as shown in Figure 2.13. An 8 x 8 sliding
window was next moved across each subband image to calculate a feature vector of 7 ele-
ments. The features, which included energy (Equation 2.8), entropy (Equation 2.9), inertia
(Equation 2.10), local homogeneity (Equation 2.11), mean (Equation 2.12), second-order and
third-order central moments (Equations 2.13 and 2.14) of subband images, were then fed to
the K-means clustering for text/background discrimination. Finally, text regions were located
by projection profiles.

Energy = 2 W2(i, 5) (2.8)
i.j
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Figure 2.13: 2D wavelet single level decomposition LH, HL and HH subbands, from [SPT09].
(a) Gray image, (b) Horizontal (LH), (¢) Vertical (HL) and (D) Diagonal (HH).

Entropy = Z W (i, 7) - log W (i, 7) (2.9)
ij
Inertia = (i — j)* W(i, j) (2.10)
ij
. 1 .
Homogeneity = lzj: TTG-j° W (i, j) (2.11)
1 N N
Mean = —5 > > W (i,j) (2.12)
i=1 j=1
1 N N
1 =15 > S (Wi, ) — Mean)? (2.13)
i=1 j=1
1 N N
M3 = > > (Wi, §) — Mean)® (2.14)
i=1 j=1

where W (4, j) is the subband image, at position (7, j) in the window of size N x N.

The same authors [SPT10] introduced a new Fourier Statistical Feature (FSF) in the RGB
color space to detect text in video frames. As in [SPT09], a sliding window of size 8 x 8 was
employed to extract texture features (Equations 2.8 - 2.14) from each subband frame (R,
G, B). The k-means clustering was again utilized. In [SDTP10], the wavelet-median moment
features were computed in each window (of size 4 x 4) and subjected to the K-means clustering
to classify text pixels from background ones. In [JWS09], the entropy (Equation 2.9), puq
(Equation 2.13) and p3 (Equation 2.14) were also computed at the block level and fed to
an SVM classifier for text/non-text discrimination in video frames. A set of Gray-Level Co-
occurrence Matrix (GLCM) features was further utilized in this method. More particularly,
the correlation and contrast were employed to represent the image texture.

Ghai et al. |GGJ16] proposed an unsupervised clustering technique similar to that de-
scribed by Shivakumara et al. in [SPT09, SPT10] for the classification of multi-channel wavelet
features. Firstly, the input image was decomposed into three R, G, B channel images and
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a 2D wavelet transform was then performed on each image. Next, two statistical features,
namely the mean and standard deviation, were calculated from each overlapped sliding win-
dow for every high frequency subband (LH, HL and HH). After that, these features were fed
to the K-means clustering to classify the image into text, simple background and complex
background clusters. Finally, a voting decision process and an area-based filtering were used
to locate text regions.

The method in [SPT11] looked for candidate text regions in a video frame using a proposed
Fourier-Laplacian filtering followed by a block-wise feature extraction scheme and the K-means
clustering. Finally, heuristics concerning straightness and edge density were employed for false
positive elimination. The Maximum Gradient Difference (MGD) feature was employed in this
method. It was particularly calculated for each pixel, as a difference between the maximal
and the minimal values within a local 1 x N window of the gradient image g, as described by
Equation (2.15).

Max(z,y) = MATye (=N N g(z,y — 1)

Min(z,y) = mithe[%%] g(x,y —1t) (2.15)
MGD(z,y) = Max(z,y) — Min(z,y)

Typically, the pixels of text regions have larger MGD values than those of background regions.
This characteristic was exploited to capture potential text blocks.

In [SDTP14], a combination of wavelet and median moments was proposed to identify
text candidates at the block level followed by an angle projection boundary growing method
to deal with multi-oriented text in videos.

The Gabor filter has been widely utilized to model texture in text detection |YT11,
LLLT11, RSDE13]. Actually, a 2-D Gabor filter is a Gaussian kernel modulated by a si-
nusoidal carrier wave (as expressed in Equation 2.16), which gives different responses for
various positions in a window centered at (x, y).

12 12,12 i
g(z,y) = exp (—%) cos (27ri + g0>
20 p

2 =xcosh+ysinh, y = —xsinf+ ycosb

(2.16)

In [YT11], Yi and Tian applied a set of Gabor filters on character strokes to extract a
new text descriptor, namely the Stroke Gabor Words (SGWs). Principal SGWs were then
computed for each image window to describe its text strokes. Characteristic distributions
generated by SGWs were finally used by the K-means algorithm to classify text and non-text
windows.

Lee et al. [LLLT11] proposed to extract four different classes of texture features by means
of multi-scale sliding windows, and use Modest AdaBoost ® [VV05| to detect text in natural
scenes. Specifically, they exploited the following types of features:

e Local energy of Gabor filters,

3Modest Adaboost is a variant of the well-known GentleBoost classifier.
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e Mean and standard deviation of X and Y derivatives,
e Six statistical texture measures of image histogram,

o Four coefficients of Deubechies wavelets.

Hanif et al. [HP09] introduced a boosting framework that integrated feature and weak
classifier selection based on computational complexity to generate efficient text detectors.
The proposed scheme extracted a set of features from each block, including HOG, Standard
Deviation (SD), and Mean Difference Feature (MDF). An MLP-based localizer was then
applied as a refinement step.

ﬁ 162 165 | 166
Binary: 01110111 Horizontal
128 |11 >
Decimal: 119 line
| IE[RE 158] 153] 161

161| 8 [166

Binary: 11011101 Vertical
\/v 162| 12 171} pecimal: 221 line

158 13 | 161

Figure 2.14: Illustration of used LBP in [ZLMZ11].

Zhou et al. [ZLMZ11] put forward a multilingual scene text detection method. The input
image was firstly divided into 32 x 24 blocks using a sliding window. Three types of texture
features including HOG, Mean of Gradients (MG) and LBP (Figure 2.14) were afterwards
computed for each block. A cascade AdaBoost classifier was trained based on the extracted
features to determine whether the block is part of a text region or not.

Gao et al. [GWXT13] suggested to jointly use transfer learning and cascade AdaBoost
with weak learners of classification and regression to decide whether a sliding window (of size
32 x 16) contained text or not. The method employed a feature pool that included LBP,
HOG, MDF, SD, SWV, SWM and histogram of intensity. A set of heuristic rules was then
employed to group and refine the detected text blocks.

Pyramid Haar LHBP

Figure 2.15: LHBP for multi-scale texture feature representation from [JXYT08].

Ji et al. [JXY 08| introduced a robust text characterization approach based on Local Haar
Binary Pattern (LHBP). More specially, a threshold-restricted LBP was extracted from the
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high-frequency coefficients of pyramid Haar wavelet, calculated at various resolutions to repre-
sent multiscale texture information (Figure 2.15). Assuming that some occurrences between
certain directions were notable, a directional correlation analysis (DCA) was subsequently
applied to filter out non-directional LHBP regions and locate candidate text regions. Finally,
using the LHBP histogram, an SVM classifier was trained to refine the preliminary detection
results.

Raza et al. [RSDE13] presented a fully-heuristic method for multilingual text detection in
video frames. The method relied on a cascade of transforms: Firstly, the Discrete Stationary
Wavelet Transform (D-SWT) was exploited to capture the potential text edges in each sliding
window (10 x 10). Next, the Gabor filters and the Fast Fourier Transform (FFT) were
sequentially applied on the output of the D-SWT to suppress most of the background. A
fixed-size sliding window was again used to compute some fractal dimension (FD) features,
from the obtained FFT image, and compare their average to a predefined threshold. A final
window-based validation step was performed using GLCM features including energy, contrast,
correlation and homogeneity. A similar method was proposed in [RAS13]. The authors first
divided the input frame into 50 x 50 blocks and then applied the DCT on each block, as
shown in Figure 2.16. Two filtering stages of non-text blocks were subsequently carried out.
At the first stage, the absolute sum of the DCT coefficients was compared to a predefined
threshold. In the second one, the Discrete Fourier Transform (DFT) was applied, and then an
empirically chosen threshold was used for the selection / rejection of the DFT coefficients to
filter out non-textual information. A 2D Gabor filter was utilized as a final thresholding step
followed by the application of morphological operations and projection profiles for refinement.
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Figure 2.16: Conversion of input image into blocks [RAS13|. (a) Input image, (b) Conversion
to blocks of 50 x 50, (¢) DCT of each block.

Moradi et al. |MMI13| put forward a method for detecting Farsi/Arabic text in video
frames. Firstly, artificial corners were obtained with the help of edge extraction, and font size
estimation was performed. Next, a texture intensity picture was created by combining DCT
coeflicients, and a new LBP picture was introduced to describe the acquired texture pattern.
A set of features, including energy, entropy, homogeneity, inertia, and third-order central
moment, was then computed on some macro blocks of the processed image and fed into an
SVM classifier. Finally, the candidate text blocks underwent empirical rules and projection
profile analysis for text refinement.
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Yousfi et al. [YBG14| put forward two texture-based approaches to detect Arabic text
in video frames. The core of the first method is a multiexit asymmetric boosting cascade
(GentleBoost) running on multi-block LBP (mb-LBP) features. The second one relies on an
AdaBoost classifier using Haar-like features. The mb-LBP can capture large scale structures
like corners at different positions, compared to the original LBP (Figure 2.14). Haar-like
features on the other hand are based on the difference value between the mean of intensities
in contiguous rectangular regions. These features were extracted by sliding a fixed-size window
through an input image at multiple scales (to detect text regions of different sizes).

32x32  25x%25%96 Sx5x96  4x4x256  2x2x256

———

[Text]

Convolution Convolution Classification

Average Pooling Average Pooling

Figure 2.17: CNN for text detection from [WWCNI12].

Other than traditional hand-crafted features and statistical models, recent deep learning-
based methods have been also used within this sliding window-based methodology. More
specifically, Coates et al. [CCCT 11| proposed the use of an unsupervised feature-learning
scheme to generate the features for character vs background classification and character recog-
nition. They evaluated a single-layer CNN model on each possible window (32 x 32) of the
input image at multiple scales.

Wang et al. [WWCN12] proposed to combine a multi-layer CNN with unsupervised feature
learning to train character models for both text detection and recognition. They ran CNN
for character classification utilizing a sliding window approach (Figure 2.17) and used the
responses to localize candidate text regions.

Jaderberg et al. [JVZ14]| put forward a new CNN architecture, which took a 24 x 24
image block and predicted a text / non-text score, a character class and a bi-gram class. The
input image was scanned by the trained network in 16 scales, and a text saliency map was
subsequently formed by taking the text / non-text output of the network. Given the saliency
maps, word BBs were finally obtained by the RLSA algorithm.

A CNN-based method for Arabic video text detection was suggested in [YBG14|. The
employed architecture was composed of six layers. It received training labeled images with a
retina of 32 x 64 pixels, as shown in Figure 2.18. The first four layers performed feature extrac-
tion and combination and the last two ones represented a simple MLP used for classification.

Gupta et al. [GVZ16] proposed generating synthetic images and utilizing them to train
a Fully-Convolutional Regression Network (FCRN), which performed text detection and
bounding-box regression in multiple scales through all locations of an image. It is worth
noting that the input image was first divided into a fixed number of blocks (14 x 14).

Tian et al. [THH"16] adapted the Region Proposal Networks (RPN) architecture [RHGS15]
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Figure 2.18: CNN-based architecture from [YBG14].

Table 2.2: A selection of texture-based methods proposed since 2008.

Method Preprocess'lng / Features Classification Grouping/ . Highlights
Segmentation Postprocessing
Shiva oD el fmzsostlomn /) Er;ergy, ‘el};cropy, inertia, o : Asngn/Latm artificial text,
. L . 25 and 3" central K-means Projection profiles (Private dataset),
[SPT09]) 8x8 sliding window g
moments, homogeneity,.. 15.2 sec/ 256 x 256 image
Ji Entropy, 2°¢ and SVM Vote mechanism, Scene/artificial text,
[JWS09] 374 central moments, GLCM Morphological filter  (Private dataset)
Multi-oriented Chinese/
Shiva Fourier-Laplacian filtering/ . ' o s . Latin text,
11 xN sliding window a —=0.81, IC i ataset),
SPT b liting i MGD features K-means Heuristic checks F—0.81 ICDAR'03 d
(F=0.77, private dataset)
Local energy of Gabor filter,
Lee Statistical texture measures Color and eradicnt- Latin scene text,
I VI'] +11] Multi-scale sliding windows  of image histogram, AdaBoost based od eganal 1 (F=0.7, ICDAR’03 dataset),
o Coefficients of Deubechies sed eds VSIS Several min, image
wavelets,
Gao LLLETE; IEI0C), WNIDIF, SID)} Latin scene text
. . 32x16 sliding window histogram of intensity, number ~ AdaBoost Heuristic rules ]
WX+ ) _ )
[eRTers] of extended edges in the image (=T, MOBAIRYILL cleezest)
FOxE
Raza c?)gz:g:)(l;:l;/msforms 2D Gabor filtering,  Multilingual artificial text,
[RAS13] D C}—l)ewe d (threshoi ding - - morphological op., (F=0.84, private dataset),
DFT-based threshol ding)7 projection profiles 4.13 sec/ image
Yousfi . 6. . mb-LBP features; GentleBoost; Artificial Aljablc text,
[YBG14] Multi-scale sliding windows Haar-like foatures AdaBoost (F=0.77, private dataset),
o 7.25 sec/ 576 x 1024 image
Hanif Mean, HOG, MDF, ’ . Latin scene text,
09 tandard deviation, —=0.49, 3 dataset,
HP Standard deviati AdaBoost MLP F=0.49, ICDAR03 d
Ji Multi-scale sliding window . . P Latin scene text,
UXY*08]  (12x10) LHBP histogram SVM DCA filtering (F—0.68, ICDAR'03 dataset)
Ghai R, G, B channel images + Mean, Kemeans Voting decision, ?;28’99}1 n:;lilv;i:tglataqet)
[GGJ16] 2D wavelet transform Standard deviation fleats geometrical filtering o PRV e
20.1 sec / image
[gggisn] i\;;)l(t:}l;;cale sliding windows Unsupervised feature learning CNN Latin scene text
Trained on a large number
) . s . of synthetic images;
[]?\djrllle]'rg g:i;f)mle sliding windows CNN CNN RLSA algorithm Latin scene text,
e (F=0.8, ICDAR’05 dataset),
(F=0.56, SVT dataset)
Trained on a large number
Gupta Multi-scale sliding windows .\ of synthetic images;
[GVZ16] (14x14) CRN FORN Latin scene text,

(F=0.84, ICDAR’13 dataset)
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by sliding a 3-by-3 window across the last convolutional map of the popular VGG-16 archi-
tecture [SZ14] and applied a BRNN to jointly predict the text / non-text score, the y-axis
coordinate and the anchor-side refinement.

In summary, sliding window-based methods first search for possible text blocks through
out the whole image and then identify them using a trained classifier, which usually takes a set
of texture features as an input. Table 2.2 presents some sliding window-based methods and
summarizes for each method how information is preprocessed (and segmented into windows),
classified and grouped. The table also highlights, for each algorithm, the used dataset and
the obtained F-measure.

2.2.3 Hybrid methods

This category combines the advantages of both texture-based and CC-based methods for more
accurate text detection. For instance, Pan et al. [PHIL11] utilized an AdaBoost classifier with
HOG features to detect text candidates and then extract CCs from multi-scale probability
maps. A Conditional Random Field (CRF) model, combining unary component properties
and binary contextual relationships, was then employed to discriminate text components from
non-text ones.

In [FRSD"16], the image was first segmented using the Toggle Mapping Morphological
Segmentation (TMMS) technique [FMC09] to extract potential CCs. A two-stage filtering
scheme was then performed to eliminate non-text CCs. The first stage made use of the
common geometric constraints (e.g., size and AR of CCs) with fixed thresholds, while the
second one was based on the KNN algorithm. The remaining candidate components were
then grouped into higher structures. An SVM classifier was finally trained on a set of texture
features such as HOG, LBP and GLCM to validate previously grouped CCs. Figure 2.19
presents the pipeline of this method.

For each scale Si of the pyramid

For each polarity Pj of TMMS

H Classification & CC grouping H
) I Segmentation ’ Recognition ’ Multi-directional : ’, ; Mask ’ Global Validation
H TMMS Fast geometric filters Graph with KNN Convex hull HOG/LBP/GLCM | !
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Gray Level

Figure 2.19: Typical example of a hybrid method for scene text detection from [FRSDT16].

Gonzalez et al. [GBYB12] proposed a hybrid text location method based on a combination
of the complementary proprieties of the MSER technique and the locally adaptive thresholding
algorithm for CC generation. Next, CCs were filtered based on geometric criteria such as
compactness, AR, OR, solidity and SW ratio. After that, character candidates were grouped
into lines, and each line was classified as text / non-text. For this purpose, the authors made
use of an SVM classifier and three different types of texture features, namely MDF, standard
deviation and HOG.
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According to several papers and books [AGP13, LPTL14, YBG14], the hybrid approaches
arc also referred to as a mixture of heuristic-based and machine learning-based methods. In
this way, a lot of presented work in the previous sections can be further classified as hybrid
methods, like the suggested work of Chen et al. [CYHL15] for born-digital text detection,
which consisted of two stages. The first localized text components with an efficient local
contrast-based segmentation, while the second verified the previous results based on a linear
SVM classifier trained on a set of statistical and structural features. Similarly, Huang et al.
proposed a two-stage schema for scene text detection [HQT14]. Candidate text components
were first determined using the MSER detector. Then a trained CNN model was utilized to
give final text lines.

In [AGP10], Anthimopoulos et al. suggested combining an edge-based heuristic method
with a texture-based machine learning solution for text detection in video frames and images.
CCs were firstly detected through an edge map analysis. After that, dilation, opening and
projection profiles were introduced to generate initial candidate text areas. In continuation,
the results were refined using a sliding window and an SVM classifier trained on edge LBP
(eLBP) features that described the local edge distribution .

Such approaches aim to combine the efficiency of heuristic methods with the accuracy and
generalization of machine-learning solutions.

2.3 Text recognition in multimedia documents

Video text is usually displayed in different colors and with unknown scales and fonts, which
makes it difficult to be recognized by means of a standard OCR engine. According to the
literature, there have been essentially two ways to solve this problem, which are: i) Recognizing
characters by separating text pixels from the background beforehand, and then applying an
available OCR software |ZLL10, ZW13, HWL15, RSR*15]. ii) Recognizing characters by
using features and classifiers specially designed for video or/and natural scene text [EGMS12,
SL14, JSVZ14, ZCLX16]. Figure 2.20 depicts the different categories of video and scene text
recognition and the relation between their underlying modules.

The first category requires an appropriate preprocessing stage to obtain characters with
well-defined shapes and a plain background. Therefore, several studies have made use of text
extraction, binarization and enhancement techniques for this aim. The terms "extraction"
and "binarization" are often used synonymously and operate to extract character pixels from
the localized text regions prior to recognition.

2.3.1 Robust binarization for better recognition

Document image binarization represents an active area of research. It has achieved very good
performances on scanned documents and could deal with certain degraded document images.
However, this task is particularly challenging for scene and video text due to presence of vari-
ous artifacts and complex backgrounds. To overcome these problems a variety of binarization
methods have been proposed, which can be classified into two broad categories: classical
thresholding-based and machine learning-based methods.
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Figure 2.20: Text recognition methods in videos and images

Classical thresholding methods

This kind of binarization can be further categorized into global and local adaptive approaches.
In the global approaches there is only one threshold for the whole text image. Otsu’s method
[Ots79] represents a typical example of this category. It assumes that an image has two
classes of pixels, namely text and background, and employs an algorithm that looks for a
global threshold maximizing the separability between the two classes. This works well on
images with high contrast and clean background, which is not the case of scene and video
text.

On the other hand, adaptive thresholding methods compute a local threshold T for each
pixel p on the basis of the information contained within a neighborhood of p. Niblack [Nib85]
and Sauvola [SP00] methods are perhaps the best known techniques in this class. The following
formula T = m + s.k was suggested by Niblack to compute the local threshold based on the
mean m and standard deviation s of the gray values in a fixed-size window centered at p.
Wolf et al. [WJ04] improved the Niblack algorithm and proposed formulating the decision
of binarization by means of a local contrast instead of gray values. A new formula was
consequently defined, by Equation (2.17), to compute 7" in multimedia documents.

T= (1—a)m+a.G+a%(m—G) (2.17)

where « is a parameter controlling the incertitude related to m, and G is the minimal gray
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value of the entire image. Later, Zhou et al. [ZLL10] proposed a thresholding-based bi-
narization for video text images. After performing Canny edge detection, the inner side of
boundaries were identified by using a local threshold method. The contours were then filled
up utilizing a modified flood-fill algorithm to form text regions. In [NGP11], the authors
exploited lower and upper baselines of the text, the convex hull analysis and the stroke width
information together with the adaptive thresholding for artificial text binarization in video
frames. Although most of these methods have performed satisfactorily for many cases, they
suffer from problems like the high sensitivity to the choice of parameters and the failure in
handling images with noisy background and similar foreground-background texture or colors.

Machine learning methods

Other video/image text recognition methods perform binarization based on clustering or, in
general, on machine learning techniques to solve the aforementioned problems. Saidane and
Garcia [SGO7| put forward an automatic binarization method for text areas in video frames
based on a CNN model, which took color text patches as an input and learned to output
the corresponding binary image. The CNN architecture was composed of four layers, namely
convolutional, sub-sampling, up-sampling and inverse convolutional.

Cho et al. [CSLK11] made use of CRFs for text extraction by a superpixel representation
of the input image. Character features concerning color, edge strength, stroke width and
contextual feature were employed. Another method [ZLY"11] exploited also the CRFs for
scene text extraction. The method relied specifically on the use of a two-step iterative CRF
scheme along with an OCR module as a region filtering stage.

Zhang and Wang suggested a method [ZW13] for binarizing artificial text in video using the
K-means algorithm in the RGB space to segment the input text image into k clusters, the
Markov Random Field (MRF) model to get the binarization result, and the Log-Gabor filters
as a refinement step. Other studies [SXWZ12, SLT12] proposed to divide the input image into
three classes: foreground, background, and uncertain. Next, they classified those uncertain
pixels by applying an MRF model.

Hu et al. [HWL15] put forward a binarization method for overlaid and scene text utilizing
two confidence maps and the K-means clustering algorithm.

Milyaev et al. [MBNT'13] proposed a scene text binarization technique, where they first
obtained an initial estimate of binarization with the Niblack algorithm [Nib85]. After that,
they performed the Laplacian operator on the image intensity to compute the unary terms of
the energy function, followed by a global optimization using a graph cut algorithm.

Roy et al. [RSR*15] introduced a new method to binarize video text by means of a Bayesian
classifier for text/non-text pixels discrimination and a connected component analysis for text
information restoring.

Recently, Mishra et al. [MAJ17] suggested a method (Figure 2.21) that modeled the color
and SW distributions of text and background using GMMs and computed unary and pairwise
costs for every pixel. The problem was then solved by minimizing two energy functions FE,
and Ej, to find the optimal binarization using an iterative graph cut algorithm.

A benchmark of several binarization methods on ICDAR, 2003 (scene images) [LPST05], IC-
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Figure 2.21: Overview of the binarization method by Mishra et al. [MAJ17]

DAR 2011 (born-digital images) [KMM™11] and SVT (street view images) [WB10] datasets
was presented in [MAJ17]. Text recognition accuracy, pixel-level and atom-level * measures
were used for the evaluation. As shown in Figure 2.22, the state-of-the-art results were ob-
tained with energy minimization-based methods [MAJ17].
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Figure 2.22: Comparison of different binarization methods. From left to right: input image,
Otsu [Ots79], Wolf and Doerman [WJ04|, Kasar et al. [KKR07], Milyaev et al. [MBNT13|,
Howe [Howl1] and Mishra et al. [MAJ17]. This figure was adapted from [MAJ17].

After obtaining the binarized text image, most of the previous methods made use of
an available OCR engine like Google Tesseract ®> OmniPage, or ABBYY Finereader  for
recognition, as depicted in Table 2.3.

2.3.2 Specific methods for text recognition in images and videos

In contrast to the previous methods, this category specifically uses classifiers directly on
text regions mixed with background objects. Like in document-based OCR, the recognition
module here can also be divided into segmentation-based and segmentation-free methods. The
former, known as analytical approach, segments the lines, words or sub-words into smaller
units (characters or graphemes) for recognition. The latter, also called global approach, takes
the whole line or word image for recognition.

*An atom as introduced by Clavelli et al. [CKL10] is a CC, which typically corresponds to a single character,
but can also correspond to a part of a character or to multiple characters, when characters are joint together.

Savailable at https://github.com /tesseract-ocr/

Savailable at: http://www.abbyy.com



34 CHAPTER 2. STATE OF THE ART IN TEXT DETECTION AND RECOGNITION

Table 2.3: A selection of binarization-based text recognition methods.
WRR and I-11 respectively denote the Word Recognition Rate metric and the ICDAR’11 dataset.

1(\;{::{.};0(1 Methodology Preprocessing Classification Postprocessing Highlights
Zhou Thresholding-based Closmyy il Local thresholding é:rtlfi%:lg;‘atm text,
|ZLL10] binarization Flood-fill algorithm (Private dataset)
L . . Baselines extraction, Latin artificial text,
mgiiﬁnms E‘illllrersioi(iilﬁg—based SW detection, - Convex Hull analysis ABBYY,
! anzatio ALLT binarization (WRR= 88, private dataset)
Latin artificial text,
Saidane Machine learn-based ONN ABBYY,
[SG07] binarization Tesseract,
(Private dataset)
Cho Machine learn-based Superpixel representation Feat.: color, edge, SW Latin scene text
[CSLKI1]  binarization DETpIxel represe Classifier: CRF e
Zhang Machine learn-based . . Chinese artificial text,
|ZW13] binarization s g Log-Gabor filter Tesseract
Roy Machine learn-based  Integration of color, wavelet Bavesian classifior CC analysis Multi-oriented text,
[RSRT15] binarization and gradient sub-bands yesia o Tesseract
Latin scene text
ilyaev achi 'n-base iblack a it . !
;\I\I;g;ﬁ: 13] g;;?;;;ilzim based E;))llzzli{a;lior:'g:;g; Graph cut algorithm - (WRR=22.07, I-11, Tesseract),
' : L2 (WRR=22.57, I-11, ABBYY)
Latin scene text,
Mishra Machine learn-based ~ Stroke map, . )
R 'RR=62.57, I- serac
[MAJI7] binarization CMM Graph cut algorithm (WRR=62.57, I-11, Tesseract),

(WRR=58.1, I-11, ABBYY)

Segmentation-based recognition

Text images, under this category, are segmented into individual characters before the recog-
nition step; i.e., no recognition will be done till the text region is fully segmented. The
projection-based method is among the simplest ways for dealing with the text segmentation
[HAVT12|. It basically calculates the average gray value for each pixel column an then splits
every blank region in the middle, making it vulnerable to disconnected structure (e.g., PAWs)
and touching letters (e.g., cursive scripts like Arabic). Ben Halima et al. [HAV 12| adopted
such a methodology to recognize Arabic text in news video frames. Textlines were first bi-
narized and then segmented (Figure 2.23) using projection profiles. Characters were finally
classified utilizing the fuzzy KNN algorithm applied on a set of hand-crafted features, and
the best results were obtained for k=10. The used features include occlusions, projections,
black-white transitions, number of components in the character and location of dots.

) oghus gl

Figure 2.23: Segmentation step proposed in [HAV12]

o

Other researches have exploited heuristic rules to further split and merge the obtained
segments based on some assumptions about the width and height of characters [HMZ09].
However, these methods can lead to numerous segmentation errors particularly for video and
scene images with complex backgrounds. Indeed, performing a sophisticated segmentation
requires finding the optimal threshold related to the employed projection, which is very crit-
ical for such content. To address this problem, several methods have proposed to model the
segmentation as a minimal cost path finding task. Yet, these methods have been only dedi-
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cated to few languages like Latin and Chinese. For instance, Phan et al. [PSST11] suggested
a method based on the Gradient Vector Flow (GVF) for video character segmentation. The
idea consisted in finding nonlinear splitting paths (rather than vertical splitting lines) that
corresponded to candidate cut pixels. More specifically, a two-pass path finding process was
applied where potential cuts were located in the forward pass. The backward pass served as
a verification step to reject false cuts, as shown in Figure 2.24.

Shivakumara et al. [SPLT11| suggested a segmentation approach, which found least-cost cuts
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Figure 2.24: Character segmentation with GVF method proposed in [PSST11]. Forward pass
(a) and backward pass (b) results of proposed path finding procedure.

by dynamic programming. Structural features were utilized for classification and recognition.
Finally, a voting criterion was adopted to classify 62 character classes into various smaller
ones.

Different from the previous methods, Saidane and Garcia [SGO08] proposed to use a CNN
model for the segmentation of video text lines. The input was three images, each of which
corresponded to one RGB color channel of the text image. The output was a vector that
classified the input columns into a border zone or a character one. As a side note, the network
was trained in a supervised fashion using many synthetic text images where the exact positions
of the characters were known. Although this method achieved high segmentation accuracies,
it allowed only vertical cuts. Thus, handling overlapping cases (e.g., ligatures in Arabic script)
was not guaranteed. As a continuation of this work, the authors suggested a segmentation-
based method [SGD09] that made use of a CNN-based character recognizer. The network was
trained to classify character images and then was applied on each segment. The classification
was finally performed using the best path search algorithm.

In [EGMS14], the video text images were first processed utilizing a combination of intensity
analysis and multi-frame integration to separate the text pixels from the background. Then,
a shortest path algorithm [LLP96] was employed to perform segmentation. The recognition
module was similar to the one presented in [SGD09].

Alsharif [AP13] proposed a lexicon-free segmentation-based approach for recognizing words
in scene images. The authors opted for a hybrid model composed of a four-state HMM and a
four-layer convolutional Maxout network to segment the words into characters. Afterwards,
they trained a network, namely segmentation correction Maxout to reduce the amount of
under and over-segmentation errors. Finally, a variant of the Viterbi algorithm was used for
recognition.

Iwata et al. [IOWKI16] put forward a segmentation-based method to recognize Arabic
text in video frames. Text lines were first segmented into words utilizing a space detec-
tion algorithm. The character candidates were then over-segmented into primitive segments
(Figure 2.25). The recognition was performed by the modified quadratic function (MQDF)
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classifier at the character level and by the dynamic programming at the word level.
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Figure 2.25: Result of word segmentation from [SWTF16]: (a) Input word image, (b) primitive
segments and (c¢) character segmentation

As it can be inferred from the reviewed methods, most of them made use of projection pro-
files, heuristics or more sophisticated techniques, such as CNNs and path-finding algorithms,
so as to explicitly segment the text image into words and then characters. The recognition
phase consists in a character-based classification of each segment. The classification results
are then concatenated in different manners to form the final transcription. However, with
such approaches, the segmentation errors can propagate further and impact the recognition
performance. For example, they may fail when the spaces between characters, PAWs or words
in a textline are not uniform. Moreover, the segmentation annotations require additional
resource consumption.

Segmentation-free recognition

This category regroups alternative methods that completely avoid the segmentation stage.
This is generally achieved by means of a sliding-window procedure and an HMM classifier
[RRS*13, BKR'17], or more recently by using deep networks such as RNNs [AJQ14], CNNs
[JSVZ14, JSVZ16] or their combination [GCWL17, HHQ T 16].

Roy et al. [RRST13] put forward a sliding window-based method for multi-oriented text recog-
nition in scene images. First, the input text image was binarized and the window trajectory
was estimated by a polynomial function. Next, the Marti-Bunke [MBO01] and local gradient
histogram features were extracted from each sliding window, followed by character modeling
via HMMs. Finally, the Viterbi algorithm was employed to find the best path through the
model, which was the recognition result.

Bhunia et al. [BKR"17] suggested to perform a color channel selection procedure to avoid
complex binarization for word recognition in scene/video images. The method consists in
applying a multi-label SVM classifier trained on wavelet-based features to select the proper
color channel that would provide a higher recognition performance. A set of PHOG features
was then extracted on each sliding window (after converting it to the selected color channel)
and fed as an input to HMMs for recognition.

An HMM-based scheme was suggested by Som et al. [SCS09| for the recognition of scrolling
text in Turkish broadcast news. The authors employed Gaussian mixtures to represent the
output distributions of HMM states. A set of synthetic character glyphs was used to construct
the training data for different glyph models.



CHAPTER 2. STATE OF THE ART IN TEXT DETECTION AND RECOGNITION 37

The great success of deep learning methods, specifically CNNs, in various computer vision
tasks has enlightened researchers in the field of scene and video text recognition. A peculiar
characteristic of text objects is that their length is not constant; e.g., an Arabic word may
consist of 2 characters such as ( - ) or 10 characters such as ( oBsRL ). Consequently,
most popular CNN models cannot be applied directly to text sequence prediction, since they
operate on fixed-dimension inputs. Some studies have been made to address this problem for
scene text recognition.
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Figure 2.26: Three typical CRNN-based architectures for scene text recognition. (a) CNN
+ softmax. (b) CRNN + CTC and (c) CRNN + Attention. This figure was adapted from
[GCWLL17].

For example, Jaderberg et al. [JSVZ14, JSVZ16| proposed a CNN-based classifier to
holistically recognize English words in natural scene images. More specifically, the recognition
was formulated as an image classification problem where a class label was assigned to each
word (see Figure 2.26(a)) in a predefined large lexicon 90k words, leading to a large trained
model with a huge number of classes. This is a somewhat impractical solution for other
texts such as Arabic, since their basic combinations can be greater than one million. Other
methods (such as [WWCN12]) proposed detecting individual characters and then recognizing
each of them with CNN models trained using labeled character images. Such methods can be
affected by a large amount of inter/intra-character confusions. Therefore, they often rely on
an accurate text detector.

RNNSs represent another important branch of deep neural networks. They have the ability
to model contextual information using their recurrent connections. Thus, RNNs are good at
recognizing patterns occurring in time series like speech and text.

In this context, Zhai et al. [ZCLX16] adopted a bidirectional RNN (BRNN) architecture
and a connectionist temporal classification (CTC) layer for Chinese news text recognition. The
authors collected two million news titles from 13 TV channels to train the suggested model.
Su and Lu [SL14] extracted sequences of HOG features as a sequential image representation
and generated the corresponding character sequence with RNNs.

Naz et al. [NUAT17] suggested an RNN-based system for Urdu Nasta’liq 7 text recognition.

"Urdu is a derivative of the Arabic alphabet.
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The input textline images were first normalized to a fixed height, and then transformed into
a sequence of manually-designed features including projection, pixel distribution and GLCM
features. An RNN was trained on these features in a frame-wise fashion, followed by a CTC
decoding layer that transcribed the input data and finally provided the recognized sequence.
Recently, some published studies [EGMS12, YBG15b, SBY17, WGLZ17] have jointly used
CNN and RNN models for recognizing text in natural scene images or/and videos. As shown
in Figure 2.26(b), these methods are generally composed of two modules, one deep CNN for
feature extraction and one BRNN for sequence modeling. In [EGMS12], video texts were
first represented as sequences of learned features with a multi-scale scanning scheme. The
sequence of features was then fed into a connectionist recurrent model, which would recognize
text words without prior binarization or explicit character segmentation.
Shi et al. [SBY17| treated word recognition as a sequence labeling problem. CNNs and
BRNNs were employed to respectively extract feature sequences from input images and gen-
erate sequential labels of arbitrary length. CTC was adopted to decode the sequence.
Wang et al. [WGLZ17] explored a GMM-HMM bootstrap model to align the frame sequence
with the transcription. Next, the alignments were utilized as supervision for CNN training.
Finally, BRNNs were used to model the text sequences.

Transcription : gsludl JsS

| CTC: error calculating / decoding |

YTE y' E y(l E

| Softmax output layer |

rn
haid

Sequence labeling
(BLSTM-CTC)
S

Multi-scale
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Figure 2.27: BLSTM-based video text recognition (from [YBG15b])

In [YBG15b], three RNN-based systems were proposed for embedded Arabic text recog-
nition in video frames. These systems differed in their feature extraction scheme and had
a common classifier. Firstly, a multi-scale sliding window was employed to extract features
based on three different learning-feature models, where two of them were based on deep
auto-encoders (AE) and the other one on CNN. A Bidirectional Long-Short Term Memory
(BLSTM) network coupled with a CTC layer (Figure 2.27) was then utilized to predict correct
characters from the associated sequence of features.

The effectiveness of the CNN-RNN paradigm was also exploited by He et al. |HHQ™'16]
and Qiang et al. [QDGJ16], among others, while Lee et al. [LO16| and Gao et al. [GCWL17]
suggested incorporating an attention-based mechanism to weight the feature sequence and
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perform soft-feature selection, as shown in Figure 2.26(c). The attention mechanism plays a
key role in the feature learning process. It allows the model to selectively focus on the most
relevant parts of incoming features. More particularly, a residual attention module proposed
by [WJQ*17] was employed in [LO16] to effectively suppress the response of background noise
while enhancing the representation of foreground text.

Other text recognition methods not relying on neural networks have also brought novel rep-
resentations and insightful ideas into this area of research. Rodriguez-Serrano et al. [RSPM13|
and Almazan et al. [AGFV14] suggested embedding text strings and word images in a common
Euclidean space. Word recognition was consequently converted into a retrieval problem. Yao
et al. [YBSL14] put forward an alternative way for scene character representation, denoted
as Strokelets, which was a combination of multi-scale mid-level features. While achieving
promising performances on some standard datasets, these methods have been generally out-

performed by the previously discussed methods based on deep networks.

Table 2.4: Text recognition methods using and avoiding character segmentation.
WRR, I-03 and I-15 denote the Word Recognition Rate metric, ICDAR’03 dataset and ICDAR’15

dataset, respectively.

Method Preprocessing/ . " e e .
(Ref) Methodology Segmentation Feature extraction  Recognition Highlights
Shivakumara  Segmentation-based — Seg: Least-cost cuts .\ 5 . Voting-based IR )
[SPLT11] recognition by DP Strucutral feat. char. classification Latin artificial character
Ben Halima  Segmentation-based ~ Prep: Binarization/ Hand-crafted feat Fuzzy KNN-based  Arabic artificial text,
[HAV*12] recognition Seg: Projection ane - char. classification  (Private dataset)
. o . Latin scene text,
ﬁ;hg]lf fji“fl‘i‘ttifnmn'b“ed Seg: HMM /Maxout model - Viterbi algorithm  (WRR—85.1, 1-03),
o _ (WRR=74.3, SVT)
I . Prep: Intensity analysis, CNN-based char. Latin artificial text,
Elagouni Segmentation-based ~ MFI/ P . B . .
[ECMS14| recognition Seg: Shortest path Multi-scale scanning recognizer (WRR=85.8, private datasetl),
B alg(;rithm ” Graph model (WRR=41.19, private dataset2)
Iwata Segmentation-based  Prep: Binarization/ . . MQ]?F fo'r char. Arabic artificial text,
[SWTF16] recognition Seg: Over-segmentation Chain code histogram  classification + (WRR=94, private dataset)
: DP for word rec. ’
. " - . Multi-oriented scene text,
Roy Segmentation-free L 1oP: Wavelet-Gradient MB feat. + Local HMM classifier (WRR=63.28, 1-03),
[RRS' 13| based binarization gradient histogram (WRR—58.41, MSRA-TD500)
Bhunia Prep: Color channel Scene, artificil text,
[BKR*17] Segmentation-free selelcgéion ) PHOG HMM classifier (WRR=78.44, 1-03),
(WRR=75.41, I-15 video)
Lexicon-based (90k word);
Jaderberg . Latin scene text,
[JSVZ14] Segmentation-free - - CNN (WRR—89.5, 1-03),
(WRR=68.0, SVT)
Su and Lu Latin scene text,
egmentation-free - x L + CTC =82.0, 1-03),
[SL14] S ion-fl HOG BRNN + CTC WRR=82.0, I-03
(WRR=83.0, SVT)
Naz . § . Urdu text,
[NUA*+17] Segmentation-free - Hand-crafted feat. MDRNN + CTC (Private dataset)
Yousfi Arabic artificial text
[YBCL")I;] Segmentation-free - CNN BRNN + CTC s
(WRR=71.26, ALIF dataset)
Qiang ) . _ Street View house number,
[QDGJ16] Segmentation-free - CNN BRNN + CTC (WRR—91.0,SVHN dataset)
. Latin scene text,
llee Segmentation-free - CNN Alitniiton-boged WRR-88.7, 1-03),
[LO16] RNN
(WRR=80.7, SVT)
Gao . . Latin scene text,
[GCWLL7] Segmentation-free - CNN-+Attention CNN + CTC (WRR—83.0, SVT)

To sum up, this kind of methodology permits avoiding the problems of segmentation.
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Nevertheless, it usually requires a large number of samples covering various text fonts and
background to train the classifier. Table 2.4 presents a selection of methods for artificial/
scene text recognition using and avoiding character segmentation. The table highlights, for
each each method, the employed techniques, features and classifiers, the used dataset and the
obtained recognition rate.

End-to-end text recognition

Recent advances in computer technology as well as the progress made in implementing prac-
tical computation and memory capabilities have led to other text recognition architectures,
namely end-to-end recognition. The latter can be seen as a unified framework for both text
detection and recognition, which converts text regions in the entire image/frame into text
strings. Considering a small lexicon, word spotting provides a straightforward way for de-
signing end-to-end recognition where specific words are directly matched with image patches
using character and word models [WB10|. Goel et al. [GMAJ13] put forward a word spotting
approach, which looked for converting the lexicon into a collection of synthetic word images.
The recognition task was then treated as a problem of retrieving the best match from the
lexicon image set by means of a weighted DTW technique.

For an open lexicon, however, word spotting methodologies are relatively impracticable due
to the large search space. In this case, a strong character representation and sophisticated
optimization strategies are required to face both image and lexicon complexities. Neumann
and Matas [NM10, NM13| were among the first researchers to suggest an unconstrained (do
not require a word list) end-to-end text recognition approach. In [NM13], they integrated
character detection and recognition based on oriented stroke features. The gradient image
was first convolved using a set of oriented bar filters. Strokes with specific orientations in a
relative position were then employed to detect and recognize character candidates. Dynamic
programming was finally adopted to optimize the recognition results.

As it can be observed in Table 2.4, most of the methods rely on a feature extraction process.
Yet, feature design is a challenging and time-consuming task due to its dependence on the
domain knowledge and past experience of human experts [SZK 12, CRC16]. On the other
hand, there has been recent work proposing recognition systems that would perform automatic
feature extraction inside a learning scheme operating directly on raw pixel data. Such systems
have shown high performances on different OCR tasks |Gral2, PBKL14, ML15| and received
considerable attention, especially with the resurgence of LSTM-RNN models. A comparison
between the results of the work by [YSBS15, CRCI16] on Arabic handwriting recognition
demonstrates that a 1D LSTM network that operates on raw image pixels [YSBS15] has
outperformed the same network trained using either handcrafted or learned features [CRC16].
Motivated by this observation, a novel method for Arabic video text recognition is proposed in
Chapter 5, based on a simple and effective preprocessing step and a multidimensional LSTM
network operating directly on raw pixel values.
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2.4 Summary

This section summarizes the previously reviewed approaches and presents their strengths
and limitations. For text detection, we have surveyed three categories of methods, namely
CC-based, sliding window-based and hybrid methods.

CC-based methods first extract candidate components through a variety of ways includ-
ing SWT, MSER and color clustering. Non-text CCs are then filtered by heuristic rules or
classifiers. Finally, the remaining CCs are merged into a higher structure to form the final
detection results. These methods are generally faster and more efficient compared to the
sliding window-based ones, because the number of components to be processed is relatively
small. Moreover, they are invariant to scale, rotation and font variation. Therefore, they have
become the mainstream methodology in text detection. However, such methods are sensitive
to image quality and cluttered backgrounds.

As opposed to CC-based methods, sliding window-based ones firstly search for possible
text blocks over windows at multiple scales in an image. Next, text and non-text regions
are distinguished by a trained classifier, which often uses traditional texture features such as
HOG, LBP and FF'T, or automatically learned features. A major drawback of such a category
is its high computational cost as all locations and scales are exhaustively scanned.

The third category, hybrid methods, is a mixture of CC-based and texture-based methods.
It is also referred to in the literature as a combination of heuristic-based and machine learning-
based methods. The aim here is to benefit from the efficiency of human-defined heuristics
and the accuracy of machine-learning algorithms to improve the detection performance.
Our work on text detection in Chapter 4 falls into this category as it combines two stages: a
fully heuristic detection phase and a machine learning-based classification scheme.

In section 2.3, we have discussed two different methodologies for video and scene text
recognition. The first one makes use of a binarization step, to extract text pixels and remove
background ones, prior to recognition. A variety of video text binarization methods have
been proposed, which can be classified into thresholding-based techniques and clustering-
based ones. After obtaining the binarized text image, available OCR, engines like Tesseract
or OmniPage are generally employed for recognition. Yet, in this kind of methodology the
recognition performance usually relies on the efficiency of binarization and may suffer from
noise and distortion in complex backgrounds.

The second methodology recognizes characters by using features and classifiers specially
designed for video or/and scene text. It can be further categorized into segmentation-based
and segmentation-free methods. The former segments the line or word images into smaller
units (sub-words, characters or graphemes) for recognition. With such methods, the segmen-
tation errors may propagate further and impact the recognition performance. Whereas, the
latter takes as an input the whole line or word for recognition. Such methods are based on
classifiers like HMMs, RNNSs, their combination or other sequence learning models.

Our work on text recognition in Chapter 5 falls into this category as it is based on a
segmentation-free method, which relies on the use of RNN-LSTM networks.
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2.5 Conclusion

Text detection and recognition in videos and images, as a major research branch of content-
based information retrieval and indexing, continues to be a topic of interest for many re-
searchers. In this chapter, we have reviewed a large panel of methods and techniques that
have contributed to an impressive progress in such a field of research.

Several observations can be made based on this survey:

e A first remarkable point is that most of the existing methods that have tackled Video
OCR problems focus on Latin and Chinese texts. Hence, they can not be directly repli-
cated for Arabic text, which is the focus of our work. For instance, several merging
procedures, in the detection task, assume that a text character and its siblings have
similar sizes and proper distances. This is not the case for cursive scripts like Ara-
bic, which usually has a non-uniform inter/intra-word distance and a variable size of
character bounding boxes.

e A second important point that is related to the wide use of preprocessing and hand-
crafted features in most existing methods for both detection and recognition tasks. This
can limit the generalization ability of the proposed method to a certain type of data
and challenges.

e A third point we have highlighted is the absence of standard and publicly available
datasets to build and evaluate Arabic video text detection and recognition systems.
This could explain the lower performances achieved for such a language compared to
Latin.

These different points will be intensively investigated in this thesis. In the next chapters, we
describe our detection and recognition methods. But first of all, we present in the following
the proposed dataset, its annotation framework and the different used evaluation protocols
and metrics.
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3.1 Introduction

The number of standard datasets has been growing significantly for all scientific research
fields over the last decade. This can be explained by a variety of fundamental requirements,
ranging from the development and test of specific methods to the need of a systematic bench-
mark. Up to our knowledge, no attempt has been previously made on the development of
standard datasets for embedded Arabic text in news videos, despite the important number
of Arabic news TV channels. This was a major difficult at the beginning of our thesis. For
this reason, we have developed a standard annotated dataset of video clips containing Arabic
text. In this chapter, we first present a short survey of currently used datasets in text de-
tection /recognition problems. Then we introduce the acquisition procedure of our collected
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data. Next, we describe the content of the suggested dataset in terms of characteristics,
statistics, data organization and ground-truth annotation. Finally, we present the proposed
evaluation protocols and metrics. It is worth note that the chapter also includes details about
the proposed ground-truthing and evaluation tools, AcTiV-GT and AcTiV-FEval.

Evolution of text detection research over ten years
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Figure 3.1: A selection of some text detection methods [Luc05, HLYW13, ZYB16] showing the
evolution of this area of research over ten years

3.2 Related Work

As mentioned in the previous chapter, the detection and recognition of text in images and
videos represent a very active domain nowadays [SSD11, KSUT13, LPTL14, YD15]. Much
of the progress that has been made in this field is attributed to the availability of stan-
dard datasets. The most popular of these is the dataset of ICDAR 2003 "Robust Reading
Competitions" (RRC) [LPST05], prepared for scene text localization, character segmentation
(removing background pixels) and word recognition. This dataset includes 509 text images in
real environments captured with hand-held devices. 258 images from the database are used
for training and the remaining 251 images constitute the test set. This dataset was also used
in the ICDAR 2005 "Text Locating Competition" [Luc05]. Figure 3.1 shows the evolution of
the Latin text detection research between 2003 and 2013 [Luc05, HLYW13, ZYB16]| taking
as a benchmark the ICDAR 2003 dataset. As it can be observed, the method of Huang et
al. [HLYW13] outperformed other approaches by a large margin. This method enhanced the
SWT algorithm by color information and introduced the TCD descriptors for text/non-text
discrimination. In the word recognition task, the best accuracy of 93.1% was achieved by
Jaderberg et al. |JSVZ16] using their proposed CNN model. Some examples of this dataset
are depicted in Figure 3.2(a).

The dataset of ICDAR 2011 [SSD11]| was inherited from the benchmark used in the previ-
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@

Figure 3.2: Typical samples from ICDAR2003 (a), MSRA-TD500 (b), NEOCR (c) and KAIST
(d) datasets.

ous ICDAR RRC (i.e., 2003 and 2005), but it underwent some extensions and modifications
since there were some missing ground-truth information and several imprecise word bound-
ing boxes. The final dataset consists of 485 full images for the localization task and 1,564
cropped word images for the recognition task. On this dataset, the detection method of Liao
et al. [LSBT17] attained a state-of-the-art performance with an F-score of 82%. This method
made use of the FCN networks followed by a standard non-maximum suppression process.
In ICDAR 2013 RRC [KSU13|, a new dataset for video text detection, tracking and
recognition was proposed. It contains 28 short videos (10 seconds to 1 minute long) cap-
tured from real-life situations. An updated version of this dataset was provided in ICDAR
2015 [KGBNT15] including a training set of 25 videos and a test set of 24 videos. This
database includes a variety of Latin text such as French, English and Spanish.
The MSRA-TD500 dataset [YBLT12] works on multi-oriented scene text detection. This
dataset includes 500 images (300 for training and 200 for testing) with horizontal and skewed
texts in complex natural scenes. Some samples are illustrated in Figure 3.2(b). The method of
Liu et al. [LLQ'17] achieved a state-of-the-art performance on this database with an F-score
of 75%. This method employed the MSER technique and the AdaBoost classifier to extract
text candidates and filter out non-text objects, respectively.
The Street View Text (SVT) dataset [WB10] is used for scene text detection, segmentation
and recognition in outdoor images. It includes 350 images with 904 word-level annotated
bounding boxes. The method of Gao et al. [GCWL17| showed superiority, on this dataset,
over existing techniques with 83% as a word recognition accuracy. This method was based on
a CNN model with attention mechanism. In the segmentation task, the best F-score, 90%,
was obtained by Mishra et al. [MAJ17|. Their algorithm was mainly based on two steps: a
graph cut procedure and a GMM refinement.
The NEOCR dataset [NDMW11] contains 659 natural scene images with multi-oriented text
of high variability (see Figure 3.2(c)). This database is intended for scene text recognition
and provides multilingual evaluation environments, as it includes text in eight European lan-
guages.
The KAIST dataset [LCJK10] consists of 3,000 images taken in indoor and outdoor scenes
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(see Figure 3.2(d)). This is a multilingual dataset, which includes English and Korean text.
KAIST can be used for both detection and segmentation tasks, as it provides binary masks
for each character in the image. The text segmentation algorithm of Zhu and Zhang [ZZ17]
outperformed existing methods on this dataset with an F-score of 88%. The method was
mainly based on a superpixel clustering.

In 2016, Veit et al. [VMNT16] proposed a dataset, called COCO-Text, for English scene text
detection and recognition. The dataset is based on the Microsoft COCO dataset, which con-
tains images of complex everyday scenes. The best F-score (67.16%) on this dataset was
achieved by the winner of the ICDAR 2017 COCO-Text competition [GSGT17] (detection
task).

Recently, Chng and Chan [CKCS17] introduced a new dataset, namely Total-text, for curved
scene text detection and recognition problems. It contains 1,555 scene images and 9330 an-
notated words with three different text orientations.

As for Arabic script, major contributions have been made in the conventional field of
printed and handwritten OCR systems |[LG06, MEA12|. A lot of progress of such systems
has been triggered thanks to the availability of public datasets. One of the most widely used
for offline Arabic handwritten recognition is the IFN/ENIT [PMM™02] dataset. In the same
context, another dataset called KHATT was proposed by Mahmoud et al. [MAAKT14] and
used in the writer identification competition of ICFHR 2014 [SAM*14]. The APTI database
works on printed word recognition in low resolution images [SIK*T09] and has been used as
a benchmark in several competitions, like ICDAR 2013 [SKEA13]. In online context, the
community has created several datasets, such as ADAB [KTA11] and AltecOnDB [AAABI15].

However, handling Arabic text detection and recognition for camera-based documents are
limited to very little work, and most of the existing methods have been tested on private
datasets with non-uniform evaluation protocols, which makes direct comparison and scientific
benchmarking rather impractical.

Table 3.1 presents commonly used datasets for text processing in images and videos, and
summarizes their features in terms of text category, source, task, language, and information
of training/test samples. As depicted in this table, publicly available datasets for Arabic Video
OCR systems are limited to one work for the recognition task and are even non-existent for
detection and tracking problems. In 2015, Youssfi et al. [YBG15a] put forward a dataset
for superimposed text recognition, called ALIF. This dataset was composed of 6,532 cropped
text images extracted from diverse Arabic TV channels and with about 12% extracted from
web sources. ALIF was limited to the recognition task and offered only one image resolution.

Accordingly, we have developed a new dataset of news video sequences containing artificial
Arabic text. It is named AcTiV, for Arabic-Text-in-Video. We mainly targeted Arabic text
detection and recognition systems, which require text transcription and layout coordinates of
all text regions as ground-truth data. AcTiV differs from the previous datasets in three key
aspects. First, AcTiV contains various types of multimedia documents ranging from news
video clips to cropped text images, and this is suitable for systems operating in a stepwise
methodology as well as for those based on integrated methodology, i.e. end-to-end systems.
Second, these multimedia documents are collected from two sources: a Direct Broadcast
Satellite (DBS) system and a video-sharing website (YouTube), and are in three different
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Table 3.1: Most important existing datasets for text analysis.
‘D’, ‘5%, “T” and ‘R’ respectively denote ‘Detection’, ‘Segmentation’, ‘Tracking’ and ‘Recognition’.
Dataset 7# of images # of text
(Year) Category Source Task (train/test) (train/test) Language
Weblogs,
ES;];’A Printed newspapers R ?42 os) Arabic
(600 dpi) pages
IFN/ENIT . 411 writers 26,459 .
(2002) Handwritten (300 dpi) R 2,200 (city words) Arabic
ICDAR’03 , 509 2,276 .
(2003) Scene text Camera D/R (258/251) (1,110/1,156) English
APTI Synthetically
Printed word generated R 113,284 45,313,600 Arabic
(2009) .
(72 dpi)
ADAB On-line . .
(2009) handwritten 165 writers R 937 15,158 Arabic
KAIST Camera, English,
(2010) Scene text mobile phone b 3,000 >5,000 Korean
OHASD On-line 48 writers R 145 3,825 Arabic
(2010) handwritten Tablet PC (paragraphs)  (words) T
SVT Google 350 904 .
(2010) Scene text Street View /SR (100/250) (257/647) English
ICDAR’11 Scene text Camera D/R 485 1564 English
(2011) Born-digital text Web D/R 522 4501 English
NEOCR Eight
(2011) Scene text Camera D/R 659 5,238 Janguages
MSRA-TD500 500 English,
(2012) scene text Camera D (300/200) - Chinese
English
ICDAR’13 Scene text Camera D/S/R  229/233 848/1,095 English
(2013) Artificial text Web D/S/R  410/141 3,564/1,439 Spanish,
Video scene Camera D/T/R 28 videos _ French,
English
KHATT . 1000 writers 2000 9327 .
(2014) Handwritten 200-600 dpi /5 (paragraphs)  (lines) Arabic
ALIF o . ‘ 6,532 .
(2015) Artificial text Video frames R (4,152/2,199) Arabic
COCO-Text MS COCO .
(2016) Scene text dataset D/R 63,000 173,000 English
Total-Text , 1,555 . .
(2017) Curved scene text ~ Web D/R (1,255/300) 9,330 (words)  English
resolutions. Third, AcTiV has a larger scale than other datasets for text detection and

recognition. In particular, our dataset has roughly twice the number of text annotations than
the related dataset ALIF.
In the following, we describe our suggested dataset and related tools and protocols.

3.3 Description of AcTiV dataset

AcTiV is a real-content database where video clips are recorded from a DBS system and then
transcoded and segmented into frames. In this section, we present the specificities of this
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dataset in terms of data acquisition, characteristics and statistics, annotation guidelines and
data organization.

3.3.1 Data acquisition

TV channels broadcast a wide variety of programs ranging from talk shows and interviews
to documentaries and weather reports. News reports are specifically picked for the present
thesis. In order to ensure maximum diversities of content and avoid repetition, recordings
from the same channel are spaced by at least one week. The video stream is initially saved
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Figure 3.3: Data acquisition, video preprocessing and semi-automatic annotation of text regions

unaltered on the hard drive (MPEG-TS). After that, a transcoding process takes place to
convert the interlaced (MPEG2/MPEG4) video to deinterlaced MPEG4-AVC using an x264-
based encoder and applying a YADIF filter. The aim of this, is to prepare the video to a
frame-by-frame analysis and to decrease the video bitrate without a perceived quality loss.
In the present study, three different video-stream resolutions are chosen: HD (1920 x 1080,
25fps), SD (720 x 576, 25 fps) and SD (480 x 360, YouTube quality).

Figure 3.3 illustrates the data acquisition and video preprocessing steps as well as the anno-
tation process, which will be detailed in section 3.3.3.

3.3.2 Characteristics and statistics

AcTiV was presented in the ICDAR 2015 conference [ZHT 15| as a first publicly accessible
annotated dataset designed to support the development of new Arabic Video OCR systems.
The challenges that have been addressed by AcTiV are the variability of text patterns (colors,
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fonts, sizes and positions) and the presence of complex background with various objects similar
to text characters.

The AcTiV database is currently used by several research groups around the world. It
enables users to test their system abilities to locate, track and recognize text in videos. The
initial version of this dataset included 80 videos collected from four different Arabic news
channels: TunisiaNatl TV (ElWataniyal), France24 Arabe, RussiaToday Arabic and Al-
jazeeraHD. This choice was based on the fact that it ensures maximum diversities of text
areas in terms of font, size and background.

We have focused on text displayed as overlay in news videos, which can be classified into two
categories, static and dynamic (or scrolling) text:

e Static text represents the type of text that does not undergo a change in its content,
position, size, or color within its display interval, i.e. from a frame , to a frame ,;. This
category usually includes event information, names of people and places, and subtitles.

e Dynamic text targeted in our work refers to the horizontal scrolling text that usually
resides in the lower third of the TV screen.

e i bl - gyl Sl 09

Wiiso b af) Ginga |

| I Rl

Figure 3.4: Samples of static texts (red rectangles) and dynamic texts (green rectangles)
embedded in Arabic news video frames.

Figure 3.4 depicts samples of static and scrolling text from our dataset. Each video is
around three to 12 minutes long. The maximal number of text blocks in one clip is 70.
However, if we regard the same text block across multiple frames as separate text blocks, we
have an average of 8,000 text blocks per clip.

Based on our preliminary experimental results and considering the AcTiV users’ feed-
backs, it was necessary to extend the content of data in terms of video clips and resolutions
offering more training samples, particularly for deep learning-based methods.

The new version of AcTiV [ZTHT 18| includes 189 video sequences, 10,415 text images and
three video stream resolutions; i.e., the new added resolution is SD (480 x 360). Table 3.2
depicts the statistics of this dataset in terms of video clips per TV channel.
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Table 3.2: Statistics of AcTiV dataset

Resolution TV channel # of video clips
HD
(1920 x 1080) AlJazeeraHD 43
D France24 Arabe 47
Russia Today Arabic 46
(720 576) 1y isiaNatl 48
D TunisiaNatl YouTube 5
(480 x 360)

3.3.3 Annotation guidelines

Generally speaking, the creation of any standard database should undergo a manual or semi-
automatic annotation process to generate ground-truth information for every text region. For
instance, Siddiqi and Raza [SR12] proposed a semi-automatic text line labeling scheme for
Urdu text localization in video images. The limitations of this method include the absence of
ground-truth data to evaluate the performance of OCR systems, and the inability to annotate
dynamic text. Several studies have made use of the freely available ground-truthing tool
ViPER (Video Performance Evaluation Resource) [DMO00] to annotate text objects in video
content. However, this annotation methodology is dedicated to Latin and cannot be replicated
for Arabic text. In our case, we use our own ground-truthing tool, AcTiV-GT [ZTH" 14|, to
semi-automatically annotate the collected data.

The annotation process consists of two different levels: global and local.

e The global annotation process is performed manually through a user interface that
includes a set of functionalities especially designed for annotating embedded text in
video content. Figure 3.5 illustrates this user interface displaying a video frame being
annotated. During the annotation process, we first load a video sequence. Then we
draw a rectangular bounding-box for each textline that has a uniform size, alignment
and spacing. Once a rectangle is selected, a new set of information will be created. It
contains the following elements:

— position: x, y, width and height.
— content: text strings, text color, background color, background type (transparent,
opaque)

This set of information is saved in a meta file called global XML file. Our tool handles
frame-by-frame playing, which allows the user to label the apparition and disapparition
frame number for each textline. This information is stored in the global XML file as:

— alnterval: apparition interval of the textline (Frame S, Frame E).

As Arabic letters may have up to four shapes depending on their position in the word,
and in order to have an easily accessible representation of Arabic text for future process-
ing, it is transformed into a set of labels with a suffix that refers to the letter’s position
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Figure 3.5: User interface of AcTiV-GT tool [ZTH14] displaying labeled frame.

Jujell hall
Alif_| Laam_B Xaa_M Thaaa_E Space Alif_| Laam_B Ayn_M Raa_E Baa_B Yaa_E

Figure 3.6: Arabic sentence and its corresponding labels.

in the word (B: Begin, M: Middle, E: End and I: Isolate). We adopt the same labels
proposed in [SIKT09] to standardize the character labels for Arabic text. An example
is depicted in Figure 3.6. A transcription label is generated for each appended Arabic
text in the XML file. It is stored under the attribute Latintranscription within the same
element that contains the Arabic text.
Furthermore, additional information, such as total number of textlines in the processed
video clip and number of apparition intervals for each textline, is added in the global
XML file. Figure 3.7 depicts an extract of a global XML file of AljazeeraHD TV chan-
nel. This file can be used as meta-data for text-tracking and end-to-end tasks.
Dynamic text is composed of scrolling series of tickers. To annotate this type of text,
we note for each ticker its content, the first frame where the ticker appears, and the
initial offset in the first frame, which is estimated using a virtual line. This information
is stored in the scrollingText element of the global XML file. Figure 3.8 illustrates an
example of these ground-truth data in addition to some channel specific information,
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<?xml version="1.0" encoding="UTF-8"?>
- <video id="1" channel="AljazeeraHD" resolution="1080p" duration="00:09:17" fps="25"
nbOfFrames="13925">
- <staticText font="aljazeeraFont" nbOftextBox="17">

- <textBox id="1" nbOfalnterval="1">
<alnterval id="1" frame_S="1338" frame_E="1405"/>
<position x="1161" y="909" width="268" height="63"/>
- <content nbTextLines="1" textColor="51,65,90" bgColor="240,242,237" bgType="opaque">
<textLine id="1" ArabicTranscription="dJsa (xa" LatinTranscription="Haaa_B Siin_M Nuun_E
Space Jiim_B MiimChadda_M Waaw_I Laam_I"/>
</content>
</textBox>
- <textBox id="2" nbOfalnterval="3">
<alnterval id="1" frame_S="3371" frame_E="6691"/>
<alnterval id="2" frame_S5="6960" frame_E="7916"/>
<alnterval id="3" frame_S="8329" frame_E="9833"/>
<position x="1352" y="514" width="251" height="50"/>
- <content nbTextLines="1" textColor="240,250,255" bgColor="11,93,93" bgType="opaque">
<textLine id="1" ArabicTranscription="&l# 14" LatinTranscription="Raa_I Yaa_B Taaa_M
Shiin_M Alif_E Raa_I Daal_I Space Faa_B Waaw_E Laam_B Kaaf_E"/>
</content>
</textBox>
- <textBox id="3" nbOfalnterval="3">
<alnterval id="1" frame_S="3372" frame_E="6691"/>
<alnterval id="2" frame_S="6960" frame_E="7916"/>
<alnterval id="3" frame_S="8329" frame_E="9833"/>
<position x="1129" y="562" width="475" height="43"/>
- <content nbTextLines="1" textColor="240,250,255" bgColor="0,24,66" bgType="opaque">
<textLine id="1" ArabicTranscription="g&ull Gley! 35ial 31arall Al (ol alal ;aa)"
LatinTranscription="Alif_I Laam_B Miim_M Gaaf_M Raa_E Raa_I Space Alif_I
Laam_B Xaa_M Alif_E Saad_I Space Laam_B Miim_M Jiim_M Laam_M Siin_E
Space Alif_I Laam_EHamzaAboveAlif_E Miim_B Miim_E Space Alif_I Laam_B
Miim_M Taaa_M Haaa_M Daal_E TaaaClosed_I Space Laam_B Haaa_M Gaaf_M
Waaw_E Gaaf_I Space Alif_I Laam_EHamzaUnderAlif_E Nuun_B Siin_M Alif_E
Nuun_I Space Alif_I Laam_B Siin_M Alif_E Baa_B Gaaf_E"/>
</content>
</textBox>

Figure 3.7: Example of global XML file: part of static text. This figure includes ground truth
information about 3 textlines from a total of 17.

<scrollingText orientation="left-right" textColor="251,251,255" bgColor="" bgType="opaque"
runningSpeed="6,770 pixel/frame" >
<bandPosition x="0" y="977" width="1432" height="65"/>
<content nbOftickerInformation="56">

At == transcriptionLabel="Miim_B Saad_M Raa_E Colon Space Alif_I Laam_B Miim_M Jiim_M
Laam_M Siin_E Space Alif_I Laam_EHamzaAboveAlif_E Ayn_B Laam_M AlifBroken_E Space Laam_B
Laam_M Gaaf_M Waaw_E Alif_I Taaa_I Space Alif_I Laam_B Miim_M Siin_M Laam_M Haaa_M
TaaaClosed_E Space Yaa_B Faa_M Waaw_E Daad_1I Space Alif_1 Laam_B Siin_M Yaa_M Siin_M Yaa_E
Space Alif_1 Laam_B Taaa_M Raa_E Shiin_B Haaa_E Space Laam_B Laami_M Raa_E
HamzaAboveAlifBroken_B Alif_E Siin_B TaaaClosed_E"/>

e mep G ekl transcriptionLabel="Alif_I Laam_B Miim_M Jiim_M Laam_M Siin_E Space Alif_I
Laam_B Ayn_M Siin_M Kaaf_M Raa_E Yaa_I Colon Space Laam_B Miim_E Space Yaa_B Kaaf_M Nuun_E
Space Baa_B Waaw_E Siin_B Ayn_M Nuun_M Alif_E Space HamzaUnderAlif_I Laam_EAlif_E Space
Alif_I Laam_EAIlif_E Siin_B Taaa_M Jiim_M Alif_E Baa_B TaaaClosed_E Space Laam_B Raa_E Ghayn_B
Baa_M TaaaClosed_E Space Alif_I Laam_B Jiim_M Miim_M Alif_E Haa_B Yaa_M Raa_E Space Faa_B
Yaa_E Space Taaa_B Raa_E Shiin_B Yaa_M Haaa_E Space Alif_1 Laam_B Siin_M Yaa_M Siin_M
Yaa_E"/>

</scrollingText>

</fvideo>

<tickerInformation id="1" frame_S="252" offset="4" transcription="" g s falad a2 ol olad) ; pua

<tickerinformation id="2" frame_5="443" offset="0" transcription=" A Qe ¥ Cag & p 1 el Galpall

Figure 3.8: Example of global XML file: part of dynamic text. This figure illustrates ground-

truth data about two out of 56 scrolling texts
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e.g. runningSpeed and bandPosition.

e The local annotation is automatically performed at the frame level according to the
information contained in the global XML file. Two appropriate types of XML files are
generated, one for the detection task and the other for the recognition task. Figure 3.9

<?xml version="1.0" encoding="UTF-8"?>
- <Protocol4 channel="France24">
- <frame source="vd25" id="4">
<rectangle id="1" x="75" y="452" width="51" height="25"/>
<rectangle id="2" x="619" y="437" width="34" height="20"/>
<rectangle id="3" x="271" y="457" width="381" height="35"/>
</frame>
<frame source="vd25" id="30">
<rectangle id="1" x="592" y="38" width="29" height="17"/>
<rectangle id="2" x="631" y="37" width="27" height="18"/>
<rectangle id="3" x="632" y="438" width="21" height="19"/>
<rectangle id="4" x="325" y="462" width="327" height="30"/>
<rectangle id="5" x="75" y="452" width="51" height="25"/>
</frame>
- <frame source="vd25" id="70">
<rectangle id="1" x="556" y="34" width="103" height="21"/>
<rectangle id="2" x="75" y="452" width="51" height="25"/>
<rectangle id="3" x="622" y="438" width="31" height="19"/>
<rectangle id="4" x="291" y="458" width="361" height="34"/>
<[frame>
- <frame source="vd25" id="122">
<rectangle id="1" x="75" y="452" width="51" height="25"/>
<rectangle id="2" x="593" y="437" width="60" height="23"/>
<rectangle id="3" x="219" y="461" width="433" height="31"/>
</frame>
- <frame source="vd25" id="154">
<rectangle id="1" x="348" y="61" width="304" height="52"/>
<rectangle id="2" x="110" y="213" width="159" height="50"/>
<rectangle id="3" x="510" y="217" width="76" height="46"/>
<rectangle id="4" x="198" y="278" width="72" height="17"/>
<rectangle id="5" x="531" y="278" width="55" height="17"/>
<rectangle id="6" x="110" y="315" width="122" height="51"/>
<rectangle id="7" x="430" y="315" width="119" height="51"/>
<rectangle id="8" x="75" y="452" width="51" height="25"/>
</frame>

Figure 3.9: Extract of detection XML file of France24 TV channel.

depicts a part of a detection XML file of France24 TV channel. The ground-truth infor-
mation are provided at the line level for each frame. One text bounding-box is described
by the element Rectangle which contains the rectangle’s attributes: (x, y) coordinates,
width and height. As a side note, the result image and the ground-truth image should
have the same name: channel source_frame_id, e.g., TunisiaNatl vd0l frame 7.
The scrolling band should be hidden for AljazeeraHD and France24 channels before
any processing since there are no ground-truth data for dynamic text in the detection
dataset.

The recognition ground-truth file is provided at the line level for each textline image.
The XML file is composed of two principal markup sections: ArabicTranscription and
LatinTranscription. Figure 3.10 highlights an example of a ground-truth XML file and
its corresponding textline image.
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<?xml version="1.0" encoding="UTF-8" standalone="true"?>
<Image id="AljazeeraHD_vd®2_frame_208-5">
<ArabicTranscription> JArabicTranscription>
<lLatinTranscription> Baa_B Haaa_M Raa_E Space Alif_I Laam_B Shiin_M
Miim_M Alif_E Laam_I </LatinTranscription>
</Image>

Figure 3.10: Recognition ground-truth file and its corresponding textline image.

Data organization

In addition to the video sequences and their annotation XML files, AcTiV includes two ap-

propriate datasets, namely AcTiV-D and AcTiV-R, for detection and recognition tasks. Fig-
ure 3.11 illustrates the architecture and content of these datasets, where JHD, Fr24, RT,
TN1 and TN1+ respectively denote AljazeeraHD, France24 Arabe, RussiaToday Arabic,
TunisiaNat]l and TunisiaNatl Youtube; and F, Ln, Wd and Ch respectively denote Frame,
Line, Word and Character.

G

JHD  Fr24  RT TN1  TN1+
# 337 331 323 492 -

- . JHD Fr24 RT TN1 TN1+
#F 87 80 79 116 149
JHD Fr24 RT TN1 TN1+

#F 103 104 100 106 150

JHD  Fr24 RT TN1  TN1+
#Ln 1909 1906 2127 2001 -
#Wd 8110 5683 13462 9338 -
#Ch 46563 32085 78936 54809 -
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JHD  Fr24 RT TN1  TN1+
#n 196 179 250 189 320
#Wd 766 667 1483 706 1487
#Ch 4343 3835 8749 4087 8726

JHD  Fr24 RT TN1  TN1+
#Ln 242 191 256 221 311
#Wd 1082 734 1598 954 1148
#Ch 4283 4600 9305 5597 6645
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Figure 3.11: AcTiV architecture and statistics of detection (D) and recognition (R) datasets.

AcTiV-D

AcTiV-D represents a dataset of non-redundant frames used to measure the performance of
existing methods for text detection in HD / SD video frames. These frames are hand-selected
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with a particular attention to achieve a high diversity in text regions. Figure 3.12 states
examples from AcTiV-D for typical problems in video text detection. The latter dataset
contains a total of 2,557 frames distributed over four sets (one set per channel). Every set
includes three sub-sets for training, test and closed-test (used in competitions only). Table 3.3
gives an idea about the content of this dataset. In Figure 3.11, we present the statistics of
AcTiV-D in the form of sub-sets in order to closely see the distribution of data. For instance,
a set of 492, 116 and 106 frames are collected from TunisiaNatl TV to serve as training, test
and closed-test files, respectively.

For sake of testing the systems’ ability to detect text under different situations, the pro-
posed dataset includes some frames that do not contain any text and some others that contain
the same text regions but with different backgrounds.
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Figure 3.12: Typical video frames from AcTiV-D dataset. From left to right: examples of
RussiaToday Arabic, France24 Arabe,TunisiaNatl and AljazeeraHD frames.

Table 3.3: Statistics of AcTiV-D dataset

Resolution TV channel # of hand-selected frames
(1920HXD1080) AlJazeeraHD 527
e
{720 7 ) TunisiabNatly 714
(48 OSE)S 60) TunisiaNat1 YouTube 299
AcTiV-R

AcTiV-R represents a dataset of cropped textline images used to assess the performance of
Arabic text recognition systems. AcTiV-R texts are in various colors, unknown font sizes and
font families, and with different degrees of background complexity. These text images cover
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a broad range of characteristics that distinguish video frames from scanned documents, as
shown in Figure 3.13. AcTiV-R consists of 10,415 textline images, 44,583 words and 259,192
characters. Table 3.4 presents a general idea about the statistics of this dataset. More details
per sub-set are depicted in Figure 3.11. For instance, RussiaToday TV respectively includes
2127, 250 and 256 lines as training, test and closed-test files for OCR systems.
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Tunisia Nat1

France24

Russia Today

Figure 3.13: Example of text images from AcTiV-R depicting typical characteristics of video
text images.

Table 3.4: Statistics of AcTiV-R dataset

Resolution TV channel # of lines # of words # of characters
HD

(1920 x 1080) AlJazeeraHD 2367 9958 57189
SD France24 2276 7084 40520
(720 x 576) Russia Today 2633 16543 96990
TunisiaNat1 2411 10998 64493

SD TunisiaNat1

(480 x 360)  YouTube B 2635 15371

During the annotation process, we have taken into account 164 Arabic character forms:

125 letters, considering the "positioning" variability of each glyph.

15 additional characters combined with the diacritic sign "Chadda".

10 digits.

14 punctuation marks including the white space.

The different character labels can be seen in Table 3.5. The same table provides for each
character its frequency in the dataset.
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Character # of | In Character # of | In
label times | Arabic label times | Arabic
Alif 28433 | | HamzaAboveAlif 1653 |
Baa AT | O HamzaUnderAlif 1049 ||
Taaa 8948 | o TildAboveAlif 57 |9
Thaa 851 & HamzaAboveAlifBroken | 1022 3
Jiim 3270 z HamzaAboveWaaw 268 3
Haaa 3976 z LaamHamzaAboveAlif 925 ‘\f
Xaa 1345 C LaamHamzaUnder Alif 263 }f
Daal 6656 | » LaamTildAboveAlif 63 Y
Thaal 459 3 Space 31458
Raa 11460 | , Digit 0 606 0
Zaay 1478 | Digit_1 655 | 1
Siin 6348 Nz Digit 2 475 2
Shiin 2353 g Digit 3 276 3
Saad 2123 o° Digit 4 306 4
Daad 1085 | o Digit 5 28 |5
Thaaa 2184 L Digit 6 203 6
Taa 481 L Digit 7 138 7
Ayn 5989 C Digit 8 148 8
Ghayn 890 & Digit 9 116 9
Faa 4942 < Point 313
Gaaf 4443 g Colon 424
Kaaf 2999 s Comma 118 ,
Laam 18868 | Slash 76 /
Miim 11907 ¢ Percent 101 %
Nuun 10027 | O QuestionMark 8 ?
Haa 2608 0 ExclamationMark 12 !
Waaw 10614 | o Quote 445 "
Yaa 18153 | Hyphen 457 -
AlifBroken | 1211 | ¢ Add u |+
Hamza 696 5 ParenthesisO 30 (
TaaaClosed | 7239 8 ParenthesisC 29 )
LaamAlf | 1916 | Y Bar 13 \
Overall 259,192

o7
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3.4 Evaluation protocols and metrics

3.4.1 AcTiV protocols

As mentioned before, the proposed dataset is mainly dedicated to train and evaluate existing
Arabic Video-OCR systems. Hence, to objectively compare and measure the performance of
such systems under the same experimental conditions, we suggest a set of evaluation protocols.
Table 3.6 presents the protocols.

Table 3.6: AcTiV evaluation protocols

Protocol Resolution Type of text instances Task

1 Static Detection
Static .

2 1920 x 1080 Scrolling Tracking

3 Static Recognition

4 720 x 576 Static Detection
Static .

5 480 x 360 Scrolling Tracking

6 Static Recognition

4 Static Detection
Static .

8 All Scrolling Tracking

9 Static Recognition

10 All Static End-to-end

Scrolling
11 All - TV logo detection

e Protocol 1 aims to measure the performance of detection methods in HD frames.

e Protocol 2 focuses on static and scrolling text detection and tracking in HD videos.
This protocol requires that text lines are both detected correctly in every frame and
tracked correctly over the video sequence.

e Protocol 3 is dedicated to evaluate the performance of OCR systems to recognize text
in HD frames.

e Protocol 4 is similar to protocol 1, varying only in the channel resolution. All SD
(720 x 576) channels in our database can be targeted by this protocol which is split
in four sub-protocols: three channel-dependent protocols (4.1, 4.2 and 4.3) and one
channel-free protocol (4.4).

e Protocol 4bis is dedicated to the last added resolution (480 x 360). The main idea of
this protocol is to train a given system with SD (720 x 576) data, i.e. Protocol 4.3, and
test it with different data resolution and quality.

e Protocol 5 focuses on static and dynamic text detection and tracking in SD videos.
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e Protocol 6 is similar to protocol 3, differing only in the channel resolution. All SD
(720 x 576) channels in our database can be targeted by this protocol which is split
in four sub-protocols: three channel-dependent protocols (6.1, 6.2 and 6.3) and one
channel-free protocol (6.4).

e Protocol 6bis is dedicated to the last added resolution (480 x 360). The aim of this
protocol is to train a given system with SD (720 x 576) data, i.e. Protocol 6.3, and test
it with varied data resolution and quality.

e Protocols 7 is the generic version of protocols 1 and 4 where text detection is evaluated
regardless of data quality.

e Protocol 8 focuses on static and scrolling text detection and tracking in all video clips
of AcTiV.

e Protocol 9 is the generic version of protocols 3 and 6 where text recognition is assessed
without considering data quality.

e Protocol 10 is dedicated to measure the performance of end-to-end systems (simulta-
neous detection, tracking and recognition tasks) in a given video sequence.

e Protocol 11 is meant for TV logo identification in video clips. Although it is unrelated
to previous protocols, it can be very helpful as a preprocessing stage for other tasks to
select the corresponding system depending on the TV channel.

3.4.2 Metrics
Text detection metrics

The evaluation of a text detection algorithm is generally based on two sets of information:
a list G of ground-truth rectangles and a list D of detected ones. During the evaluation
process, G and D are compared using a matching function. Final performance values are
then calculated based on the well-known precision and recall metrics. Actually, such metrics
are computed by measuring the overlap between the intersection area of two rectangles (Gj ,
D;) and the area of Gj (recall score) or D; (precision score), as expressed in Equations (3.1)
and (3.2), respectively. If an algorithm detects too little text, its recall rate will decrease.
Whereas, if it detects too many text regions, its precision rate will decline.

__ Area(Gin Dj)
i Area(Gh) (3:1)
Area(Gi N Dj)
Lo VT ) 2
Pi Area(D;) (32)

Indeed, in text detection the split and merge cases are very frequent; i.e., one G rectangle
may correspond to more than one D rectangle, and vice-versa. In order to correctly match
such sets of rectangles, several optimized algorithms have been proposed in the literature



60 CHAPTER 3. PROPOSED DATASET AND EXPERIMENTAL SETTINGS

-y

one-to-one one-to-many many-to-one

@ (b) ©

Figure 3.14: Different matching cases. G is represented by dashed rectangles and D by plain
line rectangles.

[Luc05, KGST09, AGP10]. Most of them take into account the case of one-to-one matching
only. In our work, we use the matching strategy proposed in [LH97, WJ06|. Three different
matching cases are considered:

e One-to-one matching: One rectangle G; matches with one D; if Ry; > ¢, and Py > ¢,
where t.€ [0, 1] and t,€ [0, 1] are two quality constraints on area recall and area
precision, respectively (see Figure 3.14(a)).

e One-to-many matching (split case): One rectangle G; matches against a set of D
rectangles if those latter cover a large portion (greater than t,) of it and each of them
overlaps enough with this Gi, i.e. overlap greater than ¢, (see Figure 3.14(b)).

e Many-to-one matching (merge case): One rectangle Dj matches against a set of G
rectangles (see Figure 3.14(c)).

New measures are defined for this matching strategy, as expressed in Equations (3.3) and
(3.4), respectively.

|G|
, tchG(G;
Recall = Lz m’aGT G(Gi) (3.3)
Z'pl matchD(D;)
Precision = <=1 D] (3.4)

where matchD and matchG are functions that calculate the matching value depending on the
quality of the match: 1 for one-to-one match, 0 for no match, and 0.8 for split and merge
cases. The latter represents the amount of punishment in case of scattering.
A text detector algorithm can be evaluated using one single performance value, i.e. the
harmonic mean of the precision and recall measures, also known as F-measure or F-score,
given by Equation (3.5).

Precision x Recall

F- =2 3.5
measure x Precision + Recall (3.5)

These metrics are calculated using our evaluation tool [ZTH'16|. Figure 3.15 shows the
user interface of this tool. The same figure depicts a split case, where the ground-truth object
is represented by a dashed rectangle and the detection results are in plain line rectangles. The
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Figure 3.15: User interface of AcTiV-Eval tool.

user can apply the evaluation procedure to the current frame (by clicking on the "Evaluate
CF" button) or all video frames (by clicking on the "Evaluate All" button). The "Performance
Value" button displays precision, recall and F-measure values. The precision and recall curves
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Figure 3.16: AcTiV-Eval output.

are illustrated in Figure 3.16, where x-axis denotes ?, values and y-axis denotes ?, values
(precision and recall values by varying t. and ¢, from 0 to 1 by a step of 0.1). This helps
choosing a good threshold value to decide whether a rectangle is correctly detected or not. In
our evaluation process, the recall and precision thresholds (¢, and t,) are set to 0.7 and 0.4,
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respectively.

Text tracking metrics

As in the ICDAR’13 and ICDAR’15 RRCs [KSUT13, KGBN*15], we suggest to use the
metrics of VACE Framework [KGS™09] for measuring the performance of tracking systems.
These metrics are Multiple Object Tracking Precision (MOTP), given by Equation 3.6, and
Multiple Object Tracking Accuracy (MOTA), given by Equation 3.7. In our work, the main
goal of a text tracking scheme is to determine the appearing / disappearing frame for each
text (static or scrolling) in a given video clip, as explained before in Protocol 2.

Ez’,t o}
doict

where o; refers to the overlapping ratio of the ith correspondence in the mapping 7; and ¢;

MOTP = (3.6)

is the number of correspondences in .

Ztgt

where FN;, FP;, IDSW,, and g; respectively refer to the number of false negatives, false

MOTA=1- 24l

(3.7)

positives, ID switches, and ground-truth texts at frame ¢.

Text recognition metrics

The performance measure for the recognition task is based on the Line Recognition Rate
(LRR) and the Word Recognition Rate (WRR) at the line and word levels, respectively, and
on the computation of Insertion (I), Deletion (Dl) and Substitution (S) errors at the level of
Character Recognition Rate (CRR), which are given by Equations (3.8), (3.9) and (3.10).

#characters — I — S — DI

CRE = #characters (3:8)
H#words__correctly _recognized
W = = = i
RE FHwords (3.9)
LRR — #lines _correctly recognized (3.10)

#lines

Figure 3.17 presents an example explaining the impact on CRR and WRR metrics resulting
from substitution and deletion errors. In some work, the recognition performances have been
evaluated based on the computation of error rates, i.e. Character Error Rate (CER), Word
Error Rate (WER) and Line Error Rate (LER), which is the same in practice.
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Figure 3.17: Example of CRR and WRR computation based on different system output errors

3.5 Conclusion

We have presented in this chapter the AcTiV dataset for the development and evaluation
at a large-scale of Video-OCR systems. This dataset particularly addresses the problems of
text detection and recognition, which are essential stages in the whole end-to-end recognition
module, by providing two appropriate datasets: AcTiV-D and AcTiV-R.

AcTiV is freely available to research institutions. We have provided details about the charac-
teristics and statistics of the database. We have also reported about our ground-truthing tool
used to semi-automatically annotate the video clips and our text detection evaluation tool.
Additionally, a set of evaluation protocols has been made to measure the systems’ performance
under different situations.
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4.1 Introduction

A preliminary step to Video-OCR processing is the detection of text areas in video frames.
Nevertheless, text detection is a challenging problem due to the complexity of video content
(text pattern variability, low resolution, cluttered background, etc). Particularly for Arabic
text, several additional difficulties are present. Compared to Latin, Arabic text has more
strokes in different directions, various character aspect ratios, and more diacritics above and
below characters.

In this chapter, we present our hybrid approach for Arabic text detection in video frames.
The originality of this approach revolves around the combination of two techniques, an adapted
version of the SWT algorithm and a Convolutional Auto-Encoder (CAE).

We aim in this work to stand out from the dominant methodology, based on so-called
hand-crafted features. This is done by automating the feature extraction process, using CAE
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Figure 4.1: Flowchart of the proposed text detection approach.

as an unsupervised feature learning scheme.

The following section gives details about the proposed approach. Section 4.3 provides the
experimental results in terms of parameter settings, discussion and comparison. Section 4.4
concludes the chapter and summarizes the principal findings.

4.2 Proposed text detection approach

Our method consists of two main stages, i.e. CC-based heuristic detection and machine
learning verification, as shown in Figure 4.1. The first stage extracts, filters and groups CC
text candidates based on the SWT operator, a set of geometrical constraints and a suggested
textline construction technique. The second stage exploits CAE to automatically produce
features, using previously obtained textline candidates as training data. An SVM classifier
receives these features as an input for discriminating textlines from non-text ones.

4.2.1 Connected component-based heuristic detection
Preprocessing and edge detection

To perform SWT, an edge map and X & Y gradients are required. Before calculating these,
we blur the input grayscale image using the Gaussian filter in order to increase robustness
against noise. For the edge map, we exploit a 3 x 3 filter matrix and perform the Canny edge
detection with empirical thresholds of 175 and 320. For the X & Y gradients, we use the
Sobel operator.
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Figure 4.2: Stroke Width Transform.
(a) Zoom on upper right part of the Arabic character Miim ?

b) Shooting pixel ray between two opposing gradients < p,q >
¢) Counting number of pixels belonging to this ray
d) Labeling these pixels by the value of distance between p and q
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Component extraction by SWT

As mentioned before, the SWT [EOW10] operator is employed at this step for its efficiency
in text component extraction from both scene images and video frames. It detects stroke
pixels by shooting a search ray r = p +n*d, (n > 0) from an edge pixel p to its opposite
one ¢q along the gradient direction d,. If these two edge pixels have nearly opposite gradient
orientations, ray r will be considered as valid. All pixels inside this ray are labeled by the
length |p — ¢| (as shown in Figure 4.2(b)), and the input frame is consequently transformed
into a SWT map. A constraint is defined in Equation (4.1) to verify whether the gradient
direction is approximately opposite and the gradient magnitude is identical.

s
”dp - dq“ < E (4-1)

In this way, SWT filters out background pixels and assigns text pixels with stroke widths.
However, such an operator is quite sensitive to edge defection, which leads to several false
rays (Figure 4.3(a)). To reduce the amount of incorrect connections, we propose to discard
the rays whose length is higher than a predefined threshold T;, which is selected according to
a structural analysis of text strokes. See Figure 4.3(b) for an illustration.

It is worth noting that to deal with both dark-on-light text (DL) and light-on-dark text
(LD) scenarios, we need to apply the SWT algorithm twice —in gradient and counter gradient
directions —and merge the results of both directions.

Finding connected components
After calculating the stroke widths, we group the pixels in the resulting SWT map into CCs.
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Figure 4.3: Restriction on length of rays. (a) Results of original SWT (b) Our modified version.

Indeed, adjacent pixels are grouped if the ratio of their stroke widths is less than 3 and their
Lab color distance is less than 30, to ensure uniformity in both stroke width and color. Note
that if a pixel is labeled more than once, the minimal value will be assigned to it. In the
Arabic alphabet, one character may consist of several strokes and consequently several labels.
Thus, in order to give a unique label for each character, we propose a CC-labeling algorithm,
which allows scanning the pixels of the SWT image in four directions (Figure 4.4). We denote
by X the pixel to be treated. We assign to X the minimal label value of its neighboring
pixels (colored in blue for each case). At each scan, the new values are displayed in red.
Figure 4.5(b) shows the result of this algorithm for the character Yaa ( ).

Component analysis

Coarse filtering

At this step, we apply a set of heuristic constraints based on the spatial characteristics of
text to filter out non-text components and background outliers. In these rules, a candidate
component C is described by a set of geometrical measurements: H(C), W(C), coorX(C),
coorY(C), SWM(C) and SWV(C), which respectively denote the height, width, X-coordinates,
Y-coordinates, SW mean and SW variance of a component. The involved constraints are
defined as follows:

H(C) <40 px
W(C) < 150 px

<95

SWV(C)

DO | =
nn
=
=
8

coorX (C) < % . ImageWidth

1
Ik ImageHeight < coorY (C) < % . ImageH eight
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Figure 4.4: Example of CC labeling. (a) SWT map of letter Siin. (b) Output of labeling
algorithm by [EOW10]. (c) - (f) Scans and output of proposed labeling algorithm.

First, we discard very big and tiny objects by limiting the width and height of the candidate
component to 150 pixel and 40 pixel for SD resolution, and to 330 pixel and 90 pixel for HD
resolution, respectively. Second, we remove the components with too large and too small
aspect ratios under a conservative threshold [0.5 — 5] so that characters like Alif (1) will
not be discarded. Third, a CC will be discarded if its SWV exceeds an empirically fixed
threshold. A high value of SWV means that the CC consists of foliage, bricks or fences
which are commonly mistaken as text in video frames. Finally, the objects located at the
border of the image are also discarded from further processes. The rules defined in this step
are weak conditions, so as to preserve the text components in a higher priority rather than
filter background noise. Therefore, only the obvious non-text components are rejected. The
remaining false alarms will be handled in the verification stage.

Diacritic merging

Several Arabic characters include diacritic marks like dots and Hamza. Thus, among the
previously obtained CC candidates, some of them are parts of the same character, which need
to be merged into one single bounding box. We design the following rules to group these CCs:



CHAPTER 4. TEXT DETECTION BY SWT AND AUTO-ENCODERS 69

T

Tl Tl

@ (b) ©

Figure 4.5: Labeling and merging of letter Yaa. (a) Result of the [EOW10] labeling algo-
rithm. (b) Result of proposed labeling algorithm. (c) Vertical merging of diacritics (two dots).

e The vertical distance between two components, C; and Cj, should not exceed an empir-
ically fixed threshold T.g4.

e C; and Cj should have a similar stroke width value; i.e., the ratio between their SW has
to be less than 2.0.

Figure 4.5(c) shows the updated bounding box that results in applying this merging procedure
for the character Yaa ( ¢ ).

———--
!
X

Figure 4.6: Alignment and distance between two components C1 and C2

Textline construction

We propose in this step a grouping method to correctly form textline candidates out of a
huge set of components. Specifically, we define an upper triangular matrix M, where mj; is
the matching score corresponding to a pair of components (C;, Cj).

mip Mmiz M3 ... Mig
0  mo2 mog ... man
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In order to compute mjj for a given pair (Ci, Cj), we firstly calculate the following score
functions:

e 0,(C;, Cj): score based on the spatial overlap between their corresponding rectangles
Ri and Rj.

e Dy(C;, C;): score based on the proximity of R; and Rj. The closer R; and R; are, the
more important Ds(C;, Cj) is. Let z; and ] (resp. x; and ;) be the X-coordinates of
the left and right points of R; (resp. Rj;), and let w; (resp. w;) denotes its width. The
horizontal distance Ds is then calculated using Equation (4.3).

dist

DS(Ci,Cj) = 2 mazp (43)

where dist = (max, —min,) — (w; + w;), which is depicted in Figure 4.6 by a red line
in the X-axis, and maxy represents the height of the biggest component.

o Ay(Cy, Cj): score based on component alignment. Let y; and y; (resp. y; and y) be the
Y-coordinates of the upper side and bottom side of R; (resp. R;), and let h; (resp. hj)
denotes its height. The vertical alignment function Al is given by Equation (4.4).

ming — Maxpy

Al(C;, Cy) = (4.4)

maxyp — Ming

If we take the two components illustrated in Figure 4.6 as an example, Al(C7, Cy) will
be equal to (hy — h})/(he — hY). Generally speaking, the ideal case would be that both
Cj and Cj have the same areas, while the worst case would be that they do not intersect,
therefore Al would be equal to 0.

o Sw(C;, Cj): score based on the SW similarity. It is given by Equation (4.5).
Sw(Cy, Cj) = 27 ISWMi—SWM;| (4.5)

The probability matrix M is then calculated as follows:
(1 if Ou(Cy, Cj) > Toy

S if Ds(Cj, Cj) > Tq4s and
mj,j= Al(Ci,Cj) > T'ar and
Sw(C’i,Cj) > Tgw

0 otherwise

where Toy, Tys, Ta] and Tgy, are predefined thresholds for the overlap ratio, distance, align-
ment and SW scores, respectively, of (C;, Cj). Subsequently, s is determined by Equa-
tion (4.6).

Ds(Cj, Cj) + Al(Cy, C5) + Sw(C, Cy)

s = 3 (4.6)
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Figure 4.7: Updated CCs after the textline construction step

The line construction process consists finally in pairing C; and C; when mj; = max(M) with
respect to a minimal matching score threshold T,,. The gray boxes in Figure 4.7 represent
examples of such a pairing, where score s of the most likely pair to be grouped (C; , Cj) is
presented for each iteration. The process ends when no component can be merged.

4.2.2 Machine learning-based verification

In this stage, we utilize CAE to generate features learned from previously obtained textline
candidates. Afterwards, an SVM classifier receives these features as an input in order to
distinguish text lines from non-text ones.

Feature learning by CAE

Machine learning methods take features as an input and return a class label as an output.
There are various ways to extract features from data, for example by hard-coding mathemat-
ical or morphological operators. In this thesis, we aim to automatize this task by utilizing
CAE for unsupervised feature learning.

Auto-Encoders (AE) represent a family of neural networks for which the input is the same
as the output. They work by compressing the input data (e.g. image) into a lower-dimensional
representation and then reconstructing the output from this representation. AE is composed
of two parts, the first is called encoding and the second one is decoding, which can have
multiple layers. However, for the sake of simplicity, we consider that each of them has only
one layer (Figure 4.8).

Training an AE is unsupervised in the sense that no labeled data are needed. The training
process is based on the back-propagation algorithm, which minimizes the average difference
between the input x and its reconstruction at the output z.

CAE are stacked auto-encoders where layers, except for the top one, are convolved. This
allows covering a larger area while keeping the number of weights of the neural network small
enough to have an acceptable training time. The output of CAE, which is used as features
during classification, is the encoded values (i.e. compressed representation in Figure 4.8) not
the result of the reconstruction, as the latest is used only during the training phase.
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Figure 4.8: A basic auto-encoder with one hidden layer.

The unsupervised CAE feature learning method introduced in [SIL16] is used to learn
features in this thesis. Each of its layers is composed of a convolved artificial neural network
that has two neuron layers, one for encoding and one for decoding. A single-layer CAE is
illustrated in Figure 4.9. The first neural layer encodes the inputs, and the second one, which
is used only during the training phase, reconstructs the inputs from the encoded values. For
stacked auto-encoders, the first layer of CAE takes raw pixel data as an input; the other
layers take as an input the output of the previous layer. We use the soft-sign as an activation
function for two reasons: (1) It is very fast, and (2) its derivative converges polynomially
towards zero, which is more interesting during the training phase than the activation function
whose derivative converges exponentially. The soft-sign activation is given by Equation (4.7).

X

= T (4.7)

f(z)

Our CAE encodes an input z of dimension n to an output & of dimension m as described
by Equation (4.8).

n

fo= f | S0ty ) + 0 (48)

=1

where b; is a bias, and w® are the weights used for encoding.
Decoding an output y to reconstruct the input is done in a similar way:

xj=1f (Z(wffi CE) + b?) (4.9)
=1

where  is an approximation of the x vector encoded by Z, b; is a bias, and w? are the weights
used for decoding. This means that CAE has to learn m x (n + 1) + n x (m + 1) weights
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Figure 4.9: Illustration of single-layer CAE.

during its training. For this reason, it is more time-efficient to use a convolution of small AEs
rather than train a single one covering a large patch.

The convolutions are created as follows. First, an AE covering W; x H; pixels and having
m1 outputs is trained. After that, we create Wo x Hs copies of it, and put them in a grid, with
an offset of O1z x Oy pixels. This grid then covers (O1z x (W — 1)+ W7) x (O1y x (He —
1) + H;) pixels. The output of the AEs in this grid can be seen as an array composed of
Wo x Ha x mq values, which can be given afterwards to a second-level AE. When creating a
convolution of second-level AE; i.e. to add a third level, the convolution of the first-level AE
must be redimensioned accordingly.

The layers of CAE are trained one after another with standard back-propagation and gra-
dient descent in their two-layer neural network, to minimize (x —x)2. The layers of CAE must
learn to encode and decode their own input. If we back-propagate the reconstruction error of
the top-layer to the previous layers, then the top layer will "ask" through a back-propagation
the previous layers to have easy-to-reconstruct values (e.g. constants). This will lead to a
degeneration of weights, making the AE useless. For this reason, we add a new layer to the
network only when its current top-layer is sufficiently trained. While CAE can be trained
without supervision, its topology has to be manually defined, i.e. the number of layers, the
size of convolutions, the number of features and the offset.

Feature visualization
We can display the i-th feature learned by CAE by manually setting its outputs to zero, except
for &; which is set to 1, and then decoding it layer after layer until reaching the pixel-level.
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Figure 4.10 depicts some features, which are automatically learned by CAE. We can see that
the learned patterns are more complex when there are more layers.

e
TR e
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@

Figure 4.10: Illustration of features learned by two CAE layers. (a) First layer, (b) Second
layer

SVM-based classification

SVMs were proposed by Vapnik [CV95] and have yielded excellent results for several two-class
classification problems and nonlinear regression. The main strength of such a classifier is that
it is easy to train, it needs few training samples, and it has a good generalization ability that
makes it effective for text identification. SVMs use the structural risk minimization to find
the hyperplane that optimally separates two classes of objects. This hyperplane is computed
as described by Equation (4.10).

f(z) = sgn(z yioi K (x,x7) + ap) (4.10)
i=1

where sgn is a sign function, K is a kernel function, and y ={-1,1} is the class label of the
data point z. Moreover, x; are support vectors and define the separating hyperplane. The
parameters «; (0 < i < m) are optimized during training. The kernel function used in this
thesis is the Radial Basis Function (RBF') expressed by Equation (4.11).

X — X;?

K(X, X;) = exp{— o (4.11)

where o denotes the kernel bandwidth, which is determined through cross-validation experi-
ments.
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We train SVM with the extracted CAE features. We roughly select as many patches from
text candidates as from non-text ones in order to have balanced training data. To make it
clearer, let R1, R2 and R3 be three training positive samples with various sizes: T1, T2 and
T3 (in terms of pixels). To extract an N; number of patches per rectangle considering its size,
we use the Equation (4.12).

B Te x Niot
where T'y = T'1+T2+1T'3 is the total surface of positive samples, and Nt = N11+NT2 + N3
is the total number of patches to extract from the positive (or negative) training set.

N; (4.12)

AE feat
Class label pERe

l

v

Patches

>1  €D[t-0.055630 [2:-0.982690 [BF0.3412770 [af:1.0 [5k-0.992943 €:-0.526404 7:-0.417237 8:-0.455806
2 -1 1:-0.191893 2:-0.955216 3:0.4293087 4:1.0 5:-0.996674 6:-0.450199 7:-0.355995 2:-0.386653
3 -1 1:-0.239502 2:-0.994007 3:0.4481592 4:1.0 5:-0.995718 6:-0.481592 7:-0.461671 8:-0.463622
4 -1 1:-0.075214 2:-0.995345 3:0.2420873 4:1.0 5:-0.981922 6:-0.751770 7:-0.639552 8:-0.686606
5 -1 1:-0.491780 2:-0.997484 3:0.6329026 4:1.0 5:-0.984087 6:-0.839344 7:-0.791009 8:-0.807623
6 -1 1:-0.848027 2:-0.998896 3:0.8876696 4:1.0 5:-0.982700 6:-0.944123 7:-0.938604 8:-0.938468
7 -1 1:-0.030307 2:-0.989056 3:0.3219639 4:1.0 5:-0.995338 6:-0.220347 7:-0.389917 8:-0.341315
& -1 1:-0.050213 2:-0.978008 3:0.3378348 4:1.0 5:-0.997063 6:-0.429298 7:-0.110715 8:-0.259875
9 -1 1:-0.219628 2:-0.994100 3:0.4277829 4:1.0 5:-0.889386 6:-0.720950 7:-0.550930 8:-0.630566

10 -1 1:-0.946378 2:-0.999829 3:0.4932584 4:1.0 5:-0.384684 6:-0.988223 7:-0.968376 8:-0.975549

11 -1 1:0.6945333 2:-0.890600 3:-0.986470 4:-0.333333 5:-0.996899 §:0.0072219 7:0.5144794 2:0.28
12 -1 1:0.4802602 2:-0.847028 3:-0.983386 4:-0.419607 5:-0.999266 6:0.4486982 7:0.3673519 £:0.40
13 -1 1:-0.256765 2:-0.997370 3:-0.990928 4:-0.701960 5:-0.985967 6:-0.776688 7:-0.633003 8:-0.7
14 -1 1:0.7965681 2:-0.847814 3:-0.980071 4:-0.294117 5:-0.996054 6:-0.108217 7:0.7591974 8:0.26
15 -1 1:0.3042983 2:-0.929306 3:-0.990902 4:-0.466666 5:-0.992249 6:0.1251998 7:-0.378069 £:-0.2
16 -1 1:0.9117051 2:-0.953155 3:-0.986661 4:-0.239215 5:-0.992698 6:0.6378698 7:-0.066559 8:0.06
17 -1 1:-0.816531 2:-0.999307 3:-0.999867 4:-0.913725 5:-0.629256 6:-0.909125 7:-0.872425 8:-0.8
18 -1 1:0.7464200 2:-0.988741 3:-0.984948 4:-0.309803 5:-0.980016 6:-0.470963 7:-0.455043 8:-0.4
19 -1 1:0.0137977 2:-0.998088 3:-0.989031 4:-0.592156 5:-0.978342 6:-0.765113 7:-0.646618 8:-0.6
20 1 1:-0.929256 2:-0.999910 3:-0.999958 4:-0.952941 5:-0.938265 6:-0.969168 7:-0.991290 8:-0.98
21 1 1:-0.940578 2:-0.999973 3:-0.999963 4:-0.960784 5:-0.848650 6:-0.967496 7:-0.998310 £:-0.39

Figure 4.11: Example of SVM training file

Figure 4.11 highlights a part of an SVM training file. This file contains a total of 5,790
lines, i.e. about 2,895 line for each class. Each line represents a fixed-size vector of features
extracted by an AE patch (27 features in our case).

In the prediction step, we classify patches located along the center of the candidate. Other
locations such as the bottom or the top of the candidate area might contain no text despite
belonging to a text area. After that, a majority voting procedure is applied to classify the
candidate textline areas, as illustrated in Figure 4.12.

We use the LibSVM implementation for JAVA, introduced by [CL11], to perform our
classification.

4.3 Results and discussion

4.3.1 Parameter settings

In all our experiments, the parameters of the first stage (Section 4.2.1) are empirically set
as a function of data resolution and according to a statistical study on text characteristics.
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Figure 4.12: Text line classification based on majority voting

Table 4.1: Optimal CAE topology for HD/SD channels

HD SD
Layer 1 | Layer 2 || Layer 1 | Layer 2

Input patch size | 10 x 10 20 x 20 5X5H 11 x 11
Convolution 3x3 - 3x3 -
Offsets 5XDH - 3x3 -
# of features 12 15 12 15

In the component extraction module, the maximal ray length T, = 60 pixels. In the coarse
filtering module, the maximal character/sub-word height hy,x = 40 pixels, the maximal
character/sub-word width wyax = 120 pixels and the maximal aspect ratio rmax = 5. In
the vertical merging module, the maximal vertical distance Tyq = 3 pixels. Note that these
values concern only the SD channels. For HD resolution, they should be doubled. The score
thresholds of the textline construction procedure are set empirically to the following values:
Tov=0.75, T45s=0.35, T31=0.35, Tsw=0.24 and T\, =0.5.

A fundamental part in our experiments consists in optimizing the settings of CAE, par-
ticularly its topology. We begin with a single-layer CAE and a topology estimated as a good
starting point, i.e. an input patch of a size slightly larger than the text strokes and enough
neurons for having a relatively good looking reconstruction. Next, we try to optimize the
topology by iteratively improving the number of features and the input patch size with regard
to the classification accuracy. The optimal topologies that give us the best detection rate
are presented in Table 4.1. It is interesting to note firstly that the dimensions of the first
layer input patch for the HD channel are twice larger than for the SD channels, and secondly
that the optimal number of features does not change. The first is due to the difference of
resolution (roughly twice higher for the HD channel), and the second is explained by the fact
that despite the variability in resolution the content of the inputs is similar, hence requiring
a similar number of features.
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Table 4.2: Number of training samples used by CAE

Protocol | TV channel | # of training data
1 AljazeeraHD 1978
4.1 France24 2153
4.2 RussiaToday 2768
4.3 TunisiaNat 3924
4.4 All SD 9623

We have noted that the second CAE layer is more efficient when it receives useful data as
an input. Therefore, when we start to create a two-layer CAE, we use for the first layer the
previously obtained settings, which were optimal for classification, and we optimize only the
second layer.

We train CAE on the obtained textline candidates without supervision by utilizing patches
randomly placed on them. Thus, their features are learned to describe the kind of content
that the AEs will have to deal with during the classification phase. Table 4.2 presents the
amount of the used textline candidates per protocol for training CAEs. Figure 4.13 shows
some samples of them.

(
m

Figure 4.13: Example of CAE training samples

4.3.2 Experimental results

We start our experiments on the AcTiV-D dataset by firstly testing the Epshtein’s SWT-based
system [EOW10], as one of the most cited and used CC-based method for text detection in
the recent years. Next, we propose our fully heuristic approach |[ZHT 15, ZTH"16], called
here "SysA", which is mainly based on the steps presented in Section 4.2.1, in addition to
a refinement step. Actually, the latter utilizes projection profiles, aspect ratio and contrast
information to filter out non-text lines, since text appears in horizontal arrangement and
has a high contrast compared to its background. Figure 4.14 presents the input, intermedi-
ate and final images obtained with this approach. Given a video frame, color-to-grayscale
transformation is first performed (Figure 4.14(b)). SWT is then applied on the edge map
(Figure 4.14(c)). After that, CCs are extracted, filtered and merged to form textline can-
didates (Figures 4.14(d-h)). The true textlines are finally identified in the refinement step
(Figure 4.14(1)).

We obtain results roughly 45% higher than the Epshtein’s method. Nevertheless, the
detection error rate could still be much decreased by the suggested hybrid approach (called
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Figure 4.14: Detection process of fully heuristic-based system. (a) Input frame, (b) Gray-scale
(¢) Canny edge detection (d) SWT Map, (e) CC extraction (f) CCs after geometrical filtering
(g) Diacritic merging (h) Textline construction (i) Refinement step and output result.

For clarity, only the results of one pass (DL) are presented here.

here "LADI"), which replaces the refinement step by a machine-learning solution, as presented
in Section 4.2.2. The results are given in Table 4.3 in terms of Recall, Precision and F-measure
metrics. For protocol P1, LADI increases the F-measure by roughly 10% in contrast to SysA.
For protocols P4.1, P4.2, P4.3 and P4.4 (SD channels), the results are higher, with gains of
11%, 17%, 15% and 9%, respectively. The best accuracies of this approach are achieved on
TunisiaNat1 subset (P4.3) with 0.84% as an F-measure for the SD resolution, and on Aljazeera
subset (P4.1) with 0.85% as an F-measure for the HD resolution.

Comparison with other methods

In order to validate the performance of our proposed approach, we compare it with two recent
methods. The first one was proposed by Gaddour et al. |GKV16] to detect Arabic text in
natural scene images. The main process involved is:

- Pixel-color clustering using k-means to form pairs of thresholds for each RGB channel.
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Table 4.3: Evaluation results and comparison with other methods.

Protocol Method Recall Precision F-measure
Epstein [EOW10] 0.53 0.36 0.45
Gaddour [GKV16]  0.55 0.46 0.50
1 Iwata [SWTF16] - - -
SysA |[ZHT*15] 0.76 0.77 0.76
LADI |ZST"16] 0.84 0.86 0.85
Epstein [EOW10] 0.5 0.3 0.4
Gaddour [GKV16] 0.61 0.5 0.55
4.1 Iwata [SWTF16] 0.52 0.59 0.56
SysA [ZHT*15] 0.6 0.69 0.64
LADI [ZST"16] 0.75 0.75 0.75
Epstein [EOW10] 0.42 0.36 0.39
Gaddour [GKV16] 0.44 0.37 0.41
4.2 Iwata [SWTF16] 0.8 0.77 0.78
SysA |ZHT*15] 0.55 0.66 0.6
LADI [ZST"16] 0.75 0.79 0.77
Epstein [EOW10] 0.47 0.35 0.41
Gaddour [GKV16] 0.57 0.51 0.54
4.3 Iwata [SWTF16] 0.8 0.84 0.82
SysA [ZHT*15] 0.71 0.68 0.69
LADI [ZST"16] 0.85 0.83 0.84
Epstein [EOW10] 0.5 0.39 0.44
Gaddour |[GKV16| - - -
4.4 Iwata [SWTF16] 0.67 0.71 0.69
SysA [ZHT*15] 0.61 0.62 0.61
LADI |ZSTT16] 0.72 0.68 0.7

- Creation of a binary map for each pair of thresholds and extraction of CCs.
- Preliminary filtering according to the “area stability” criterion.

- Second filtering based on a set of statistical and geometrical rules.

- Horizontal merging of the remaining components to form textlines.

The second method was suggested by Iwata et al. [SWTF16] to detect Arabic text in
news videos. It operates as follows:
- Binarization of input image by the Otsu method.
- Extraction of CC from the binary image using a region labeling algorithm.
- Elimination of components with a width and a height greater than predefined thresholds.
- Textline detection by vertical profile analysis and 1D difference of the Gaussian filter.
- False textline reduction by measuring the average of eccentricity (e = perimeter?/area) for
all CCs in the textline and removing the line if e is less than a predefined threshold.

Table 4.3 presents all systems’ results using AcTiV-D as a benchmark. The LADI system
scores best for protocols P1, P4.1, P4.3 and P4.4. Iwata’s system performs well for all SD
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Figure 4.15: Detection results from three different SD channels: Impact of the machine-learning
module. (a) Results before classification. (b) Results after classification.

protocols and scores best for protocol P4.2. However, its current version is incompatible with
the HD resolution. Gaddour’s system has a fragmentation and miss detection tendency, as
shown by their obtained results, specifically for the precision values.

Error analysis

A visual representation of some obtained results by our proposed approach are shown in
Figure 4.15. Top sub-figures depict the outputs of the first stage (before classification), while
the bottom ones present the final results. As it can be observed from these figures, most of
the non-text regions are eliminated after the classification phase. In general, the obtained
results are satisfactory and the proposed machine-learning solution seems to cope with the
variability of text regions in scale, font and color. Yet, it may fail in certain conditions, to wit:
(1) The edges of background objects may emit strokes to nearby text causing texts cluttered
with background, as presented in Figure 4.16(a). (2) Our approach is found sensitive to
structured zones; i.e., some non-text regions like balcony handrails (Figure 4.16(b)), fences
(Figure4.16 (c)) or foliage (Figure 4.16(d)) are misclassified as text. Besides, in some cases, our
method does not detect text affected by low contrast or low resolution (Figure 4.16 (e)). The
causes of these errors can include the sensitivity of SWT to blurry images for its dependency
on successful edge detection. (3) Another discovered weakness is that in some cases, true
candidates are filtered by the classifier as false alarms. This can be explained by the fact that
the texture (e.g., font and color) of such text is rare in the training data. Hence, some errors
can be corrected by providing to the CAE module more training samples that encompass
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Figure 4.16: Typical detection errors. Sub-figures (a)-(c): False alarms. Sub-figures (d)-(f):
Miss detection and related problems. Sub-figures (g)-(h): Merging and fragmentation problems.

various patterns of text candidates.

4.4 Conclusion

In this chapter, we have described our approach for text detection in news video frames. The
approach is based on three main steps. First, the SWT operator is applied to detect initial
text components, which are then filtered and merged to form textline candidates following
human-defined constraints. Finally the true textlines are pruned with a set of heuristic rules
including aspect-ratio analysis and projection profiles. Lately, the third part of this approach
is replaced with a machine-learning scheme based on CAE as an unsupervised feature extractor
and on SVM as a classifier [ZST*16]. The experiments in this chapter demonstrate:

e The significant increase in the F-measure by 9% to 17% thanks to the use of machine-
learning to filter the results given by the SWT.

e The effectiveness of AE-generated features in text/non-text classification.

e The ability of the hybrid approach to achieve a higher detection rate compared to the
CC-based heuristic approach.

e The high dependence of the results of CAE-SVM classification on the performance of
the SWT procedure.

As a future work, the usage of temporal information will be considered to better remove
false alarms in individual frames since they are usually unstable throughout time.
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5.1 Introduction

Recognition of Arabic text has become a subject of intensive research during the last decades.
Particularly, several techniques have been proposed in the conventional field of Arabic OCR
in scanned documents either for printed or handwriting text [AB96, LG06, TAA07, STAHOS,
EAKMAT11, MEA12|. However, little work has been made regarding the development of
recognition systems for overlaid text in Arabic news videos [HAVT12, YBG15b].
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As it was mentioned in the Introduction (Chapter 1), Arabic text has special characteris-
tics. For instance, several Arabic letters share common primary shapes, differing only in the
number of dots and whether the dots are above or below the main character, like Baa ( o )

and Taaa ( & ) characters. Therefore, any binarization or morphological operation needs
to efficiently deal with these dots so as not to change the identity of the character. Arabic
has several ligatures, which are formed by combining two or more letters, such as the two
first letters Miim ( ; ) and Haaa ( C) of the word Mohamed ( ss2 ), making it difficult to
segment the words or PAWs into individual characters for subsequent recognition. All these
characteristics along with the complexity of video content may give rise to failures in the
Arabic video text recognition task.

In this chapter, we propose a novel text recognition system based on a segmentation-free
methodology, which relies on the use of Long short-term memory (LSTM) networks. These
networks have been successfully applied in different sequence classification problems and have
outperformed alternative HMMs [TAA07, SZK"12], RNNs [SP97, SR98| and their combina-
tion. Some benchmark work has been developed using the RNN-LSTM networks, such as
handwriting recognition of Latin and Asian scripts [GLFT09, ML15]. The good performance
of such networks has motivated us to investigate their application for the recognition of Ara-
bic text in video frames. The multidimensional LTSM (MDLSTM) architecture [Gral2| is
particularly adopted to model the text variations on both axes of the input image. Up to
our knowledge, we have been the first to use this architecture for such a problem. Besides,
we suggest an efficient preprocessing step and a compact representation of character models,
which permits improving the behavior of our system and increasing the recognition rates.

The rest of the chapter is organized as follows. Section 5.2 presents a short overview of the
RNN-LSTM networks. The proposed system is presented in Section 5.3. Section 5.4 describes
the grouping strategy of character models. The experimental setup and obtained results are
presented in Section 5.5. Section 5.6 draws conclusions.

5.2 Overview of RNN-based networks

RNNs were first introduced in the 80s and have become popular due to their ability to model
contextual information. They represent powerful tools for processing patterns occurring in
time series. In its simplest form, an RNN is an MLP with recurrent layers which receive
inputs not only from the previous layers, but also from themselves, as shown in Figure 5.1(a).

Consider an input sequence z presented to an RNN with [ input units, H hidden units
and O output units. Then the hidden units ap and the activations by of a recurrent layer are
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Backward Layer

Forward Layer
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Figure 5.1: Standard and Bidirectional Recurrent Neural Networks. (a) RNN, (b) BRNN.

calculated as follows:

I H
ap(t) = ; wipx;i(t) + h/zzzl Wb (t —1) (5.1)

br(t) = On(an(t))

where x;(t) is the value of input 4 at time ¢, a;(t) and b;(t) respectively denote the network
input to unit j and the activation of unit j at time ¢, w;; denotes the connection from unit ¢
to unit j, and Oy is the activation function of hidden unit h.

Robinson [Rob94] was among the first who suggested the use of standard RNNs for speech
recognition. Lee and Kim [LK95| and Senior and Robinson [SR98| applied such networks to
handwriting recognition.

In 1997, Schuter and Paliwal [SP97] introduced Bidirectional RNNs (BRNNs) by implement-
ing two recurrent layers, one processing the sequence in a forward direction (left to right) and
the other backwards. Both layers are connected to the same input and output layers (see
Figure 5.1(b)).

The MDRNN architecture [GFS07| represents a generalization of RNNs, which can deal with
multidimensional data, such as images (2D) and videos (3D). In order to extend the RNN
to a multidimensional one, let p € Z” be a point in an n-dimensional input sequence z of
dimensions Dy, ..., Dy,. Instead of a(t) in a 1-dimensional case, we write a? as an input in the
multidimensional case. The upper index p;, i € {1,2,3,...,n}, is used to define the position;
ie., P, = (pl, ...,ps —1, ..., pp) denotes the position on a step back in dimension d. Let
w;lj be the recurrent connection from ¢ to j along dimension d. The forward equation for an
n-dimensional MDRNN is calculated according to Equation (5.2).

I n H -
p _ P d
ap = E wipx; + E E b, wiy,
i=1

pEe o (5.2)
bz = @h(ai)

The backward pass is given by Equation (5.3), where ¥ = 2Z and o = %
: i

respectively
J b
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denote the output error of unit j at time p and the error after accumulation.

(0]

n H
h= Swne+y Y 55%% (5.3)

o=1 d=1h'=1

Figure 5.2 illustrates the two-dimensional case of an MDRNN. During the forward pass, at

Hidden Layer Output Layer
(ij-1)
(FIQL_*f/ (i)
/ Input Layer Hidden Layer /
) s 1D
P i/

@ ®)

Figure 5.2: Illustration of two-dimensional MDRNN. (a) Forward pass (b) Backward pass,
inspired from [GT12].

each point in the 2D input sequence XP, the hidden layer of the network receives both an
external input and its own activations from one step back along all dimensions (Figure 5.2(a)).
It is to note that point (i, 7) is never reached before both (i — 1,7) and (i,7 — 1).

In the backward pass, the backpropagation through time (BPTT) [Wer90] is generally used to
compute the error gradient of the network. Indeed, the sequence is processed in the reverse
order of the forward pass; i.e., at each timestep the hidden layer receives both the output
error derivatives and its own n ‘future’ derivatives, (Figure 5.2(b)) [GT12].

While standard RNNs use a recurrence only over one dimension, like the z-axis of an image,
MDRNNS scan the input image along both axes, allowing the exploitation of more context and
the modeling of the text variations in four directions (left, right, top, bottom). Figure 5.3(a)
shows the axes used in the MDRNN scan. The arrows inside the rectangle indicate the
direction of propagation during the forward pass. The hidden layers are connected to a single
output layer which has access to all the surrounding context. One such layer is sufficient to
give the network access to all context against the direction of scanning from the current point
(e.g. to the top and left of (7,j) in Figure 5.2(a)). However we usually want surrounding
context in all directions, as depicted in Figure 5.3(b).
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Figure 5.3: Scanning directions of MDRNN, inspired from [G*12]. (a) Axes used by four
hidden layers in 2D MDRNN. (b) Context available at current point (i,).

5.2.1 LSTM networks

The problems of long-term dependencies and wvanishing gradient —the gradient of the loss
function decays exponentially over time [BSF94] —have been the reason for the lack of prac-
tical applications of RNNs. In 1997 [HS97], an advance in designing such networks was
introduced as the LSTM models. Indeed, they are a special kind of RNNs that use memory
cells as hidden layer units. These cells can maintain information for long periods of time.
LSTM consists of a set of three multiplicative gates, so-called the input gate i, the output

re .
7 Clren,  input
(54 X,

@ (b)

¥ sum over allinputs, [ tanh activation function, o sigmoid |
| activation function, © multiplication, * branching point

Figure 5.4: Detailed schematic of neurons for RNNs: (a) Simple neuron (b) LSTM unit.

gate o and the forget gate f, to control when information should be stored or removed from
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the memory cell ¢. This architecture lets them learn longer-term dependencies. See Fig-
ure 5.4(b) for an illustration. LSTM first computes its gates’ activation i; (Equation 5.4), f;
(Equation 5.5) and updates its cell state from ¢, ; to ¢; (Equation 5.6). It then computes the
output gate activation o, (Equation 5.7), and finally outputs a hidden representation h; (Equa-
tion 5.8). The inputs of an LSTM unit are the observations x; and the hidden representation
from the previous time step hy.;. LSTM runs the following set of update operations:

it = 0o(Wigxe + Winhes + Wicerr + by) (5.4)

fi= O‘(meiltt + thht-] + Wryeerr + be)
¢t = frceq 4 i tanh(Wgeas + Wiche g + be)

(5.5)
(5.6)
0r = (W ont + Wonhes + Woecs + by) (5.7)
hy = o; tanh(cy) (5.8)

(5.9)

yr = Wynhy + by

where W denotes weight matrices, b denotes bias vectors and o (Equation 5.10) is the logistic

sigmoid function.
1

7 =13 exp(—z)

(5.10)

Standard LSTM is explicitly 1D, since each cell includes one single recurrent connection,
whose activation is controlled by a single forget gate. Nevertheless, it is possible to extend
this to n dimensions, i.e. an MDLSTM memory cell, by using n recurrent connections with
n forget gates (one for each of the cell’s previous states along every dimension).

5.2.2 Connectionist Temporal Classification layer

One basic problem with RNNs is that they require a target output at each timestep. Thus,
training an RNN requires segmenting the training output, i.e. ‘telling’ the network which label
should be output at each timestep. To overcome such a requirement, Graves et al. [GFGS06]
proposed the Connectionist Temporal Classification (CTC) for sequence labeling task. This
technique is inspired from the HMM forward-backward search algorithm [ASP91] and is used
to align the target labels with the LSTM output sequences. During training, this alignment
enables the network to learn the relative location of labels in the whole transcription. The
CTC layer contains as many units as there are elements in the alphabet L of labels, plus one
extra ‘blank’ unit @; i.e., the output alphabet is L’ = LU{@} . ‘Blank’ is not a real character
class, but a virtual symbol used to separate the consecutive real characters. Let z be an input
sequence of length T and 3 : L' — L= a mapping function, which removes duplicates then
blanks in the network prediction. For example, f(a @ @ab) = f(aa @ @abb) = aab.

Since the network outputs for different timesteps are conditionally independent given z,
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the probability of a label sequence 7 € L'T in terms of LSTM outputs is as follows:

T
p(rlz) = [ [ (@) (5.11)
t=1

where y is the activation of output unit k at time ¢. Mapping 8 allows calculating the
posterior probability of a character sequence [ € L, which is the sum of the probabilities of
all paths (L'") corresponding to it:

plle) = > p(xle) (5.12)
SR

This ‘collapsing together’ of various paths to the same labeling is what enables CTC to
use unsegmented data. After that, the CTC objective function maximizes the probability
to find the most probable label sequence for the corresponding unsegmented training data
S = {(z,2), 2 € LI*I} by minimizing the following cost:

¥ =— Z log p(z|x) (5.13)

(z,2)€S

5.3 Proposed system

The proposed video text recognition system is based on RNNs. It relies specifically on an
MDLSTM network coupled with a CTC output layer. It is mainly developed using an adapted
version of the open-source RNNLib toolkit. The use of RNNLib goes typically through two
phases: training and test. During the training step, the network learns the sequence-to-
sequence matching in a supervised manner, i.e. the alignment between the input and the
output sequences. In the test step, the normalized textline image is fed to the trained MDL-
STM model, which generates the predicted sequence. For both steps we apply the same
preprocessing, as illustrated in Figure 5.5.

[ = —
. Text Polarity
Training ‘ l—‘ Normalization 'I\G‘Dt';f";:
corpus - etwor

-~ Jestphase

e Trained MDLTSM
e Model

Training PRI i

Recognized
Text

| Text Polarity \_j | e
Test Normalization
corpus R

Figure 5.5: Complete pipeline of our LSTM-based recognition system.

In what follows, we describe the preprocessing stage.
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5.3.1 Preprocessing

Blatantly, Video OCR domain has many problems to deal with concerning the variability
of text patterns, the complexity of backgrounds, etc. Therefore, we propose to apply some
preprocessing prior to the recognition step in order to reduce these undesirable effects. Given

Inputimage - vl.l.l.lg.-l..“ Jg.I.I.I.IJ"
il )9 2l ¢l g9 gl

Gray image

[ anaia |

Skeleton DL

Skeleton LD

()

Figure 5.6: Pre-processing step of text gradient normalization

a textline image, the preprocessing operations of text polarity normalization and image size
scaling are performed. First, the text polarity is determined, i.e. judging whether it is
dark text on light background or vice-versa, using a skeleton-based technique. Skeletons
are important shape descriptors in object representation and recognition. The generalized
skeleton representation of a binary image is the union of sets {S,} given by Equation 5.14.

Sp(X) = (X onB) - (X ©nB)o B (5.14)

where S,,(X) represents the skeleton subsets of a binary image containing a set of topologically
open shapes X, n is the number of shapes, and B is a structuring element. The symbols &
and o refer to the binary erosion and opening, respectively. Note that in our case the binary
images Bin and Bin are obtained by adaptive thresholding the input grayscale image Gs
and its negative version Gs (step (2) of Algorithm 1). It can be observed from the content
distribution of the skeleton maps (step (3) and (4) of Algorithm 1) created with the correct
gradient direction, that the skeleton pixels are retained in the center line of the character
shape (e.g. skeleton dark-on-light (DL) in Figure 5.6(a) and skeleton light-on-dark (LD) in
Figure 5.6(b)).

This is due to the characteristics of the skeleton function that generates a thin version
of the original shape, which is equidistant to its boundaries. Otherwise, the skeleton pixels
all surround the characters and are placed on the image boundaries (cf. skeleton LD in
Figure 5.6(a) and skeleton DL in Figure 5.6(b)). Thus, the text gradient direction is simply
obtained by comparing the quantity of white pixels (WPs) located on the boundaries of the
two skeleton images (step (11) of Algorithm 1); i.e., we invert the input grayscale image if its
skeleton LD has fewer WPs on the boundaries (step (12) of Algorithm 1). Subsequently, the
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Algorithm 1: Text polarity normalization to dark-on-light

Input : original text image In
Output: normalized image
Gs « rgb-To-grayscale(In)
Bin< Binarization (Gs)
Si < SkeletonExtract (Bin)
S; + SkeletonExtract (Bin)
for all pizel I(xz,y) in image S; do
if (I(x,y) € border of S; & is > 0) then
‘ increase WP by 1;
end

© 000 N OO A W N

end
Repeat steps (5 - 9) for image S; to compute WPg
if WPg > WPgthen
‘ Text polarity inversion to DL;
else
‘ No inversion of text polarity;
end

e e e =
U A W N = O

text polarity is normalized to DL for all input grayscale images, as shown at the bottom of
Figure 5.6. This method has been able to achieve an accuracy of 95% on our dataset.

All the normalized images are then scaled to a common height (determined empirically) using
the bi-linear interpolation method.

5.3.2 Network architecture

As depicted in Figure 5.7, our network consists of five layers in which three are LSTM-based
hidden layers (for each direction) and two are feedforward subsampling layers with tanh as
an activation function. We adopt the hierarchical network topology as used in [GT12]| by
repeatedly composing MDLSTM layers with feedforward tanh layers. The principle of such
a topology is detailed in Figure 5.8. The purpose of the subsampling step is to compress the
sequence into windows, thus speeding up the training time with the MDLSTM architecture.
Subsampling is also required for reducing the number of weight connections between hidden
layers.

In this network, there are mainly four important parameters that require tuning during
the training phase.

e The Input Block size refers to the “width x height” of the pixel block used to initially
divide the input text image into small patches. For our proposed models we empirically
set the size of this parameter as 2 x 4 or 1 x 4 depending upon the evaluation protocol
(see Section 5.5.1).

e The LSTM Size refers to the number of LSTM cells in each hidden layer. In our work,
2, 10 and 50 represent the appropriate values for this parameter. These values are found
empirically and they match as well those reported by other researchers [G*12, PBKL14,
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Figure 5.7: Architecture of the used hierarchical subsampling MDSLTM network
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Input Layer

Figure 5.8: Data flow through a multidimensional HSRNN [G*12]. The input sequence is sub-
sampled and then scanned by recurrent hidden layers. The sequence of hidden layer activations
is subsampled again and scanned by the next hidden layers. The activations of the last hidden
layer are fed to the output layer without subsampling. Subsampling is performed at the places
indicated with a “*’.

NUAT17|. Note that the number of LSTM cells, for each hidden layer, should be equal
to the size of that layer multiplied by the number of directions in which the input
image is scanned. In the proposed architecture, the image is scanned in four different
directions. Hence, the number of LSTM cells become 2 x 4, 10 x 4 and 50 x 4. This is
shown in Figure 5.7 by four different colors of LSTM cells.
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e The Tanh Size describes the number of tanh units in each subsampling layer. The
suitable values of this parameter are set to 6 and 20, respectively, for the first and
second feedforward tanh layers that are placed between each pair of LSTM layers.

e The last parameter is the Subsampling Window size. It refers to the window required for
subsampling the input from each layer before feeding it to the next hidden layer. This
parameter decreases the sequence length, in the applied layer, by a factor corresponding
to the window width. The optimal sizes are set to 1 x 4 for both 1% and 2"¢ hidden
layers. At the hidden-to-output layer transition, no subsampling is applied.

The output of the last LSTM hidden layer is passed to a CTC output layer, which tran-
scribes the input sequence by choosing the sequence of labels with the highest conditional
probability, as explained above in Section 5.2.2. This layer has 105 units: 104 basic class
labels plus one for the ‘blank’.

The training is carried out with the BPTT algorithm, and the steepset optimizer is used
with a learning rate of 10 and a momentum value of 0.9. Training stops when the validation
error shows no improvement in successive 20 epochs.

5.4 Choice of model sets

By a model set, we mean the number of classes used to represent the different variations in
character shapes. Benefiting from the morphological characteristics of the Arabic alphabet,
we propose a glyph-based grouping method, resulting in three sets with respectively 165, 104
and 72 classes, as described in the following. This proposal has a direct impact on the size of
the CTC output layer, and consequently on the behavior of the network.

e Setl165: As stated in the Introduction, the Arabic alphabet contains 28 characters and
most of them change shape according to their position in the word. Taking into account
this variability, the number of shapes increases from 28 up to 100. In addition, the Arabic
script includes two groups of extra characters. The first one represents a variation in
some basic characters like the TaaaClosed ( 8 ), which is a special form of the character

Taaa (& ), and the HamzaAbove Waaw ( § ), a combination of Hamza ( ¢ ) + Waaw
(3 ). The second group includes four ligatures created when the character Alif (or one

of its variants) follows the character Laam ( ) in the word. Considering these extra
characters, there are overall 125 shapes. Added to that, 10 digits, 13 punctuation marks
and 12 additional characters that are combined with the diacritic mark Chadda (z), so

the total number of models in our database goes up to 165.

e Set104: Using set165, we group similar glyphs into 104 models according to the fol-
lowing rules: (1) “Beginning” and “middle” shapes share the same model. (2) “End” and
“isolated” shapes share the same model. These rules are applied for all alphabet charac-
ters except for the characters Ayn ( C) and Ghayn ( i) where the initial, middle, final
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and isolated shapes are too different. This strategy of grouping is natural as “beginning-
middle” and “end-isolated” character shapes are visually similar. For instance, the two
first character models (left-to-right) of the word in Figure 5.9 are grouped to one model
as they belong to the same basic character Taaa (& ), so we obtain two samples of the

model Taaa_ B instead of having one for the model Taaa B and another for the model
Taaa_ M.

e Set72: We use here one single model for each character of set165, regardless its position
in the word.

Taaa_M Taaa_B

A@QTBBB_B Taaa_B

Set1i65 Taaa_B Taaa_M Siin_M Laam_M Miim_E

Set104 Taaa_B Taaa_B Siin_& Laam_E Miim_

Figure 5.9: Sequence of models with proposed sets 165 and 104. ‘B’, ‘M’, ‘E’ and ‘T’ respectively
denote the letter positions Begin, Middle, End and Isolate.

The question to address regarding these sets is: “Does a trade-off exist between having more
models per character (to capture the intrinsic details of each glyph i.e., set165) and having
more training samples per character model (without considering the details of character shapes
i.e., set104 and set72)?”

Table 5.1: Impact of MDLSTM size against a fixed size of feedforward layer

MDLSTM CRR (%) LRR (%) Total epochs Time per epoch

size (minutes)
2, 10, 50 96.26 68.26 128 7
4, 20, 100 95.65 66.14 350 19
20, 60, 100 97.04 74.61 162 46
8, 30, 150 97.12 75.67 298 63

5.5 Experimental results

This section describes the set of experiments that we conducted separately to (i) fix the
optimal network parameters, (ii) analyze the effect of both preprocessing and model sets
on the recognition performance, and (iii) compare the proposed system with other recently
published methods.
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5.5.1 Selection of optimal network parameters

The optimal parameters for our proposed MDLSTM model are found by empirical analysis.
Note that for these experiments we just pick out a small set of 2,000 text images from AcTiV-
R, in which 190 are used as a validation set. We first need to find the best size of hidden
MDLSTM layers, which gives us an optimal performance. To do that, we fix the size of
feedforward tanh layers to 6 and 20. As shown in Table 5.1, the suitable values of the
MDLSTM size, which give us optimal results, are 2, 10 and 50 for the 15¢, 2°d and 3¢ hidden
layers, respectively. Afterwards, we evaluate the impact of the feedforward size against the
fixed optimal size of MDLSTM layers (2, 10 and 50). As a consequence, the best obtained size
of feedforward layers is 6 and 20 for the 15¢ and 2"¢ feedforward tanh layers, respectively, as
represented in Table 5.2. The indicators observed during the fine-tuning of these parameters
are CRR and the average time per epoch. It is interesting to note that such results are not
comparable with the system results obtained in the next sections.

Once the architecture is fixed, we perform several experiments to find the best sizes of
the input block and the hidden block (subsampling window). Therefore, the size of the input
block is fixed to 1 x 4 for protocols P6.1 and P3, and to 2 x 4 for the remaining protocols.
The hidden block sizes are fixed to 1 x 4 and 1 x 4 for all protocols.

Table 5.2: Impact of feedforward layers size against a fixed size of MDLSTM layers

Feed-forward Time per epoch

CRR (%) LRR (%) Total epochs

size (minutes)
6, 20 96.26 68.26 128 7
8, 30 96.46 71.43 347 13
12, 40 96.43 70.38 309 8
16, 80 97.09 75.7 204 17

Table 5.3: Results of proposed recognition system on AcTiV-R dataset: Impact of polarity
normalization

Without normalization of text polarity With normalization of text polarity

CRR (%) WRR (%) LRR (%) CRR (%) WRR (%) LRR (%)
P3 90.03 71.18 51.54 92.2 74.13 53
P6.1 89.1 70.49 514 91.5 79.66 57
P6.2 93.8 68.22 10.8 93.33 68.9 43.6
P6.3 94.3 80.77 62.44 96.16 85.14 67.73
P6.4  93.17 73 52.4 94.1 81.23 57.3
P9 73.4 58.34 31.9 80.41 60.6 38.14

5.5.2 Impact of preprocessing step

To examine the impact of text polarity normalization on the input grayscale images of each
protocol, we carry out several experiments by training two different types of input images, with
and without text polarity normalization. Note that for these experiments, we use the same
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network architecture and we fix the height of all images to 70 pixels. By carefully examining
the obtained results given in Table 5.3, it is concluded that the preprocessing step has a
clear beneficial effect on the recognition accuracy. The results indicate that by using both
height and polarity normalization, the LRR increases from 51.54% to 53% for AljazeeraHD’s
protocol (P3), from 51.40% to 57% for France24’s protocol (P6.1), from 40.82% to 43.6% for
RussiaToday’s protocol (P6.2), and from 62.44% to 67.73% for TunisiaNat1’s protocol (P6.3).
An increase of 5.13% is achieved on the AlISD protocol (P6.4) and of 7% on the channel-free

protocol (P9). The best results are marked in bold in Table 5.3.

Table 5.4: Final obtained results on AcTiV-R dataset: Impact of model sets choice

Set165 Set104 Set72
CRR WRR LRR CRR WRR LRR CRR WRR LRR

() (R (B ) (B) () (R (R (%)

P3 92.2 74.93 53,8 94.62 83.11 64.29 92.71 75.29 54
P6.1 915 79.66 57 92,27 81.19 59.55 91 75.18 52
P6.2 93.33 68.9 43.6 94.1 73.67 49.27 90.45 67.24  43.2
P6.3 96.16 85.14 67.73 96.48 86.05 72.49 93.87 8239 63.6
P6.4 94.1 81.23 57.3 95.82 83.4 63.27 92.11 7853 55.8
P9 80.41 60.64 38.14 88 70.28 47.32 80.77 59.11 36.4

5.5.3 Effect of model set choice

Table 5.4 provides the recognition results of set165, set104 and set72-based systems. We can
see that the performances grow significantly (e.g. 11.29 % for P3) from set165 to set104. It
seems beneficial to finely model the difference between begin-middle shapes and end-isolate
ones. For instance, the character TildAboveAlif ( 1 ) in the end position is represented with
only 32 occurrences in the dataset. Intuitively, we should lose more precision of the modeling
utilizing less models. Nevertheless, we observe here the effect of having too few training
data for less frequent representations of some character shapes. On the other hand, the
performances decline considerably (at least 6%) from set104 to set72, where a single sub-
model per character is used.

Overall, our best system for all evaluation protocols is the one based on set104. The best
accuracies are achieved on the TunisiaNat1 channel subset (P6.3) with 96.48% as a CRR and
72.49% as an LRR. An important rise of 9.4% for the channel-free protocol (P9) is achieved
in terms of LRR.

5.5.4 Error analysis

Figure 5.10 depicts some typical misrecognized lines. It contains four blocks. Each block
presents two (or three) input images and their corresponding output sequences. Block (a)
shows two images from protocol P3. For each image we present its results with set165 and
set104, respectively. As it can be seen, most erroneous characters in the first set are correctly
recognized (green color) using set104. Block (b) illustrates two output lines (per image) of
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Figure 5.10: Examples of some output errors picked out from experimental results. Errors are
marked by red symbols.

two different evaluation protocols, P6.1 and P6.4 (AlISD protocol). It is clear that for both
images the results of P6.4 are better than those of P6.1. This can be explained by the presence
of more training shapes in the AlISD protocol. Block (¢) and (d) present examples of output
lines from P6.2 and P6.3, respectively. A visual inspection of the errors is actually supporting
the aforementioned statement, where frequent errors are related to less frequent shapes in the
training database.

Based on our knowledge about the shapes of Arabic characters, we divide the cause of
errors into two categories: character similarity (substitution errors of block (a)) and insuffi-
cient samples of punctuation, digits and symbols (substitution and deletion errors of blocks
(b), (c) and (d)). Several measures can be taken to minimize the character error rate. For
instance, some errors can be corrected by integrating language models and dropout regular-
ization [PBKL14] to improve the LSTM-based recognition system and raise the generalization
performance [FZMEBT12].

5.5.5 Comparison with other methods

We validate here the performance of our proposed system by comparing it to the method
presented by Iwata et al. [JOWK16] (see Section 2.3 of Chapter 2). As depicted in Figure 5.11,
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we outperform Iwata’s system by a large margin in all protocols. The obtained results, in
terms of LRR, are higher with a gain ranging from 10% to 16% for protocols P6.2 and P6.3,
respectively. It is to note that the current version of Iwata’s system is not compatible with
the HD resolution.

2]
@ @ 3 f B CRR
> 2 S o« © <« 3 « B WRR
A o = = = %]
1.0 3 © g ‘E‘ ‘5‘ g W LRR

IWATA

Recognition rates

P3 P6.1 P6.2 P6.3 P6.4 P9

Figure 5.11: Comparison of our recognition system to Iwata’s on the test-set of AcTiV-R.

We also evaluate our system on the ALIF dataset [YBG15al, which represents, to the
best of our knowledge, the only benchmark for Arabic video text recognition, as stated in
Section 3.2 of Chapter 3. The dataset is composed of 6,532 cropped text images extracted
from diverse Arabic TV channels. Indeed, 4,152 images from the database are used for training
and the remaining images constitute the test set. ALIF contains only one resolution (SD)
and presents 140 character glyphs including digits and punctuation symbols. Figure 5.12
illustrates some samples from this dataset.

T R | 2 S )
wqm;.lh.llu\n IR 125 (e iy ¥ o ke s ity MDY

Figure 5.12: Examples of text images from ALIF dataset [YBG15a]

Table 5.5 shows the comparative results for the proposed text recognition method against five
recently proposed systems. Note that these systems were developed by the same author who
put forward the ALIF dataset [YBG15a], and four of them were BLSTM-based. For these
experiments, we use the same preprocessing steps and optimal network parameters, which give
us the best recognition accuracies on the AcTiV-R dataset. We also adopt the same rules of
model grouping as those used for set10/ in Section 5.4. Interestingly, our proposed MDLSTM
network with the normalization step outperforms the BLSTM systems whether they are based
on manually crafted features (HC-BLSTM) or automatic learned features (DBN-AE-BLSTM,
MLP-AE-BLSTM and CNN-BLSTM). We are able to achieve results that are roughly 16%
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higher than the best rate obtained by the CNN-BLSTM system, in terms of LRR. These results
are obtained on the ALIF _Test1 subset |YBG15a], which includes 900 textline images.

Table 5.5: Obtained results on ALIF dataset and comparison with others systems
CRR (%) WRR (%) LRR (%)

DBN-AE-BLSTM [YBG15b] 90.73 59.45 39.39
MLP-AE-BLSTM [YBG15b] 88.50 59.95 33.19
ConvNet-BLSTM [YBG15b] 94.36 71.26 55.03
HC-BLSTM [YBG15a] 85.44 52.13 -

ABBYY [YBG15a] 83.26 49.80 26.91
Proposed system 96.85 83.2 70.67

5.6 Conclusion

We have presented in this chapter an Arabic video text recognition system based on MDLSTM
coupled with a CTC output layer. The suggested system permits avoiding two hard OCR
steps, which are textline segmentation and handcrafted feature extraction. The proposed
method has been trained and evaluated using the AcTiV-R database. We have reported
96.5% as CRR and above 72.4% as LRR for the SD resolution. The preprocessing step and
model sets choice have brought significant recognition improvement in terms of reduction
in the line error rate. Our method has also outperformed the results of previous works on
the ALIF dataset, more particularly those based on the combination of CNN and BLSTM
[YBG15b, YBG15a]. The interesting findings in this study have been the application of the
MDLSTM network to low-resolution Arabic text with unknown font sizes and font families,
the use of an efficient normalization step and the analysis of the impact of model sets.
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Chapter 6

Conclusions and future Work

In this chapter, we conclude the present thesis by summarizing our contributions, discussing
the related limitations and providing some future directions.

Conclusions
In this thesis, we have tackled the problems of video text detection and recognition. The main
purpose of this research work is to help end-users like archivists in the indexing and retrieval
of broadcast news videos, especially when they need to deal with huge multimedia databases.
In contrast to the conventional field of printed and handwritten OCR, which has been
widely addressed in the literature, text detection and recognition in videos are still an open
problem. This is due to several challenges including background complexity (e.g. presence of
noise, low resolution and text-like objects) and text variability in terms of size, color, position
and font. The present study has focused on artificially superimposed Arabic text in news
videos. Subsequently, there are other additional difficulties linked to the Arabic script, such
as the cursive nature of the script and the presence of ligatures and diacritic marks. Another
major challenge faced in this work is related to the absence of public text datasets dedicated
to Arabic Video OCR systems. Actually, most of the existing Arabic text datasets are limited
to printed or handwriting recognition tasks.

Starting from a clear understanding of the literature, we have suggested a new dataset
and accurate methods to fill the aforementioned gaps. We highlight in the following our main
contributions to the field of text detection and recognition in videos.

- A first contribution lies in the development of a method for Arabic text detection in video
frames. The method represents a combination of a fully heuristic CC-based detection mod-
ule and a machine learning-based verification stage. The first one makes use of an adapted
version of the SW'T operator to extract CCs, which are then filtered and merged by human-
defined rules to form textlines. Whereas in the second stage, we train a CAE in unsupervised
manner to produce features from the previously detected textline candidates. After that,
an SVM classifier takes the AE-generated features as an input to distinguish text lines from
non-text ones. We have achieved an F-Score of 85% (resp. 84%) for the HD (resp. SD)
resolution on the detection dataset (AcTiV-D). Moreover, we have compared our method
with two recently published ones using the same dataset, and the experimental results show
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the superiority of the proposed method. A particular strength of such a method is that it
avoids the need for handcrafted features by using an unsupervised feature-learning scheme,
namely CAE.

- As a second contribution, we have proposed an RNN-based method for Arabic video text
recognition. The method relies specifically on a multidimensional LSTM network coupled
with a CTC decoding layer. This network consists of five hierarchically structured layers,
where three are LSTM hidden layers and two are feedforward subsampling layers. The
used MDLSTM-CTC model operates directly on the raw image pixels and allows the mod-
elization of text variations in four directions. Furthermore, we have introduced a novel
preprocessing step to normalize the text polarity, in the input textline images, to dark text
on light background. We have also suggested a compact representation of character models
by grouping "beginning" - "middle" shapes and "end" - "isolated" ones. Our method has
achieved 96.48% as a character recognition rate, 86.05% as a word recognition rate and
72.49% as a line recognition rate on the recognition dataset (AcTiV-R). The normalization
step and the model set choice have brought significant recognition improvement in terms of
reduction in the line error rate. More particularly, the compact representation of character
models has allowed us to improve the behavior of our system, precisely in the training of the
CTC layer, by increasing the quantity of training samples per character model. Moreover,
we have outperformed the state-of-the-art results on the public dataset ALIF, specifically
those based on the combination of CNN and BLSTM networks. Up to our knowledge, we
have been the first to use the MDLSTM network for Arabic video text recognition. A major
strength of our method is that it permits avoiding two hard OCR steps, namely textline
segmentation and handcrafted feature extraction.

- One other important contribution of this thesis is the development of a standard dataset
for Arabic Video OCR systems, called AcTiV for Arabic Text in Video. It consists of 189
news video clips, 4,063 text frames and 10,415 cropped text images. Actually, the video
clips were recorded from four Arabic TV news channels during three years with a particular
attention to ensure maximum diversity in text patterns and an important complexity in
video environment. The proposed dataset has been used to train and evaluate our proposed
detection and recognition methods. We have made AcTiV! public and freely available for
the scientific community. It is also distributed with its annotation and evaluation tools that
have been made open-source for standardization and validation purposes. Basically, AcTiV
represents the first dataset designed to support the development and evaluation of Arabic
Video OCR systems. More than twenty labs in the world are currently using this dataset.
Besides, it served as a benchmark to compare the performances of participating systems
in the first and second edition of "AcTiVComp" contests that we organized in conjunction
with the ICPR 2016 and ICDAR 2017 conferences.

Future Work
We believe that this thesis has advanced the field of Arabic Video OCR by achieving notice-
able improvements on text detection and recognition accuracies on two benchmark datasets.

! Available at http://tcll.cvc.uab.es/datasets/AcTiV_1
http://www.latis-eniso.org/content /fr/20/activ-data-base.html
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Yet, our methods may fail to detect and recognize text objects in several cases due to some
limitations. In the detection module, most of the errors are due to the sensitivity of SWT
to edge defections and to the use of heuristic rules, especially in the first stage. Whereas,
the main observed limitations, in the recognition module, are the failure in handling similar
glyphs and less frequent shapes in the training database.

Accordingly, some possible future direction for the detection task are: (1) trying other
CC extraction techniques, such as superpixel and MSER or one of its variants (CE-MSER,
edge-enhanced MSERs...), which have recently won several competitions, and (2) replacing
the combination of CAE and SVM by stacking a neural network on top of the auto-encoder,
thus having the possibility to fine-tune the features for the classification task.

In order to further improve the recognition results, we intend to use linguistic information,
namely language models, in our recurrent network. This can be achieved by introducing the
probabilities of the characters estimated with an n-gram model in the decoding phase of the
MDLSTM outputs. Hence, several errors could be removed and missed characters could be
recovered.

We can also propose some long-term prospects that might help to improve performance:

- The classification of individual pixels as belonging to text or non-text, instead of working
on CC level as an input to the classifier. This can be achieved by using a CNN (or one of
its variants, e.g. FCRN), which can integrate feature extraction and classification together.
Such networks have demonstrated state-of-the-art performance for text detection in recent
years.

- The development of a text tracking system, which takes as an input the entire video sequence
instead of individual text frames. The temporal redundancy is a key feature of video text;
i.e., it remains on the screen for many consecutive frames (at least 2 seconds) in order to
be readable. This redundant temporal information can be exploited by text tracking to
(1) increase the chance of localizing text since the same text may appear under varying
conditions from frame to frame, and (2) remove false text alarms in individual frames since
they are usually not stable throughout time.
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Appendix A

Recognition System using RNNLib

1.1 Introduction

Based on [GT12], this chapter provides more details and comments about the use of the
RNNLIB ! toolkit in the field of text recognition. RNNLib was firstly introduced and used
by Graves for sequence labelling problems, such as speech and handwriting recognition. The
toolkit mainly implements the Long Short-Term Memory (LSTM) architecture. Its most
important components are: (1) Bidirectional Long Short-Term Memory, (2) Connectionist
Temporal Classification and (3) Multidimensional Recurrent Neural Networks. RNNLib also
implements the hierarchical subsampling structure, which permits to efficiently label raw
images and speech waveforms.

1.2 Data preparation

The first step is the preparation of data that we use during the two phases of learning and
recognition. All RNNLib data files are in NetCDF (Network Common Data Form) format, a
binary file format that support the creation and access of array-oriented scientific data. We
Run the ./build _netedf.sh script to adapt our dataset format to the toolkit basic data files.
The same script does all necessary preprocessing including normalization of the input and
creates corresponding .nc files by processing every sequence in a file list. This file contains
information about the input data, their dimensions (e.g., total number of data sequences,
sum of lengths of all sequences, length of longest sequence tag string, number of distinct class
labels) and some useful variables.

1.3 Training

This step consists in adjusting the weights so that the output data of the network will corre-
spond to that desired. The following command line is used to start a training:

Thttps://sourceforge.net /projects/rnnl/
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iHu:uawmmcoduéﬂl
! task transcription
2 hiddenType lstm
trainFile 158modelsPol.nc
dataFraction 1
S5 maxTe=ztsNoBest 20
hiddenSize 2,10,50
subsampleSize 6,20
= hiddenBlock 1,4;1,4
inputBlock 2,4
learnRate le-4
11 momentum 0.9

optimiser rmsprop
1° wverbose false

Figure 1.1: Sample of configuration file.

rnnlib — —autosave = truetranscription.config
where transcription.config is the configuration file that defines the network topology. Figure
1.1 depicts an example of a configuration file content: Three LSTM hidden layers of 2, 10 and
50 cells, two subsampling layers of 6 and 20 cells, 2 x 4 as size of the input block and 1 x 4 as size
of the first and second hidden blocks. If the option “autosave” is set true, it allows to store all
dynamic information about network weight changes and improved error measurements. After
each training epoch, timestamped configuration files with dynamic information appended will
be saved. In addition, a timestamped log file will be saved, containing all the console output.
For instance, the following files were created at the end of a training task:
- transcription@2016.06.29-00.55.05.887968.best  ctcError.save
- transcription@2016.06.29-00.55.05.887968.best_labelError.save
- transcription@2016.06.29-00.55.05.887968.1ast.save
- transcription@2016.06.29-00.55.05.887968.log

data sequence:

file = Activ_R.nc

index = 31

tag = Data/testFiles/France24 vd@2_frame_119-1.png
input shape = (120 7@ 1)
timesteps = 8400

target label sequence (length 3):
Miim_B Saad_B Raa_l

output label sequence (length 3):
Miim B Saad B Raa_I

output shape = (30 186)

errors:

ctcError 0.00166114

deletions @

insertions @

labelError 8

seqgError @

substitutions @

Figure 1.2: Example of recognition result for one test image.
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1.4 Test

For the recognition step, we use the error _test.sh script that takes two parameters as input,
the trained model and the netCDF “testFile.nc¢”
.Jerror _test.shtranscription@Q123.best _label Error.save testFile.nc

Finally, a .log file containing the system outputs of each text image was stored. Figure 1.2
shows an example of result for one test image. We can see the amount of deletion, insertion and
substitution errors and some information about the target and output sequences. Figure 1.3
depicts an example of quantitative result on a set of 618 test images in terms of deletion,
insertion and substitution errors, and overall error rates at character and line levels (i.e.
"labelError" and "seqError" in the figure).

test errors:

ctcError 18.1763

deletions 1.03161%

insertions 0.539795%

labelError 5.90776%

seqError 42.7184%

substitutions 4.33635%

618 sequences tested in 1 minute 24.467 seconds
average 0.136678 seconds per sequence

Figure 1.3: Example of recognition result on a set of 618 images.
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Appendix B

Organized competitions

2.1 Introduction

Amid the writing of this chapter, more than 20 research groups over the world have started to
use the AcTiV dataset. In order to compare the performance of the different systems developed
by those groups, we organized the first edition of the AcTiV Competition (AcTiVComp) in the
framework of the 23'¢ International Conference on Pattern Recognition (ICPR’2016), during

4 Tnternational

December 4-8, 2016, in Cancun, Mexico, and the second edition at the 1
Conference on Document Analysis and Recognition (ICDAR’2017), during November 9-15,
2017, in Kyoto, Japan.

The main goal of both competitions was to objectively assess the performance of participants’

algorithms to detect and recognize Arabic text in video frames.

2.2 AcTiVComp contests

Four groups with five systems have participated to the first edition of AcTiVComp. While
in the second edition, three competitors have submitted five systems. Table 2.1 summarizes
the characteristics of these systems in terms of related category, used heuristics, features and
classifiers. In the detection challenge, the systems were compared based on the recall, precision
and F-score metrics using our evaluation tool [ZTH"16]. The evaluation in the recognition
task was at the character, word and line levels using the previously suggested metrics (see
Chapter 3, section 3.4.2). The systems were tested in a blind manner on the closed-test set
of the AcTiV dataset which was unknown to all participants. The competition protocols (see
Tables 2.2 and 2.3) were defined to evaluate the ability of detection and recognition systems
to handle different text sizes, colors and fonts using low resolution frames with complex
background.

The best results in the detection challenge, of the first edition, were achieved by the
FM-ATD system, which exploited geometric grouping over MSER, regions and classified the
regions using an AdaBoost classifier trained with gray-level features.

In the recognition challenge, the ATR-SID system scored best for most of the protocols. The
system was based on an RNN+CTC architecture.
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Table 2.1: Overview of the participating systems to the 1°¢ and 2°¢ editions of AcTiVComp.

Submitted methods Description Task
ICPR 2016

CC-based & Fully heuristic

Arabic Text Detection based on Color Homogeneity MSER-like technique

(ATD-CH), by Houda Gaddour, MIRACL Lab., . . D
. . Geometric filtering,
University of Sfax, TUNISTA . .
text candidates grouping
Hybrid approach:
A Fast MSER-based Method for Arabic VideoText Detection MSER,
(FM-ATD) by Xuchang Yang, NLPR, Chinese Academy of  Gray-level features, D
Sciences, CHINA AdaBoost classifier,
False positive reduction
Fully heuristic:
Detection of Arabic Text in Video Frames (D-ATVF) Adaptive thresholding, D
by Seiya Iwata, Mie University, JAPAN Geometric filtering,

False textline reduction
Segmentation-based

Chain code histogram features R
MQDF classifier

Recognition of Arabic Text in Video Frames (R-ATVF)
by Seiya Iwata, Mie University, JAPAN

Arabic Text Recognition in News Video Frames (ATR-SID)

Grayscale conversion,

By Soumaya Essefi,National Engineering School of Sousse . e R
(ENTSo), TUNISIA image resizing, MDRNN+CTC
ICDAR 2017

THDL-Det system FCN-based featurg extraction,

. . . . Fast R-CNN classifier, D

by Ruijie Yan, Tsinghua University, China . .

Non-maximum suppression

CLS-Det system .

by Wenhao He, NLPR, Chinese Academy of Sciences, Bi-task FCN D

CHINA

Hybrid approach:

A set of preprocessing (HSV,

Top hat transform, Gaussian D
blur),

CNN classifier

Segmentation-free

Deep System for Arabic Text Detection (DS-ATD)
by Zied Selmi, REGIM Lab., Sfax, Tunisia

THDL-Rec system BRNNs (GRU-based) +CTC R
by Ruijie Yan, Tsinghua University, China Dropout,

Sparse training

Segmentation-free
DCR-Rec System BLSTM + CTC, R

by Yanfei Lv, NLPR, Chinese Academy of Sciences, CHINA  Dropout,
Batch normalization

In AcTiVComp 2.0, the THDL-Det system outperformed the other competitors (including
those of the first edition) in all detection protocols with an F-score rates ranging from 0.8 to
0.9. This system was mainly based on the Fast R-CNN classifier and the NMS procedure. It
provided an effective score of 0.85 for the channel-free protocol p7. This implies its generaliza-
tion ability and robustness in detecting text regions regardless data resolution. We notice that
the participating systems were affected by the image quality in protocol p4.3bis (SD 480x360,
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used in the second edition only), with a significant decrease in the F-score metric, except for
the DS-ATD system. Another interesting observation that can be drawn from the realized
results is that all participating systems have used a quite similar CNN-based architecture,
but differ in how they dealt with the original image in the first stage, i.e. proposal-based
technique (TH-DL system), pixel-based classification (CLS-Det system) or a set of heuristic
pre-processing steps (DS-ATD system). The latter could have an impact on the use of CNNs
in the second stage.

For the recongition challenge, the DCR-Rec system have showed a superiority in the p3, p6.1,
p6.2 and p6.3bis channel-depending protocols realizing a best LRR of 0.89 for HD resolution.
The THDL-Rec system performed quite better in the p6.4 and p9 channel-free protocols as
well as in the p6.3 protocol realizing a best LRR of 0.78 for the SD resolution. It is inter-
esting to note that the obtained results in the global protocol p9, which were around 0.75
in terms of LRR, represents a significant improvement in the Arabic Video OCR field. An
other important observation is that both systems use Bi-RNNs but in a different way. The
first system used a hybrid RNN-CNN representation and an N-gram language model, while
the second applied dropout and sparse training techniques.

Table 2.2: Detection Dataset and Evaluation Protocols

.. Closed-test
Protocol | TV Channel Training set | Test set set
#Frames #Frames #Frames
1 AljazeeraHD 337 87 103
France24 arabe 331 80 104
4 RussiaToday arabic 323 79 100
TunisiaNat1 492 116 106
All SD channels 1,146 275 310
4bis TunisiaNat Youtube - 150 149
7 All channels 1,483 362 413

Table 2.3: Recognition Dataset and Evaluation Protocols.“Lns” and “Wds” respectively denote

“Lines” and “Words”

training set test set closed-test set
Protocol TV Channel Tns #Wdf ZChars | ZLns | ZWds | ZChars | ZLns | ZWds | ZChars
3 AlJazeeraHD 1,909 | 8,110 46,563 196 766 4,343 262 1,082 6,283
6 France24 arabe 1,906 | 5,683 | 32,085 179 667 3,835 191 734 4,600
Russia Today arabic | 2,127 | 13,462 | 78,936 | 250 | 1,483 | 8,749 | 256 | 1,598 | 9.305
TunisiaNat1 2,001 | 9,338 | 54,809 189 706 4,087 221 954 5,597
All SD channels 6,034 | 28,483 | 165,830 618 2,856 16,671 668 3,286 19,502
6bis TunisiaNat1 Youtube - - - 320 1,487 8,726 311 1,148 6,645
9 All channels 7,043 | 36,593 | 212,393 | 814 | 3,622 | 21,014 | 930 | 4,368 | 25,785
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2.3 Conclusion

The AcTiVComp contests have attracted seven groups for participating and have received ten
systems in total. The best results have been yielded by the system of Ruijie Yan (THDL-
D) for all detection protocols. For the recognition task, the DCR-Rec system has scored
best for the channel-depending protocols and the THDL-Rec has scored quite better for the
channel-free protocols. The main difficulty for both text detectors and OCR, systems was in
the channel-free protocol where text was multi-font and multi-size. For more details about
these competitions we refer to [ZHT 116, ZHIA17].

The obtained results can be further improved. Hence, we look forward to have more partic-
ipants in the future editions of AcTiVComp and more researchers joining the Arabic video
text detection and recognition research topic.



List of Figures

1.1

1.2
1.3

1.4

2.1
2.2
2.3

24

2.5

2.6
2.7

2.8

2.9

2.10

Frame samples from different TV channels depicting typical characteristics of
artificial text. . . . . . . . L
Examples of scene text video frames. . . . . . . . .. ... ... L.
Impact of dots on a basic form of an Arabic word: A sample word that leads
to six different ones. . . . . . ...

Timeline of the present thesis . . . . . . . .. . ... ... ... ... ...

Some examples of text recognition tasks . . . . . .. ...
Main steps of a Video OCR system . . . . . . . ... ... . ... .......
Flowchart of a typical CC-based text detection method. Yellow rectangles
correspond to optional stages. The ‘4’ symbol indicates that the order of these
two steps can bereversed. . . . . . . .. .. o
Edge-enhanced MSER, from [CTS"11]. (a) Detected MSER for blurred text.
Canny edges are shown in red lines, and blue arrows indicate gradient direc-
tions. (b) MSER after pruning along the gradient. . . . . ... ... ... ..
Color-to-gray conversion for a low luminance contrast image, from|GF15]. (a)
RGB Image, (b) intensity part of the HSI space and (c) color-contrast preserv-
ing decolorization. . . . . . ... L
Change of intensities in transition region (from [KKO09]). . . . . ... ... ..
MSER detection process. All pixels with an intensity value less than the thresh-
old g are assigned a black color. Note that for g=5, there are no pixels with
an intensity value less than five. Subsequently, when g increases, black regions
will start to appear. CC region ‘1’ remains constant from g = 50 until g = 90.
Such regions will be classified as ER and those ERs with minimal change in
area over the range of thresholds are known as MSERs. . . . . . ... ... ..
Binary map generation. The binary map is generated by assigning the value ‘1’
for the pixels belonging to the interval while fixing the remaining pixel values
170 O
Stroke Width Transform. (a) Scene text detection examples from Epshtein’s
work [EOW10]. (b) Example of SWT computation [YT12]. . ... ... ...
(a) Sibling group of CC ‘r” where ‘B’ and ‘o’ comes from left and right sibling
sets respectively. (b) Merging of sibling groups to an adjacent character group
(e.g., “Brolly?”). (c) Two detected adjacent character groups [YT11]. . . . ..

115

10

11
11

12

13

14

19



116

2.11
2.12

2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

2.21
2.22

2.23
2.24

2.25

2.26

2.27

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

LIST OF FIGURES

Raycast-based text line grouping from [VTPEKI6]. . . . . . ... ... .. .. 19
Flowchart of a typical sliding window-based text detection method. Yellow
rectangles correspond to optional stages. . . . . . . . .. ... L. 22

2D wavelet single level decomposition LH, HL and HH subbands, from [SPT09].

(a) Gray image, (b) Horizontal (LH), (c) Vertical (HL) and (D) Diagonal (HH). 23
Hlustration of used LBP in [ZLMZI1]. . . . .. .. ... ... ... ... 25
LHBP for multi-scale texture feature representation from [JXYT08]. . . . .. 25
Conversion of input image into blocks [RAS13]. (a) Input image, (b) Conversion

to blocks of 50 x 50, (c) DCT of each block. . . . ... ... ... ....... 26
CNN for text detection from [WWCNI12]. . . ... .. ... ... ... .... 27
CNN-based architecture from [YBGI14]. . .. ... .. ... ... ... .... 28
Typical example of a hybrid method for scene text detection from [FRSD*16]. 29
Text recognition methods in videos and images . . . . . . .. .. .. ... .. 31
Overview of the binarization method by Mishra et al. [MAJ17] . . . . .. .. 33

Comparison of different binarization methods. From left to right: input image,
Otsu [Ots79], Wolf and Doerman [WJ04], Kasar et al. [KIKR07]|, Milyaev et al.
[MBN"13|, Howe [How11] and Mishra et al. [MAJ17|. This figure was adapted

from [MAJL7]. . . . o 33
Segmentation step proposed in [HAVT12] . . ... ... ... ... ... ... 34
Character segmentation with GVF method proposed in [PSST11|. Forward
pass (a) and backward pass (b) results of proposed path finding procedure. . . 35
Result of word segmentation from [SWTF16]: (a) Input word image, (b) prim-
itive segments and (c) character segmentation . . . . . . . ... ... ... L. 36
Three typical CRNN-based architectures for scene text recognition. (a) CNN
+ softmax. (b) CRNN + CTC and (c¢) CRNN + Attention. This figure was
adapted from [GCWLIT7]. . . .. ... .. . . 37
BLSTM-based video text recognition (from [YBG15b]) . . . .. ... ... .. 38

A selection of some text detection methods [Luc05, HLYW13, ZYB16] showing

the evolution of this area of research over ten years . . . . . .. ... ... .. 44
Typical samples from ICDAR2003 (a), MSRA-TD500 (b), NEOCR (c¢) and
KAIST (d) datasets. . . . . . . . . .. o 45
Data acquisition, video preprocessing and semi-automatic annotation of text
TEGIONS . . . v o e e e e e e 48
Samples of static texts (red rectangles) and dynamic texts (green rectangles)
embedded in Arabic news video frames. . . . . . ... ... L 49
User interface of AcTiV-GT tool [ZTH 14| displaying labeled frame. . . . . . 51
Arabic sentence and its corresponding labels. . . . . . .. ... ... 51

Example of global XML file: part of static text. This figure includes ground
truth information about 3 textlines from a total of 17. . . . . . . .. ... .. 52
Example of global XML file: part of dynamic text. This figure illustrates
ground-truth data about two out of 56 scrolling texts . . . . . .. .. ... .. 52
Extract of detection XML file of France24 TV channel. . . . . . . . .. .. .. 53



LIST OF FIGURES 117

3.10
3.11
3.12

3.13

3.14

3.15
3.16
3.17

4.1
4.2

4.3

44

4.5

4.6
4.7
4.8
4.9
4.10

4.11
4.12

4.13
4.14

4.15

4.16

Recognition ground-truth file and its corresponding textline image. . . . . . . 54
AcTiV architecture and statistics of detection (D) and recognition (R) datasets. 54
Typical video frames from AcTiV-D dataset. From left to right: examples of
RussiaToday Arabic, France24 Arabe,TunisiaNatl and AljazeeraHD frames. . 55
Example of text images from AcTiV-R depicting typical characteristics of video

text images. . . . . . . L 56
Different matching cases. G is represented by dashed rectangles and D by plain

line rectangles. . . . . . . . . 60
User interface of AcTiV-Eval tool. . . . . . . ... ... ... .. .. ..... 61
AcTiV-Eval output. . . . . . . . .. ... 61

Example of CRR and WRR computation based on different system output errors 63

Flowchart of the proposed text detection approach. . . . . . .. .. ... ... 65
Stroke Width Transform. (a) Zoom on upper right part of the Arabic character
Miim » (b) Shooting pixel ray between two opposing gradients < p,q > (c)
Counting number of pixels belonging to this ray (d) Labeling these pixels by

the value of distance between pandq . . . . . . .. ... ... ... ..... 66
Restriction on length of rays. (a) Results of original SWT (b) Our modified
VETSION. . o o ot e e 67

Example of CC labeling. (a) SWT map of letter Siin. (b) Output of labeling
algorithm by [EOW10]. (¢) - (f) Scans and output of proposed labeling algorithm. 68
Labeling and merging of letter Yaa. (a) Result of the [EOW10] labeling al-
gorithm. (b) Result of proposed labeling algorithm. (c) Vertical merging of

diacritics (two dots). . . . . . . ... L 69
Alignment and distance between two components C1 and C2 . . . . ... .. 69
Updated CCs after the textline construction step . . . . . . . ... ... ... 71
A basic auto-encoder with one hidden layer. . . . . . . . .. ... ... .... 72
Ilustration of single-layer CAE. . . . . . . . . . .. .. ... ... .. ..... 73
Hlustration of features learned by two CAE layers. (a) First layer, (b) Second

layer . . . . . e 74
Example of SVM training file . . . . .. .. ... .. ... .. ... ... . 75
Text line classification based on majority voting . . . . . . . . . ... ... .. 76
Example of CAE training samples . . . . . . ... ... ... ... ... ... 77

Detection process of fully heuristic-based system. (a) Input frame, (b) Gray-
scale (c) Canny edge detection (d) SWT Map, (e) CC extraction (f) CCs after
geometrical filtering (g) Diacritic merging (h) Textline construction (i) Refine-
ment step and output result. For clarity, only the results of one pass (DL) are
presented here. . . . . . . ... 78
Detection results from three different SD channels: Impact of the machine-
learning module. (a) Results before classification. (b) Results after classification. 80
Typical detection errors. Sub-figures (a)-(c): False alarms. Sub-figures (d)-
(f): Miss detection and related problems. Sub-figures (g)-(h): Merging and
fragmentation problems. . . . . . .. ..o Lo L L 81



118

LIST OF FIGURES

5.1 Standard and Bidirectional Recurrent Neural Networks. (a) RNN, (b) BRNN. 85
5.2 Ilustration of two-dimensional MDRNN. (a) Forward pass (b) Backward pass,

inspired from [GT12].. . . .. ... L 86
5.3 Scanning directions of MDRNN, inspired from [GT12]. (a) Axes used by four

hidden layers in 2D MDRNN. (b) Context available at current point (i,j). . . 87
5.4 Detailed schematic of neurons for RNNs: (a) Simple neuron (b) LSTM unit. . 87
5.5 Complete pipeline of our LSTM-based recognition system. . . . . . . . . ... 89
5.6 Pre-processing step of text gradient normalization . . . . . . .. .. ... ... 90
5.7 Architecture of the used hierarchical subsampling MDSLTM network . . . . . 92

5.8 Data flow through a multidimensional HSRNN [GT12|. The input sequence
is subsampled and then scanned by recurrent hidden layers. The sequence of
hidden layer activations is subsampled again and scanned by the next hidden
layers. The activations of the last hidden layer are fed to the output layer
without subsampling. Subsampling is performed at the places indicated with

a e 92
5.9 Sequence of models with proposed sets 165 and 104. ‘B’, ‘M’, ‘E’ and ‘I’

respectively denote the letter positions Begin, Middle, End and Isolate. . . . . 94
5.10 Examples of some output errors picked out from experimental results. Errors

are marked by red symbols. . . . . ... oL 97
5.11 Comparison of our recognition system to Iwata’s on the test-set of AcTiV-R.. 98
5.12 Examples of text images from ALIF dataset [YBG15a] . . . .. ... .. ... 98
1.1 Sample of configuration file. . . . . . . . ... ... 108
1.2 Example of recognition result for one test image. . . . . . .. ... ... ... 108

1.3 Example of recognition result on a set of 618 images. . . . . . . . . ... ... 109



List of Tables

2.1
2.2
2.3

24

3.1

3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3

5.1
5.2
5.3

5.4
5.5

2.1

2.2
2.3

A selection of CC-based methods proposed since 2010. . . . . . . .. ... .. 21
A selection of texture-based methods proposed since 2008. . . . . . .. .. .. 28

A selection of binarization-based text recognition methods. WRR and I-11
respectively denote the Word Recognition Rate metric and the ICDAR’11 dataset. 34
Text recognition methods using and avoiding character segmentation. WRR,
[-03 and I-15 denote the Word Recognition Rate metric, [CDAR’03 dataset
and ICDAR’15 dataset, respectively. . . . . . . . . ... ... ... ...... 39

Most important existing datasets for text analysis. ‘D’, ‘S’ ‘T’ and ‘R’ respec-

tively denote ‘Detection’, ‘Segmentation’, ‘Tracking’ and ‘Recognition’. . . . . 47
Statistics of AcTiV dataset . . . . . . . . . . . .. ... ... . 50
Statistics of AcTiV-D dataset . . . . . . . . . ... ... 55
Statistics of AcTiV-R dataset . . . . . .. . . ... ... ... . ........ 56
Distribution of letters in AcTiV-R dataset . . . . . . ... ... .. ... ... 57
AcTiV evaluation protocols . . . . . . . . . . . . . ... .. ... ... 58
Optimal CAE topology for HD/SD channels . . . . . . . ... ... ... ... 76
Number of training samples used by CAE . . . . . ... ... ... .. .... 7
Evaluation results and comparison with other methods. . . . . ... ... .. 79
Impact of MDLSTM size against a fixed size of feedforward layer . . . . . . . 94
Impact of feedforward layers size against a fixed size of MDLSTM layers . . . 95
Results of proposed recognition system on AcTiV-R dataset: Impact of polarity

normalization . . . . . . . ... 95
Final obtained results on AcTiV-R dataset: Impact of model sets choice . .. 96
Obtained results on ALIF dataset and comparison with others systems . . . . 99

Overview of the participating systems to the 1% and 2°¢ editions of AcTiV-
Comp. . . 112

Detection Dataset and Evaluation Protocols . . . . . . . . . . ... ... ... 113

Recognition Dataset and Evaluation Protocols.“Lins” and “Wds” respectively
denote “Lines” and “Words” . . . . . . . . ... Lo 113



120 GLOSSARY

Glossary

Glossary - Acronyms

AR Aspect Ratio.

BB Bounding Box.

BLSTM Bidirectional Long Short Term Memory.
BRNN Bidirectional Recurrent Neural Networks.
CAE Convolutional Auto-Encoders.

CC Connected Component.

CNN Convolutional Neural Network.

CPD Contrast Preserving Decolorization.

CRF Conditional Random Field.

CTC Connectionist Temporal Classification.
DCT Discret Cosinus Transform.

D-SWT Discrete Stationary Wavelet Transform.
ER Extremal region.

FCN Fully Convolutional Networks.

FCRN Fully-Convolutional Regression Network.
FFT Fast Fourier Transform.

GAM Gradient Amplitude Map.

GMM Gaussian mixture modelling.



GLCM Gray-Level Co-occurrence Matrix.

HMM Hidden Markov Model.

HOG Histograms of Oriented Gradient.

KNN K-Nearest Neighbors.

LBP Local Binary Patterns.

LHBP Local Haar Binary Pattern.

LSTM Long Short Term Memory.

mb-LBP multi-block LBP.

MDEF Mean Difference Feature.

MDLSTM Multidimensional Long Short Term Memory.
MDRNN Multidimensional Recurrent Neural Networks.
MGD Maximum Gradient Difference.

MLP Multi-layer perceptrons.

MSER Maximally Stable Extremal Regions.

MRF Markov Random Field.

OCR Optical Character Recognition.

PAWs Part of Arabic Words.

RF Random Forest.

RNN Recurrent Neural Network.

RPN Region Proposal Networks.

RLSA Run Length Smoothing Algorithm.

SGW Stroke Gabor words.

SVM Support Vector Machines.

SWT Stroke Width Transform.

TMMS Toggle Mapping Morphological Segmentation.

WMF Weighted Median Filter.

121



122

BIBLIOGRAPHY

Bibliography

[AAAB15]

|ABYG|

[AGFV14]

|[AGP10]

[AGP13]

[AJQ14]

[AKOY]

[AP13]

[ASPO1]

Ibrahim Abdelaziz, Sherif Abdou, and Hassanin Al-Barhamtoshy. A large vo-
cabulary system for arabic online handwriting recognition. Pattern Analysis
and Applications, pages 1-13, 2015. (cited in 46).

Najoua Ben Amara and Abdel Belaid. Printed paw recognition based on planar
hidden markov models. In Pattern Recognition, 1996., Proceedings of the 13th
International Conference on, volume 2, pages 220-224. IEEE, 1996. (cited in
4 and 83).

Jon Almazan, Albert Gordo, Alicia Fornés, and Ernest Valveny. Word spot-
ting and recognition with embedded attributes. IFEE transactions on pattern
analysis and machine intelligence, 36(12):2552-2566, 2014. (cited in 39).

Marios Anthimopoulos, Basilis Gatos, and loannis Pratikakis. A two-stage
scheme for text detection in video images. Image and Vision Computing,
28(9):1413-1426, 2010. (cited in 30 and 60).

Marios Anthimopoulos, Basilis Gatos, and loannis Pratikakis. Detection of
artificial and scene text in images and video frames. Pattern Analysis and
Applications, 16(3):431-446, 2013. (cited in 30).

Gheith A Abandah, Fuad T Jamour, and Esam A Qaralleh. Recognizing hand-
written arabic words using grapheme segmentation and recurrent neural net-
works. International Journal on Document Analysis and Recognition (IJDAR),
17(3):275-291, 2014. (cited in 36).

SA Angadi and MM Kodabagi. A texture based methodology for text region
extraction from low resolution natural scene images. International Journal of
Image Processing (1JIP), 3(5):229, 2009. (cited in 21 and 22).

Ouais Alsharif and Joelle Pineau. End-to-end text recognition with hybrid hmm
maxout models. arXiv preprint arXiv:1810.1811, 2013. (cited in 35 and 39).

Steve Austin, Richard Schwartz, and Paul Placeway. The forward-backward
search algorithm. In Acoustics, Speech, and Signal Processing, 1991. ICASSP-
91., 1991 International Conference on, pages 697-700. IEEE, 1991. (cited in
88).



BIBLIOGRAPHY 123

[BKR 17|

[BSFO4]

[BYL13]

[CCCT11]

[CKCS17]

[CKL10]

[CL11]

[CO05]

[CRC16]

[CST16]

Ayan Kumar Bhunia, Gautam Kumar, Partha Pratim Roy, R Balasubrama-
nian, and Umapada Pal. Text recognition in scene image and video frame
using color channel selection. Multimedia Tools and Applications, pages 1-28,
2017. (cited in 36, 36, and 39).

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is difficult. IEEFE transactions on neural networks,
5(2):157-166, 1994. (cited in 87).

Bo Bai, Fei Yin, and Cheng Lin Liu. Scene text localization using gradient
local correlation. In Document Analysis and Recognition (ICDAR), 2013 12th
International Conference on, pages 1380-1384. IEEE, 2013. (cited in 18, 18,
and 19).

Adam Coates, Blake Carpenter, Carl Case, Sanjeev Satheesh, Bipin Suresh,
Tao Wang, David J Wu, and Andrew Y Ng. Text detection and character
recognition in scene images with unsupervised feature learning. In Document
Analysis and Recognition (ICDAR), 2011 International Conference on, pages
440-445. IEEE, 2011. (cited in 27 and 28).

Ch’ng Chee Kheng and Chan Chee Seng. Total-text: A comprehensive dataset
for scene text detection and recognition. In 2017 International Conference on
Document Analysis and Recognition, pages 935-942. IEEE, 2017. (cited in 46).

Antonio Clavelli, Dimosthenis Karatzas, and Josep Llados. A framework for
the assessment of text extraction algorithms on complex colour images. In
Proceedings of the 9th IAPR International Workshop on Document Analysis
Systems, pages 19-26. ACM, 2010. (cited in 33).

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector
machines. ACM transactions on intelligent systems and technology (TIST),
2(3):27, 2011. (cited in 75).

Datong Chen and Jean-Marc Odobez. Video text recognition using sequential
monte carlo and error voting methods. Pattern Recognition Letters, 26(9):1386—
1403, 2005. (cited in 2).

Youssouf Chherawala, Partha Pratim Roy, and Mohamed Cheriet. Feature set
evaluation for offline handwriting recognition systems: application to the re-
current neural network model. IEEFE transactions on cybernetics, 46(12):2825—
2836, 2016. (cited in 40, 40, and 40).

Hojin Cho, Myungchul Sung, and Bongjin Jun. Canny text detector: Fast and
robust scene text localization algorithm. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3566-3573, 2016. (cited
in 14).



124

[CSLK11]

[CTST11]

[CV95]

[CYHL15]

[DCCH07]

[DMO0]

[EAKMAL11]

[EAMKAO9]

[EGMS12]

[EGMS14]

BIBLIOGRAPHY

Min Su Cho, Jae-Hyun Seok, Seonghun Lee, and Jin Hyung Kim. Scene text
extraction by superpixel crfs combining multiple character features. In Doc-
ument Analysis and Recognition (ICDAR), 2011 International Conference on,
pages 1034-1038. IEEE, 2011. (cited in 32 and 34).

Huizhong Chen, Sam S Tsai, Georg Schroth, David M Chen, Radek Grzeszczuk,
and Bernd Girod. Robust text detection in natural images with edge-enhanced
maximally stable extremal regions. In Image Processing (ICIP), 2011 18th
IEEFE International Conference on, pages 2609-2612. IEEE, 2011. (cited in 9,
10, 10, 13, 16, 18, 18, 19, and 115).

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-
ing, 20(3):273-297, 1995. (cited in 74).

Kai Chen, Fei Yin, Amir Hussain, and Cheng-Lin Liu. Efficient text localiza-
tion in born-digital images by local contrast-based segmentation. In Document
Analysis and Recognition (ICDAR), 2015 13th International Conference on,
pages 291-295. IEEE, 2015. (cited in 15, 17, 21, and 30).

Viet Cuong Dinh, Seong Soo Chun, Seungwook Cha, Hanjin Ryu, and
Sanghoon Sull. An efficient method for text detection in video based on stroke
width similarity. In Asian Conference on Computer Vision, pages 200-209.
Springer, 2007. (cited in 14).

David Doermann and David Mihalcik. Tools and techniques for video perfor-
mance evaluation. In Pattern Recognition, 2000. Proceedings. 15th International
Conference on, volume 4, pages 167-170. IEEE, 2000. (cited in 50).

Haikal El Abed, Monji Kherallah, Volker Margner, and Adel M Alimi. On-line
arabic handwriting recognition competition. International Journal on Docu-
ment Analysis and Recognition (IJDAR), 14(1):15-23, 2011. (cited in 83).

Haikal ElI Abed, Volker Méargner, Monji Kherallah, and Adel M Alimi. Icdar
2009 online arabic handwriting recognition competition. In Document Analysis
and Recognition, 2009. ICDAR’09. 10th International Conference on, pages
1388-1392. IEEE, 2009. (cited in 4).

Khaoula Elagouni, Christophe Garcia, Franck Mamalet, and Pascale Sébillot.
Text recognition in videos using a recurrent connectionist approach. In Inter-
national Conference on Artificial Neural Networks, pages 172-179. Springer,
2012. (cited in 30, 38, and 38).

Khaoula Elagouni, Christophe Garcia, Franck Mamalet, and Pascale Sébillot.
Text recognition in multimedia documents: a study of two neural-based ocrs
using and avoiding character segmentation. International Journal on Document
Analysis and Recognition (IJDAR), 17(1):19-31, 2014. (cited in 35 and 39).



BIBLIOGRAPHY 125

[EOW10]

[FGGOS5]|

[FMCO9]

[FRSD*16]

[FSZ16|

[FTB12]

[FZMEB*12]

[GT12]

[GBYB12]

|GCWL17|

Boris Epshtein, Eyal Ofek, and Yonatan Wexler. Detecting text in natural
scenes with stroke width transform. In Computer Vision and Pattern Recogni-
tion (CVPR), 2010 IEEE Conference on, pages 2963-2970. IEEE, 2010. (cited
in 4, 11, 11, 14, 14, 21, 66, 68, 69, 77, 79, 79, 79, 79, 79, 115, 117, and 117).

Silvio Ferreira, Vincent Garin, and Bernard Gosselin. A text detection tech-
nique applied in the framework of a mobile camera-based application. In Inter-
national Workshop on Camera-based Document Analysis and Recognition (CB-
DAR, 2005. (cited in 21).

Jonathan Fabrizio, Beatriz Marcotegui, and Matthieu Cord. Text segmentation
in natural scenes using toggle-mapping. In Image Processing (ICIP), 2009 16th
IEEFE International Conference on, pages 2373-2376. IEEE, 2009. (cited in
29).

Jonathan Fabrizio, Myriam Robert-Seidowsky, Séverine Dubuisson, Stefania
Calarasanu, and Raphaél Boissel. Textcatcher: a method to detect curved and
challenging text in natural scenes. International Journal on Document Analysis
and Recognition (IJDAR), 19(2):99-117, 2016. (cited in 29, 29, and 116).

Yuanyuan Feng, Yonghong Song, and Yuanlin Zhang. Scene text detection
based on multi-scale swt and edge filtering. In Pattern Recognition (ICPR),
2016 23rd International Conference on, pages 645—650. IEEE, 2016. (cited in
14, 15, 15, 15, and 16).

Mehdi Felhi, Salvatore Tabbone, and Nicolas Bonnier. Un nouveau descripteur
de texte pour la détection des lignes de texte multi-orientées dans les scénes
réelles. In 7éme Collogque International Francophone sur I’Ecrit et le Document-
CIFED 2012, 2012. (cited in 11).

Volkmar Frinken, Francisco Zamora-Martinez, Salvador Espana-Boquera,
Maria José Castro-Bleda, Andreas Fischer, and Horst Bunke. Long-short term
memory neural networks language modeling for handwriting recognition. In
Pattern Recognition (ICPR), 2012 21st International Conference on, pages 701
704. IEEE, 2012. (cited in 97).

Alex Graves et al. Supervised sequence labelling with recurrent neural networks,
volume 385. Springer, 2012. (cited in 86, 86, 87, 91, 92, 92, 107, 118, 118,
and 118).

Alvaro Gonzalez, Luis M Bergasa, J Javier Yebes, and Sebastidn Bronte. Text
location in complex images. In Pattern Recognition (ICPR), 2012 21st Inter-
national Conference on, pages 617-620. IEEE, 2012. (cited in 29).

Yunze Gao, Yingying Chen, Jingiao Wang, and Hanqging Lu. Reading
scene text with attention convolutional sequence modeling. arXiv preprint
arXiv:1709.04303, 2017. (cited in 36, 37, 38, 39, 45, and 116).



126

[GF15]

[GFGS06]

[GFS07]

|GGJ16]

[GKV16]

[GLF+09]

[GMAJ13]

[Gral2]

[GSG*17]

[GVZ16]

BIBLIOGRAPHY

Shaho Ghanei and Karim Faez. Robust localization of texts in real-world im-
ages. International Journal of Pattern Recognition and Artificial Intelligence,
29(07):1555012, 2015. (cited in 10, 11, 21, and 115).

Alex Graves, Santiago Fernandez, Faustino Gomez, and Jiirgen Schmidhu-
ber. Connectionist temporal classification: labelling unsegmented sequence
data with recurrent neural networks. In Proceedings of the 23rd international
conference on Machine learning, pages 369-376. ACM, 2006. (cited in 88).

Alex Graves, Santiago Fernandez, and Juergen Schmidhuber. Multi-
dimensional recurrent neural networks. arXiv preprint arXiv:0705.2011, 2007.
(cited in 85).

Deepika Ghai, Divya Gera, and Neelu Jain. A new approach to extract text from
images based on dwt and k-means clustering. International Journal of Compu-
tational Intelligence Systems, 9(5):900-916, 2016. (cited in 21, 23, and 28).

Houda Gaddour, Slim Kanoun, and Nicole Vincent. A new method for arabic
text detection in natural scene image based on the color homogeneity. In Inter-
national Conference on Image and Signal Processing, pages 127-136. Springer,
2016. (cited in 14, 16, 16, 21, 78, 79, 79, 79, 79, and 79).

Alex Graves, Marcus Liwicki, Santiago Fernandez, Roman Bertolami, Horst
Bunke, and Jiirgen Schmidhuber. A novel connectionist system for uncon-
strained handwriting recognition. IEEE transactions on pattern analysis and
machine intelligence, 31(5):855-868, 2009. (cited in 84).

Vibhor Goel, Anand Mishra, Karteek Alahari, and CV Jawahar. Whole is
greater than sum of parts: Recognizing scene text words. In Document Analysis
and Recognition (ICDAR), 2013 12th International Conference on, pages 398—
402. TIEEE, 2013. (cited in 40).

Alex Graves. Offline arabic handwriting recognition with multidimensional
recurrent neural networks. In Guide to OCR for Arabic scripts, pages 297-313.
Springer, 2012. (cited in 40 and 84).

Raul Gomez, Baoguang Shi, Lluis Gomez, Lukas Numann, Andreas Veit, and
Jiri Matas. Icdar2017 robust reading challenge on coco-text. In 2017 Inter-
national Conference on Document Analysis and Recognition, pages 1435-1443.
[EEE, 2017. (cited in 46).

Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. Synthetic data for
text localisation in natural images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2315-2324, 2016. (cited in
27 and 28).



BIBLIOGRAPHY 127

[GWX*13]

[HAV+12]

[HHL14]

[HHQ*16]

[HHQY16]

[HLYW13]

[HIMZ09)]

[How1l|

[HPOY]

[HQT14]

[HS97]

Song Gao, Chunheng Wang, Baihua Xiao, Cunzhao Shi, Yang Zhang, Zhi-
jian Lv, and Yanqin Shi. Adaptive scene text detection based on transferring
adaboost. In Document Analysis and Recognition (ICDAR), 2013 12th Inter-
national Conference on, pages 388-392. IEEE, 2013. (cited in 21, 21, 25,
and 28).

Mohamed Ben Halima, Adel Alimi, Ana Fernandez Vila, et al. Nf-savo: Neuro-
fuzzy system for arabic video ocr. arXiv preprint arXiv:1211.2150, 2012. (cited
in 4, 34, 34, 34, 39, 83, and 116).

Shih Chang Hsia, Cheng Nan Ho, and Chien Hung Liu. Real-time text detec-
tion using pac/due embedded system. In Intelligent Information Hiding and
Multimedia Signal Processing (IIH-MSP), 2014 Tenth International Conference
on, pages 321-324. IEEE, 2014. (cited in 22).

Pan He, Weilin Huang, Yu Qiao, Chen Change Loy, and Xiaoou Tang. Reading
scene text in deep convolutional sequences. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016. (cited in 36 and 38).

Tong He, Weilin Huang, Yu Qiao, and Jian Yao. Text-attentional convolutional
neural network for scene text detection. IEEFE transactions on image processing,
25(6):2529-2541, 2016. (cited in 14, 17, and 18).

WEeilin Huang, Zhe Lin, Jianchao Yang, and Jue Wang. Text localization in nat-
ural images using stroke feature transform and text covariance descriptors. In
Proceedings of the IEEE International Conference on Computer Vision, pages
1241-1248, 2013. (cited in 9, 14, 15, 17, 21, 44, 44, 44, and 116).

Xiaodong Huang, Huadong Ma, and He Zhang. A new video text extraction
approach. In Multimedia and Ezpo, 2009. ICME 2009. IEEE International
Conference on, pages 650-653. IEEE, 2009. (cited in 34).

Nicholas R Howe. A laplacian energy for document binarization. In Document
Analysis and Recognition (ICDAR), 2011 International Conference on, pages
6-10. IEEE, 2011. (cited in 33 and 116).

Shehzad Muhammad Hanif and Lionel Prevost. Text detection and localization
in complex scene images using constrained adaboost algorithm. In Document
Analysis and Recognition, 2009. ICDAR’09. 10th International Conference on,
pages 1-5. IEEE, 2009. (cited in 21, 25, and 28).

Weilin Huang, Yu Qiao, and Xiaoou Tang. Robust scene text detection with
convolution neural network induced mser trees. In FEuropean Conference on
Computer Vision, pages 497-511. Springer, 2014. (cited in 13, 21, and 30).

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997. (cited in 87).



128

[HST13|

[HWL15|

[HYH™ 16]

[IOWK16]

[IP13]

[JJ+15]

[JPZ*14]

[ISVZ14]

[TSVZ16]

[JVZ14]

[IWS09]

BIBLIOGRAPHY

Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. IEEF trans-
actions on pattern analysis and machine intelligence, 35(6):1397-1409, 2013.
(cited in 10).

Ping Hu, Weigiang Wang, and Ke Lu. A novel binarization approach for text
in images. In Image Processing (ICIP), 2015 IEEE International Conference
on, pages 956-960. IEEE, 2015. (cited in 30 and 32).

Dafang He, Xiao Yang, Wenyi Huang, Zihan Zhou, Daniel Kifer, and C Lee
Giles. Aggregating local context for accurate scene text detection. In Asian
Conference on Computer Vision, pages 280-296. Springer, 2016. (cited in 18
and 20).

Seiya Iwata, Wataru Ohyama, Tetsushi Wakabayashi, and Fumitaka Kimura.
Recognition and transition frame detection of arabic news captions for video
retrieval. In Pattern Recognition (ICPR), 2016 23rd International Conference
on, pages 4005-4010. IEEE, 2016. (cited in 35 and 97).

Andrej Ikica and Peter Peer. Swt voting-based color reduction for text detection
in natural scene images. FURASIP journal on advances in signal processing,
2013(1):95, 2013. (cited in 14 and 15).

Munho Jeong, Kang-Hyun Jo, et al. Multi language text detection using fast
stroke width transform. In Frontiers of Computer Vision (FCV), 2015 21st
Korea-Japan Joint Workshop on, pages 1-4. IEEE, 2015. (cited in 14).

Arpit Jain, Xujun Peng, Xiaodan Zhuang, Pradeep Natarajan, and Huaigu
Cao. Text detection and recognition in natural scenes and consumer videos. In
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEFE International
Conference on, pages 1245-1249. IEEE, 2014. (cited in 13).

Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Synthetic data and artificial neural networks for natural scene text recognition.
arXiv preprint arXiv:1406.2227, 2014. (cited in 30, 36, 37, and 39).

Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Reading text in the wild with convolutional neural networks. International
Journal of Computer Vision, 116(1):1-20, 2016. (cited in 18, 36, 37, and 44).

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Deep features for text
spotting. In Furopean conference on computer vision, pages 512-528. Springer,
2014. (cited in 27 and 28).

Zhong Ji, Jian Wang, and Yu-Ting Su. Text detection in video frames us-
ing hybrid features. In Machine Learning and Cybernetics, 2009 International
Conference on, volume 1, pages 318-322. IEEE, 2009. (cited in 23 and 28).



BIBLIOGRAPHY 129

[TXY*08|

[KAJK16]

[KEBE15]

[KEBE16]

|[KGBN*15]

[KGST09]

IKJ11]

[KIM13)|

[KKO09)

Rongrong Ji, Pengfei Xu, Hongxun Yao, Zhen Zhang, Xiaoshuai Sun, and Tian-
qiang Liu. Directional correlation analysis of local haar binary pattern for text
detection. In Multimedia and Fzpo, 2008 IEEE International Conference on,
pages 885-888. IEEE, 2008. (cited in 25, 25, 28, and 116).

Sul-Ho Kim, Kwon-Jae An, Seok-Woo Jang, and Gye-Young Kim. Texture
feature-based text region segmentation in social multimedia data. Multimedia
Tools and Applications, 75(20):12815-12829, 2016. (cited in 21 and 22).

Akram Khémiri, Afef Kacem Echi, Abdel Belald, and Mourad Elloumi. Arabic
handwritten words off-line recognition based on hmms and dbns. In Document
Analysis and Recognition (ICDAR), 2015 13th International Conference on,
pages 51-55. IEEE, 2015. (cited in 4).

Akram Khémiri, Afef Kacem Echi, Abdel Belaid, and Mourad Elloumi. A
system for off-line arabic handwritten word recognition based on bayesian ap-
proach. In Frontiers in Handwriting Recognition (ICFHR), 2016 15th Interna-
tional Conference on, pages 560-565. IEEE, 2016. (cited in 4).

Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos Nicolaou, Suman
Ghosh, Andrew Bagdanov, Masakazu Iwamura, Jiri Matas, Lukas Neumann,
Vijay Ramaseshan Chandrasekhar, Shijian Lu, et al. Icdar 2015 competition
on robust reading. In Document Analysis and Recognition (ICDAR), 2015
13th International Conference on, pages 1156-1160. IEEE, 2015. (cited in 45
and 62).

Rangachar Kasturi, Dmitry Goldgof, Padmanabhan Soundararajan, Vasant
Manohar, John Garofolo, Rachel Bowers, Matthew Boonstra, Valentina Ko-
rzhova, and Jing Zhang. Framework for performance evaluation of face, text,
and vehicle detection and tracking in video: Data, metrics, and protocol. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 31(2):319-336,
2009. (cited in 60 and 62).

Sukhwinder Kaur and Gurpreet Singh Josan. Gurmukhi text extraction from
image using support vector machine (svm). International Journal of Engineer-
ing Science and Technology (IJEST), 2011. (cited in 17).

S Karthikeyan, Vignesh Jagadeesh, and BS Manjunath. Learning bottom-up
text attention maps for text detection using stroke width transform. In Image
Processing (ICIP), 2013 20th IEEFE International Conference on, pages 3312—
3316. IEEE, 2013. (cited in 14 and 15).

Wonjun Kim and Changick Kim. A new approach for overlay text detection and
extraction from complex video scene. IEEE transactions on image processing,
18(2):401-411, 2009. (cited in 11, 12, and 115).



130

[KK13]

[KKRO7|

[KMM+11]

[KP10]

[KSR15|

[KSUT13|

[KTA*11]

[LCJK10]

[LGO6)|

[LHO7|

BIBLIOGRAPHY

Hyung Il Koo and Duck Hoon Kim. Scene text detection via connected compo-
nent clustering and nontext filtering. IEEE transactions on image processing,
22(6):2296-2305, 2013. (cited in 17).

Thotreingam Kasar, Jayant Kumar, and AG Ramakrishnan. Font and back-
ground color independent text binarization. In Second international workshop
on camera-based document analysis and recognition, pages 3-9, 2007. (cited in
33 and 116).

Dimosthenis Karatzas, S Robles Mestre, Joan Mas, Farshad Nourbakhsh, and
P Pratim Roy. Icdar 2011 robust reading competition-challenge 1: reading text
in born-digital images (web and email). In Document Analysis and Recognition
(ICDAR), 2011 International Conference on, pages 1485-1490. IEEE, 2011.
(cited in 33).

Saurav Kumar and Andrew Perrault. Text detection on nokia n900 using stroke
width transform. no. Cornell University, 2010. (cited in 11).

Vijeta Khare, Palaiahnakote Shivakumara, and Paramesran Raveendran. A
new histogram oriented moments descriptor for multi-oriented moving text de-
tection in video. Ezpert Systems with Applications, 42(21):7627-7640, 2015.
(cited in 21).

Dimosthenis Karatzas, Faisal Shafait, Seiichi Uchida, Masakazu Iwamura,
Lluis Gomez i Bigorda, Sergi Robles Mestre, Joan Mas, David Fernandez Mota,
Jon Almazan Almazan, and Lluis Pere de las Heras. Tedar 2013 robust reading
competition. In 2018 12th International Conference on Document Analysis and
Recognition, pages 1484-1493. IEEE, 2013. (cited in 44, 45, and 62).

Monji Kherallah, Najiba Tagougui, Adel M Alimi, Haikal El Abed, and Volker
Margner. Online arabic handwriting recognition competition. In 2011 Inter-
national Conference on Document Analysis and Recognition, pages 1454-1458.

IEEE, 2011. (cited in 4 and 46).

SeongHun Lee, Min Su Cho, Kyomin Jung, and Jin Hyung Kim. Scene text
extraction with edge constraint and text collinearity. In Pattern Recognition
(ICPR), 2010 20th International Conference on, pages 3983-3986. IEEE, 2010.
(cited in 45).

Liana M Lorigo and Venugopal Govindaraju. Offline arabic handwriting recog-
nition: a survey. IEEFE transactions on pattern analysis and machine intelli-
gence, 28(5):712-724, 2006. (cited in 4, 46, and 83).

Jisheng Liang and Robert M Haralick. Performance evaluation of document
layout analysis algorithms on the uw data set. volume 3027, pages 149-161,
1997. (cited in 60).



BIBLIOGRAPHY 131

[LISvdH14]

[LK95]

[LL12|

[LLL*11]

[LLPY6]

[LLQ*17]

[LO16]

[LPS*05]

[LPTL14]

ILSB*17]

Yao Li, Wenjing Jia, Chunhua Shen, and Anton van den Hengel. Character-
ness: An indicator of text in the wild. IEEFE transactions on image processing,
23(4):1666-1677, 2014. (cited in 10).

Seong-Whan Lee and Young-Joon Kim. A new type of recurrent neural network
for handwritten character recognition. In Document Analysis and Recognition,
1995., Proceedings of the Third International Conference on, volume 1, pages
38-41. IEEE, 1995. (cited in 85).

Yao Li and Huchuan Lu. Scene text detection via stroke width. In Pattern
Recognition (ICPR), 2012 21st International Conference on, pages 681-684.
IEEE, 2012. (cited in 18, 18, and 19).

Jung-Jin Lee, Pyoung-Hean Lee, Seong-Whan Lee, Alan Yuille, and Christof
Koch. Adaboost for text detection in natural scene. In Document Analysis
and Recognition (ICDAR), 2011 International Conference on, pages 429-434.
[EEE, 2011. (cited in 24, 24, and 28).

Seong-Whan Lee, Dong-June Lee, and Hee-Seon Park. A new methodology
for gray-scale character segmentation and recognition. [EEE transactions on
pattern analysis and machine intelligence, 18(10):1045-1050, 1996. (cited in
35).

Zhandong Liu, Yong Li, Xiangwei Qi, Yong Yang, Mei Nian, Haijun Zhang, and
Reziwanguli Xiamixiding. Method for unconstrained text detection in natural
scene image. IET Computer Vision, 11(7):596-604, 2017. (cited in 45).

Chen-Yu Lee and Simon Osindero. Recursive recurrent nets with attention
modeling for ocr in the wild. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2231-2239, 2016. (cited in 38, 39,
and 39).

Simon M Lucas, Alex Panaretos, Luis Sosa, Anthony Tang, Shirley Wong,
Robert Young, Kazuki Ashida, Hiroki Nagai, Masayuki Okamoto, Hiroaki Ya-
mamoto, et al. Icdar 2003 robust reading competitions: entries, results, and
future directions. International Journal of Document Analysis and Recognition
(IJDAR), 7(2-3):105-122, 2005. (cited in 32 and 44).

Tong Lu, Shivakumara Palaiahnakote, Chew Lim Tan, and Wenyin Liu. Video
Text Detection. Springer Publishing Company, Incorporated, 2014. (cited in
8,9, 30, and 44).

Minghui Liao, Baoguang Shi, Xiang Bai, Xinggang Wang, and Wenyu Liu.
Textboxes: A fast text detector with a single deep neural network. In AAAL
pages 4161-4167, 2017. (cited in 45).



132

[Luc05]

[LXJ12]

[MAAK*+14]

[MAJ17]

[MBO1]

[MBH12]

[MBH13]

[MBN+13]

[MCUP04]

[MCZ18|

[MEAOS]

BIBLIOGRAPHY

Simon M Lucas. Icdar 2005 text locating competition results. In Document
Analysis and Recognition, 2005. Proceedings. Eighth International Conference
on, pages 80-84. IEEE, 2005. (cited in 44, 44, 44, 60, and 116).

Cewu Lu, Li Xu, and Jiaya Jia. Contrast preserving decolorization. In Compu-
tational Photography (ICCP), 2012 IEEE International Conference on, pages
1-7. IEEE, 2012. (cited in 11).

Sabri A Mahmoud, Irfan Ahmad, Wasfi G Al-Khatib, Mohammad Alshayeb,
Mohammad Tanvir Parvez, Volker Mérgner, and Gernot A Fink. Khatt: An
open arabic offline handwritten text database. Pattern Recognition, 47(3):1096—
1112, 2014. (cited in 4 and 46).

Anand Mishra, Karteek Alahari, and CV Jawahar. Unsupervised refinement
of color and stroke features for text binarization. International Journal on
Document Analysis and Recognition (IJDAR), 20(2):105-121, 2017. (cited in
32, 33, 33, 33, 33, 33, 34, 45, 116, 116, and 116).

U-V Marti and Horst Bunke. Using a statistical language model to improve the
performance of an hmm-based cursive handwriting recognition system. Interna-
tional journal of Pattern Recognition and Artificial intelligence, 15(01):65-90,
2001. (cited in 36).

Ali Mosleh, Nizar Bouguila, and A Ben Hamza. Image text detection using
a bandlet-based edge detector and stroke width transform. In BMVC, pages
1-12, 2012. (cited in 14 and 17).

Ali Mosleh, Nizar Bouguila, and Abdessamad Ben Hamza. Automatic inpaint-
ing scheme for video text detection and removal. IEEE Transactions on image
processing, 22(11):4460-4472, 2013. (cited in 11 and 21).

Sergey Milyaev, Olga Barinova, Tatiana Novikova, Pushmeet Kohli, and Victor
Lempitsky. Image binarization for end-to-end text understanding in natural im-
ages. In Document Analysis and Recognition (ICDAR), 2013 12th International
Conference on, pages 128-132. IEEE, 2013. (cited in 32, 33, 34, and 116).

Jiri Matas, Ondrej Chum, Martin Urban, and Tomas Pajdla. Robust wide-
baseline stereo from maximally stable extremal regions. Image and vision com-

puting, 22(10):761-767, 2004. (cited in 12).

Sadek Mansouri, Mbarek Charhad, and Mounir Zrigui. A heuristic approach to
detect and localize text on arabic news video. Computacion y Sistemas, 22(1),
2018. (cited in 13).

Volker Mérgner and Haikal El Abed. Databases and competitions: strategies
to improve arabic recognition systems. Arabic and Chinese Handwriting Recog-
nition, pages 82-103, 2008. (cited in 4).



BIBLIOGRAPHY 133

[MEA12]

[MFSS18]

[MKKEA12]

[ML15]

[MM13]

[MP07|

[MTC+14]

[Naz75]

[NDMWT11]

[NGP11]

[Nib85)

Volker Méargner and Haikal El Abed. Guide to OCR for arabic scripts. Springer,
2012. (cited in 4, 46, and 83).

Ali Mirza, Marium Fayyaz, Zunera Seher, and Imran Siddiqi. Urdu caption text
detection using textural features. In Proceedings of the 2nd Mediterranean Con-
ference on Pattern Recognition and Artificial Intelligence, pages 70-75. ACM,
2018. (cited in 21).

Anis Mezghani, Slim Kanoun, Maher Khemakhem, and Haikal El Abed. A
database for arabic handwritten text image recognition and writer identifica-
tion. In Frontiers in Handwriting Recognition (ICFHR), 2012 International
Conference on, pages 399-402. IEEE, 2012. (cited in 4).

Ronaldo Messina and Jérome Louradour. Segmentation-free handwritten chi-
nese text recognition with lstm-rnn. In Document Analysis and Recognition
(ICDAR), 2015 13th International Conference on, pages 171-175. IEEE, 2015.
(cited in 40 and 84).

Mohieddin Moradi and Saeed Mozaffari. Hybrid approach for farsi/arabic text
detection and localisation in video frames. IET Image Processing, 7(2):154-164,
2013. (cited in 26).

Stéphane Mallat and Gabriel Peyré. A review of bandlet methods for geomet-
rical image representation. Numerical Algorithms, 44(3):205-234, 2007. (cited
in 11).

Rodrigo Minetto, Nicolas Thome, Matthieu Cord, Neucimar J Leite, and Jorge
Stolfi. Snoopertext: A text detection system for automatic indexing of urban
scenes. Computer Vision and Image Understanding, 122:92-104, 2014. (cited
in9).

A Nazif. A system for the recognition of the printed arabic characters, 1975.
(cited in 3).

Robert Nagy, Anders Dicker, and Klaus Meyer-Wegener. Neocr: A config-
urable dataset for natural image text recognition. In International Workshop on
Camera-Based Document Analysis and Recognition, pages 150-163. Springer,
2011. (cited in 45).

Konstantinos Ntirogiannis, Basilis Gatos, and Ioannis Pratikakis. Binarization
of textual content in video frames. In Document Analysis and Recognition (IC-
DAR), 2011 International Conference on, pages 673-677. IEEE, 2011. (cited
in 32 and 34).

Wayne Niblack. An introduction to digital image processing. Strandberg Pub-
lishing Company, 1985. (cited in 31 and 32).



134

[NM10]

[NM13]

[NUA*17]

[Ots79]

[PBKL14]

[PHL11]

[PMM™*02]

[PSST11]

[PYKY16]

[QDGJ16]

|QLWS07]

BIBLIOGRAPHY

Lukas Neumann and Jiri Matas. A method for text localization and recognition
in real-world images. In Asian Conference on Computer Vision, pages 770-783.
Springer, 2010. (cited in 13 and 40).

Luka Neumann and Jiri Matas. Scene text localization and recognition with ori-
ented stroke detection. In Computer Vision (ICCV), 2013 IEEE International
Conference on, pages 97-104. IEEE, 2013. (cited in 40 and 40).

Saeeda Naz, Arif I Umar, Riaz Ahmad, Saad B Ahmed, Syed H Shirazi, and
Muhammad I Razzak. Urdu nasta’liq text recognition system based on multi-
dimensional recurrent neural network and statistical features. Neural Comput-
ing and Applications, 28(2):219-231, 2017. (cited in 37, 39, and 92).

Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE
transactions on systems, man, and cybernetics, 9(1):62-66, 1979. (cited in 31,
33, and 116).

Vu Pham, Théodore Bluche, Christopher Kermorvant, and Jéréme Louradour.
Dropout improves recurrent neural networks for handwriting recognition. In
Frontiers in Handwriting Recognition (ICFHR), 2014 14th International Con-
ference on, pages 285-290. IEEE, 2014. (cited in 40, 92, and 97).

Yi-Feng Pan, Xinwen Hou, and Cheng-Lin Liu. A hybrid approach to detect and
localize texts in natural scene images. IEFE Transactions on Image Processing,
20(3):800-813, 2011. (cited in 15, 20, and 29).

Mario Pechwitz, S Snoussi Maddouri, Volker Mérgner, Noureddine Ellouze,
Hamid Amiri, et al. Ifn/enit-database of handwritten arabic words. In Proc.
of CIFED, volume 2, pages 127-136. Citeseer, 2002. (cited in 4 and 46).

Trung Quy Phan, Palaiahnakote Shivakumara, Bolan Su, and Chew Lim Tan.
A gradient vector flow-based method for video character segmentation. In
Document Analysis and Recognition (ICDAR), 2011 International Conference
on, pages 1024-1028. IEEE, 2011. (cited in 35, 35, and 116).

Wei-Yi Pei, Chun Yang, Lih-Jen Kau, and Xu-Cheng Yin. Multi-orientation
scene text detection with multi-information fusion. In Pattern Recognition
(ICPR), 2016 23rd International Conference on, pages 657-662. IEEE, 2016.
(cited in 17, 18, and 21).

Guo Qiang, Tu Dan, Li Guohui, and Lei Jun. Memory matters: Convo-
lutional recurrent neural network for scene text recognition. arXiv preprint
arXiw:1601.01100, 2016. (cited in 38 and 39).

Xueming Qian, Guizhong Liu, Huan Wang, and Rui Su. Text detection, local-
ization, and tracking in compressed video. Signal Processing: Image Commu-
nication, 22(9):752-768, 2007. (cited in 21 and 21).



BIBLIOGRAPHY 135

[RAS13|

[RHGS15]

[RMO3]

[Rob94]

[RRS*13]

[RSDE13]

[RSPM13]

[RSR*15]

[SAM*14]

[SBY17]

Ahsen Raza, Ali Abidi, and Imran Siddigi. Multilingual artificial text detection
and extraction from still images. In Document Recognition and Retrieval XX,

volume 8658, page 86580V. International Society for Optics and Photonics,
2013. (cited in 26, 26, 28, and 116).

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91-99, 2015. (cited in 27).

Xiaofeng Ren and Jitendra Malik. Learning a classification model for segmen-
tation. In null, page 10. IEEE, 2003. (cited in 15).

Anthony J Robinson. An application of recurrent nets to phone probability
estimation. [EEFE transactions on Neural Networks, 5(2):298-305, 1994. (cited
in 85).

Sangheeta Roy, Partha Pratim Roy, Palaiahnakote Shivakumara, Georgios
Louloudis, Chew Lim Tan, and Umapada Pal. Hmm-based multi oriented
text recognition in natural scene image. In Pattern Recognition (ACPR), 2013
2nd IAPR Asian Conference on, pages 288-292. IEEE, 2013. (cited in 36, 36,
and 39).

Ahsen Raza, Imran Siddiqi, Chawki Djeddi, and Abdellatif Ennaji. Multilingual
artificial text detection using a cascade of transforms. In Document Analysis
and Recognition (ICDAR), 2013 12th International Conference on, pages 309—
313. IEEE, 2013. (cited in 21, 21, 24, and 26).

Jose A Rodriguez-Serrano, Florent Perronnin, and France Meylan. Label em-
bedding for text recognition. 2013. (cited in 39).

Sangheeta Roy, Palaiahnakote Shivakumara, Partha Pratim Roy, Umapada
Pal, Chew Lim Tan, and Tong Lu. Bayesian classifier for multi-oriented video
text recognition system. FEzpert Systems with Applications, 42(13):5554-5566,
2015. (cited in 8, 30, 32, and 34).

Fouad Slimane, Sameh Awaida, Anis Mezghani, Mohammad Tanvir Parvez,
Slim Kanoun, Sabri A Mahmoud, and Volker Mérgner. Icfhr2014 competition
on arabic writer identification using ahtid /mw and khatt databases. In Frontiers
in Handwriting Recognition (ICFHR), 201/ 14th International Conference on,
pages 797-802. IEEE, 2014. (cited in 4 and 46).

Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end trainable neural
network for image-based sequence recognition and its application to scene text
recognition. IEEE transactions on pattern analysis and machine intelligence,
39(11):2298-2304, 2017. (cited in 38 and 38).



136

[SCS09]

[SDTP10]

[SDTP14]

1SGO7]

[SGOs]

[SGDOY]

[SHIC15]

[STAHOS]

[SIK+09)

[SIL16]

BIBLIOGRAPHY

Temucin Som, Dogan Can, and Murat Saraclar. Hmm-based sliding video text
recognition for turkish broadcast news. In Computer and Information Sciences,
2009. ISCIS 2009. 24th International Symposium on, pages 475-479. IEEE,
2009. (cited in 36).

Palaiahnakote Shivakumara, Anjan Dutta, Chew Lim Tan, and Umapada Pal.
A new wavelet-median-moment based method for multi-oriented video text
detection. In Proceedings of the 9th IAPR International Workshop on Document
Analysis Systems, DAS ’10, pages 279-286. ACM, 2010. (cited in 23).

Palaiahnakote Shivakumara, Anjan Dutta, Chew Lim Tan, and Umapada Pal.
Multi-oriented scene text detection in video based on wavelet and angle pro-
jection boundary growing. Multimedia tools and applications, 72(1):515-539,
2014. (cited in 21 and 24).

Zohra Saidane and Christophe Garcia. Robust binarization for video text recog-
nition. In Document Analysis and Recognition, 2007. ICDAR 2007. Ninth In-
ternational Conference on, volume 2, pages 874-879. IEEE, 2007. (cited in 32
and 34).

Zohra Saidane and Christophe Garcia. An automatic method for video charac-
ter segmentation. In International Conference Image Analysis and Recognition,
pages 557-566. Springer, 2008. (cited in 35).

Zohra Saidane, Christophe Garcia, and Jean Luc Dugelay. The image text
recognition graph (itrg). In Multimedia and Ezpo, 2009. ICME 2009. IEEE
International Conference on, pages 266-269. IEEE, 2009. (cited in 35 and 35).

Lei Sun, Qiang Huo, Wei Jia, and Kai Chen. A robust approach for text
detection from natural scene images. Pattern Recognition, 48(9):2906-2920,
2015. (cited in 14 and 18).

Fouad Slimane, Rolf Ingold, Adel M Alimi, and Jean Hennebert. Duration
models for arabic text recognition using hidden markov models. In Compu-
tational Intelligence for Modelling Control & Automation, 2008 International
Conference on, pages 838-843. IEEE, 2008. (cited in 83).

Fouad Slimane, Rolf Ingold, Slim Kanoun, Adel M Alimi, and Jean Hennebert.
A new arabic printed text image database and evaluation protocols. In 2009

10th International Conference on Document Analysis and Recognition, pages

946-950. IEEE, 2009. (cited in 4, 46, and 51).

Mathias Seuret, Rolf Ingold, and Marcus Liwicki. N-light-n: A highly-adaptable
java library for document analysis with convolutional auto-encoders and related
architectures. In Frontiers in Handwriting Recognition (ICFHR), 2016 15th
International Conference on, pages 459-464. IEEE, 2016. (cited in 72).



BIBLIOGRAPHY 137

[SK17]

[SKEA*11]

[SKEA*13]

[SKHT99]

[SL14]

[SLT12]

[SNDC07]

[SP97]

[SP00]

[SPLT11]

[SPTOY

Usman Shahzad and Khurram Khurshid. Oriental-script text detection and
extraction in videos. In Arabic Script Analysis and Recognition (ASAR), 2017
1st International Workshop on, pages 15-20. IEEE, 2017. (cited in 11).

Fouad Slimane, Slim Kanoun, Haikal El Abed, Adel M Alimi, Rolf Ingold, and
Jean Hennebert. Icdar 2011-arabic recognition competition: Multi-font multi-
size digitally represented text. In 2011 International Conference on Document
Analysis and Recognition, pages 1449-1453. IEEE, 2011. (cited in 4).

Fouad Slimane, Slim Kanoun, Haikal El Abed, Adel M Alimi, Rolf Ingold, and
Jean Hennebert. Icdar2013 competition on multi-font and multi-size digitally
represented arabic text. In 2013 12th International Conference on Document
Analysis and Recognition, pages 1433-1437. IEEE, 2013. (cited in 46).

Toshio Sato, Takeo Kanade, Ellen K Hughes, Michael A Smith, and Shin’ichi
Satoh. Video ocr: indexing digital news libraries by recognition of superimposed
captions. Multimedia Systems, 7(5):385-395, 1999. (cited in 8).

Bolan Su and Shijian Lu. Accurate scene text recognition based on recur-
rent neural network. In Asian Conference on Computer Vision, pages 35—48.

Springer, 2014. (cited in 30, 37, and 39).

Bolan Su, Shijian Lu, and Chew Lim Tan. A learning framework for degraded
document image binarization using markov random field. In Pattern Recogni-
tion (ICPR), 2012 21st International Conference on, pages 3200-3203. IEEE,
2012. (cited in 32).

Krishna Subramanian, Premkumar Natarajan, Michael Decerbo, and David
Castanon. Character-stroke detection for text-localization and extraction. In
Document Analysis and Recognition, 2007. ICDAR 2007. Ninth International
Conference on, volume 1, pages 33-37. IEEE, 2007. (cited in 14).

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.
IEEFE Transactions on Signal Processing, 45(11):2673-2681, 1997. (cited in 84
and 85).

Jaakko Sauvola and Matti Pietikdinen. Adaptive document image binarization.
Pattern recognition, 33(2):225-236, 2000. (cited in 31).

Palaiahnakote Shivakumara, Trung Quy Phan, Shijian Lu, and Chew Lim Tan.
Video character recognition through hierarchical classification. In Document
Analysis and Recognition (ICDAR), 2011 International Conference on, pages
131-135. IEEE, 2011. (cited in 35 and 39).

Palaiahnakote Shivakumara, Trung Quy Phan, and Chew Lim Tan. A robust
wavelet transform based technique for video text detection. In Document Analy-
sis and Recognition, 2009. ICDAR’09. 10th International Conference on, pages
1285-1289. IEEE, 2009. (cited in 21, 22, 23, 23, 23, 28, and 116).



138

[SPT10]

[SPT11]

ISROS|

[SR12]

ISSD11]

[SWTF16]

[SWX+13]

[SX15]

[SXWZ12]

[SZ14]

BIBLIOGRAPHY

Palaiahnakote Shivakumara, Trung Quy Phan, and Chew Lim Tan. New
fourier-statistical features in rgb space for video text detection. IEEE Transac-
tions on Clircuits and Systems for Video Technology, 20(11):1520-1532, 2010.
(cited in 21, 21, 23, and 23).

Palaiahnakote Shivakumara, Trung Quy Phan, and Chew Lim Tan. A lapla-
cian approach to multi-oriented text detection in video. IFEFE transactions on
pattern analysis and machine intelligence, 33(2):412-419, 2011. (cited in 21,
24, and 28).

Andrew W Senior and Anthony J Robinson. An off-line cursive handwriting
recognition system. IEEFE transactions on pattern analysis and machine intel-
ligence, 20(3):309-321, 1998. (cited in 84 and 85).

Imran Siddiqi and Ahsen Raza. A database of artificial urdu text in video
images with semi-automatic text line labeling scheme. In The Fourth Interna-
tional Conferences on Advances in Multimedia (MMEDIA’12), 2012. (cited in
50).

Asif Shahab, Faisal Shafait, and Andreas Dengel. Icdar 2011 robust reading
competition challenge 2: Reading text in scene images. In 2011 international
conference on document analysis and recognition, pages 1491-1496. IEEE, 2011.
(cited in 44 and 44).

Iwata Seiya, Ohyama Wataru, Wakabayashi Tetsushi, and Kimura Fumitaka.
Recognition and transition frame detection of arabic news captions for video
retrieval. In 23th International Conference on Pattern Recognition (ICPR),
pages 4005-4010. IEEE, 2016. (cited in 4, 9, 15, 15, 16, 21, 36, 39, 79, 79, 79,
79, 79, 79, and 116).

Cunzhao Shi, Chunheng Wang, Baihua Xiao, Yang Zhang, and Song Gao. Scene
text detection using graph model built upon maximally stable extremal regions.
Pattern recognition letters, 34(2):107-116, 2013. (cited in 17).

Feng Su and Hailiang Xu. Robust seed-based stroke width transform for text
detection in natural images. In Document Analysis and Recognition (ICDAR),
2015 13th International Conference on, pages 916-920. IEEE, 2015. (cited in
14 and 15).

Cunzhao Shi, Baihua Xiao, Chunheng Wang, and Yang Zhang. Adaptive graph
cut based binarization of video text images. In Document Analysis Systems
(DAS), 2012 10th IAPR International Workshop on, pages 58-62. IEEE, 2012.
(cited in 32).

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. (cited in
29).



BIBLIOGRAPHY 139

[SZK*12]

[TAAO7]

[TGLZ02]

[THA15|

[THH™ 16]

[TPB]

[VMN*16]

[VIPEKI16]

[VVO5]

[WB10]

[Wer90]

Fouad Slimane, Oussama Zayene, Slim Kanoun, Adel M Alimi, Jean Hennebert,
and Rolf Ingold. New features for complex arabic fonts in cascading recognition
system. In Pattern Recognition (ICPR), 2012 21st International Conference on,
pages 738-741. IEEE, 2012. (cited in 40 and 84).

Sameh Masmoudi Touj, Najoua Essoukri Ben Amara, and Hamid Amiri. A
hybrid approach for off-line arabic handwriting recognition based on a planar
hidden markov modeling. In Document Analysis and Recognition, 2007. ICDAR
2007. Ninth International Conference on, volume 2, pages 964-968. IEEE, 2007.
(cited in 83 and 84).

Xiaoou Tang, Xinbo Gao, Jianzhuang Liu, and Hongjiang Zhang. A spatial-
temporal approach for video caption detection and recognition. IEEE Trans-
actions on Neural Networks, 13(4):961-971, 2002. (cited in 8).

Houssem Turki, Mohamed Ben Halima, and Adel M Alimi. Scene text detection
images with pyramid image and mser enhanced. In Intelligent Systems Design
and Applications (ISDA), 2015 15th International Conference on, pages 301—
306. IEEE, 2015. (cited in 9 and 17).

Zhi Tian, Weilin Huang, Tong He, Pan He, and Yu Qiao. Detecting text in nat-
ural image with connectionist text proposal network. In FEuropean Conference
on Computer Vision, pages 56-72. Springer, 2016. (cited in 27).

S Tsai, Vasu Parameswaran, Jerome Berclaz, Ramakrishna Vedantham, Radek
Grzeszezuk, and Bernd Girod. Design of a text detection system via hypothesis
generation and verification. (cited in 10).

Andreas Veit, Tomas Matera, Lukas Neumann, Jiri Matas, and Serge Belongie.
Coco-text: Dataset and benchmark for text detection and recognition in natural
images. arXiv preprint arXiv:1601.07140, 2016. (cited in 46).

Matias Valdenegro-Toro, Paul Ploger, Stefan Eickeler, and Iuliu Konya. His-
tograms of stroke widths for multi-script text detection and verification in road
scenes. [FAC-PapersOnLine, 49(15):100-107, 2016. (cited in 19, 19, 19, 21,
and 116).

Alexander Vezhnevets and Vladimir Vezhnevets. Modest adaboost-teaching
adaboost to generalize better. volume 12, 2005. (cited in 24).

Kai Wang and Serge Belongie. Word spotting in the wild. In Furopean Con-
ference on Computer Vision, pages 591-604. Springer, 2010. (cited in 33, 40,
and 45).

Paul J Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550-1560, 1990. (cited in 86).



140

[WFCL17]

[WGLZ17]

[WJ04]

[WJ06|

[WIQ+17]

[WJIWO04]

[WPW16]

[WWCN12|

[XXS14]

[YBG14]

[YBG15a]

BIBLIOGRAPHY

Cong Wang, Yin Fei, and Liu Cheng-Lin. Scene text detection with novel super-
pixel based character candidate extraction. In 2017 International Conference
on Document Analysis and Recognition, pages 929-934. IEEE, 2017. (cited in
9, 15, 17, 18, and 21).

Fenglei Wang, Qiang Guo, Jun Lei, and Jun Zhang. Convolutional recurrent
neural networks with hidden markov model bootstrap for scene text recognition.
IET Computer Vision, 11(6):497-504, 2017. (cited in 38 and 38).

Christian Wolf and J-M Jolion. Extraction and recognition of artificial text in
multimedia documents. Formal Pattern Analysis € Applications, 6(4):309-326,
2004. (cited in 31, 33, and 116).

Christian Wolf and Jean-Michel Jolion. Object count/area graphs for the eval-
uation of object detection and segmentation algorithms. International Journal
of Document Analysis and Recognition (IJDAR), 8(4):280-296, 2006. (cited in
60).

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang,
Xiaogang Wang, and Xiaoou Tang. Residual attention network for image clas-
sification. arXiv preprint arXiv:1704.06904, 2017. (cited in 39).

Rongrong Wang, Wanjun Jin, and Lide Wu. A novel video caption detection
approach using multi-frame integration. In Pattern Recognition, 2004. ICPR
2004. Proceedings of the 17th International Conference on, volume 1, pages
449-452. TEEE, 2004. (cited in 8).

Yaqi Wang, Liangrui Peng, and Shengjin Wang. A multi-stage method for
chinese text detection in news videos. Procedia Computer Science, 96:1409—
1417, 2016. (cited in 15).

Tao Wang, David J Wu, Adam Coates, and Andrew Y Ng. End-to-end text
recognition with convolutional neural networks. In Pattern Recognition (ICPR),
2012 21st International Conference on, pages 3304-3308. IEEE, 2012. (cited
in 27, 27, 37, and 116).

Hailiang Xu, Like Xue, and Feng Su. Scene text detection based on robust
stroke width transform and deep belief network. In Asian Conference on Com-
puter Vision, pages 195-209. Springer, 2014. (cited in 9, 11, 14, and 16).

Sonia Yousfi, Sid-Ahmed Berrani, and Christophe Garcia. Arabic text detection
in videos using neural and boosting-based approaches: Application to video
indexing. In 2014 IEEE International Conference on Image Processing (ICIP),
pages 3028-3032. IEEE, 2014. (cited in 4, 21, 27, 27, 28, 28, 30, and 116).

Sonia Yousfi, Sid-Ahmed Berrani, and Christophe Garcia. Alif: A dataset
for arabic embedded text recognition in tv broadcast. In Document Analysis



BIBLIOGRAPHY 141

[YBG15b|

[YBL+12]

[YBSL14]

[YD15]

[YQS12|

[YSBS15]

[YSM+15]

[YT11]

[YT12]

[YYHH14]

and Recognition (ICDAR), 2015 13th International Conference on, pages 1221—
1225. IEEE, 2015. (cited in 46, 98, 98, 98, 99, 99, 99, 99, and 118).

Sonia Yousfi, Sid-Ahmed Berrani, and Christophe Garcia. Deep learning and
recurrent connectionist-based approaches for arabic text recognition in videos.
In Document Analysis and Recognition (ICDAR), 2015 13th International Con-
ference on, pages 1026-1030. IEEE, 2015. (cited in 38, 38, 38, 39, 83, 99, 99,
99, 99, and 116).

Cong Yao, Xiang Bai, Wenyu Liu, Yi Ma, and Zhuowen Tu. Detecting texts
of arbitrary orientations in natural images. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pages 1083-1090. IEEE, 2012.
(cited in 10, 14, 17, 20, 21, and 45).

Cong Yao, Xiang Bai, Baoguang Shi, and Wenyu Liu. Strokelets: A learned
multi-scale representation for scene text recognition. In Proceedings of the IEEFE
Conference on Computer Vision and Pattern Recognition, pages 4042—4049,
2014. (cited in 39).

Qixiang Ye and David Doermann. Text detection and recognition in imagery:
A survey. IEEE transactions on pattern analysis and machine intelligence,
37(7):1480-1500, 2015. (cited in 8, 9, and 44).

Haojin Yang, Bernhard Quehl, and Harald Sack. Text detection in video images
using adaptive edge detection and stroke width verification. In Systems, Signals
and Image Processing (IWSSIP), 2012 19th International Conference on, pages
9-12. IEEE, 2012. (cited in 11 and 15).

Mohammad Reza Yousefi, Mohammad Reza Soheili, Thomas M Breuel, and
Didier Stricker. A comparison of 1d and 2d Istm architectures for the recognition
of handwritten arabic. In DRR, page 94020H, 2015. (cited in 40 and 40).

Chong Yu, Yonghong Song, Quan Meng, Yuanlin Zhang, and Yang Liu. Text
detection and recognition in natural scene with edge analysis. IET Computer
Vision, 9(4):603-613, 2015. (cited in 15).

Chucai Yi and Yingli Tian. Text detection in natural scene images by stroke
gabor words. In Document Analysis and Recognition (ICDAR), 2011 Interna-
tional Conference on, pages 177-181. IEEE, 2011. (cited in 12, 18, 18, 19, 20,
21, 24, 24, and 115).

Chucai Yi and Yingli Tian. Localizing text in scene images by boundary cluster-
ing, stroke segmentation, and string fragment classification. IEEE Transactions
on Image Processing, 21(9):4256-4268, 2012. (cited in 14, 15, 15, and 115).

Xu-Cheng Yin, Xuwang Yin, Kaizhu Huang, and Hong-Wei Hao. Robust text
detection in natural scene images. IEEE transactions on pattern analysis and
machine intelligence, 36(5):970-983, 2014. (cited in 13, 18, and 20).



142

[YYHI12]

[YYZ+15)

[YZTL16|

|ZCLX 16|

[ZHIA17]

[ZHT+15|

[ZHT+16]

[ZL15]

[ZLC*17]

[ZLL10]

BIBLIOGRAPHY

Xuwang Yin, Xu-Cheng Yin, Hong-Wei Hao, and Khalid Igbal. Effective text
localization in natural scene images with mser, geometry-based grouping and
adaboost. In Pattern Recognition (ICPR), 2012 21st International Conference
on, pages 725-728. IEEE, 2012. (cited in 17).

Junjie Yan, Yinan Yu, Xiangyu Zhu, Zhen Lei, and Stan Z Li. Object detection
by labeling superpixels. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5107-5116, 2015. (cited in 15).

Xu-Cheng Yin, Ze-Yu Zuo, Shu Tian, and Cheng-Lin Liu. Text detection,
tracking and recognition in video: A comprehensive survey. IEEE Transactions

on Image Processing, 25(6):2752-2773, 2016. (cited in 9).

Chuanlei Zhai, Zhineng Chen, Jie Li, and Bo Xu. Chinese image text recog-
nition with blstm-ctc: a segmentation-free method. In Chinese Conference on
Pattern Recognition, pages 525-536. Springer, 2016. (cited in 30 and 37).

Oussama Zayene, Jean Hennebert, Rolf Ingold, and Najoua Essoukri Ben
Amara. Icdar2017 competition on arabic text detection and recognition in
multi-resolution video frames. In 2017 International Conference on Document
Analysis and Recognition, pages 1460-1465. IEEE, 2017. (cited in 114).

Oussama Zayene, Jean Hennebert, Sameh Masmoudi Touj, Rolf Ingold, and
Najoua Essoukri Ben Amara. A dataset for arabic text detection, tracking and
recognition in news videos-activ. In 15th International Conference on Document
Analysis and Recognition (ICDAR), 2015, pages 996-1000. IEEE, 2015. (cited
in 48, 77,79, 79, 79, 79, and 79).

Oussama Zayene, Nadia Hajjej, Sameh Masmoudi Touj, Soumaya Ben Man-
sour, Jean Hennebert, Rolf Ingold, and Najoua Essoukri Ben Amara. Icpr2016
contest on arabic text detection and recognition in video frames-activcomp.
In Pattern Recognition (ICPR), 2016 23rd International Conference on, pages
187-191. IEEE, 2016. (cited in 114).

Yun-Zhi Zhuge and Hu-Chuan Lu. Robust video text detection with morpho-
logical filtering enhanced mser. Journal of Computer science and Technology,
30(2):353, 2015. (cited in 9, 10, 13, 16, 18, 20, and 21).

W Zhu, J Lou, L Chen, Q Xia, and M Ren. Scene text detection via extremal
region based double threshold convolutional network classification. PLoS ONE,
12(8):e0182227, 2017. (cited in 17).

Zhou Zhiwei, Li Linlin, and Tan Chew Lim. Edge based binarization for video
text images. In Pattern Recognition (ICPR), 2010 20th International Confer-
ence on, pages 133-136. IEEE, 2010. (cited in 30, 32, and 34).



[ZLMZ11]

[ZLY*+11]

[ZST*16]

[ZTH"14]

[ZTH*16]

[ZTH*+18)

[ZW13]

[ZYB16]

[2717]

Gang Zhou, Yuehu Liu, Quan Meng, and Yuanlin Zhang. Detecting multilin-
gual text in natural scene. In Access Spaces (ISAS), 2011 1st International
Symposium on, pages 116-120. IEEE, 2011. (cited in 21, 21, 25, 25, and 116).

Hongwei Zhang, Changsong Liu, Cheng Yang, Xiaoqing Ding, and KongQiao
Wang. An improved scene text extraction method using conditional random
field and optical character recognition. In Document Analysis and Recogni-
tion (ICDAR), 2011 International Conference on, pages 708-712. IEEE, 2011.
(cited in 32).

Oussama Zayene, Mathias Seuret, Sameh M Touj, Jean Hennebert, Rolf Ingold,
and Najoua E Ben Amara. Text detection in arabic news video based on
swt operator and convolutional auto-encoders. In Document Analysis Systems
(DAS), 2016 12th IAPR Workshop on, pages 13-18. IEEE, 2016. (cited in 79,
79, 79, 79, 79, and 81).

Oussama Zayene, Sameh Masmoudi Touj, Jean Hennebert, Rolf Ingold, and
Najoua Essoukri Ben Amara. Semi-automatic news video annotation framework
for arabic text. In 2014 jth International Conference on Image Processing
Theory, Tools and Applications (IPTA), pages 1-6. IEEE, 2014. (cited in 50,
51, and 116).

Oussama Zayene, Sameh Masmoudi Touj, Jean Hennebert, Rolf Ingold, and
Najoua FEssoukri Ben Amara. Data, protocol and algorithms for performance
evaluation of text detection in arabic news video. In Advanced Technologies for
Signal and Image Processing (ATSIP), 2016 2nd International Conference on,
pages 258-263. IEEE, 2016. (cited in 60, 77, and 111).

Oussama Zayene, Sameh Masmoudi Touj, Jean Hennebert, Rolf Ingold, and
Najoua Essoukri Ben Amara. Open datasets and tools for arabic text detection
and recognition in news video frames. Journal of Imaging, 4(2):32, 2018. (cited
in 49).

Zhike Zhang and Weiqiang Wang. A novel approach for binarization of overlay
text. In 2013 IEEFE International Conference on Systems, Man, and Cybernet-
ics, pages 4259-4264. IEEE, 2013. (cited in 30, 32, and 34).

Yingying Zhu, Cong Yao, and Xiang Bai. Scene text detection and recognition:
Recent advances and future trends. Frontiers of Computer Science, 10(1):19~
36, 2016. (cited in 8, 44, 44, and 116).

Yuanping Zhu and Kuang Zhang. Text segmentation using superpixel cluster-
ing. IET Image Processing, 11(7):455-464, 2017. (cited in 46).

143



144

PUBLICATION LIST

Publication List

Oussama Zayene, Sameh Masmoudi Touj, Jean Hennebert, Rolf Ingold and Najoua
Essoukri Ben Amara. MDLSTM Networks for Artificial Arabic Text Recognition in
News Video. In IET Computer Vision Journal, (12) 5, July 2018.

. Oussama Zayene, Sameh Masmoudi Touj, Jean Hennebert, Rolf Ingold and Najoua

Essoukri Ben Amara. Datasets and Tools for Arabic Text Detection and Recognition
in News Video Frames. In Journal of Imaging, (4) 2, January 2018.

. Oussama Zayene, Jean Hennebert, Rolf Ingold and Najoua Essoukri Ben Amara.

ICDAR2017 Competition on Arabic Text Detection and Recognition in Multi-resolution
Video Frames. In 14" International Conference on Document Analysis and Recognition
(ICDAR), 2017.

. Oussama Zayene, Soumaya Essefi Amamou and Najoua Essoukri Ben Amara. Ara-

bic Video Text Recognition Based on Multi-Dimensional Recurrent Neural Networks.
In 14" ACS/IEEE International Conference on Computer Systems and Applications
(AICCSA), pages 725-729 2017.

. Oussama Zayene, Nadia Hajjej, Sameh Masmoudi Touj, Soumaya Ben Mansour, Jean

Hennebert, Rolf Ingold and Najoua Essoukri Ben Amara. ICPR2016 Contest on Arabic
Text Detection and Recognition in Video Frames —AcTiVComp. In 23" International
Conference on Pattern Recognition (ICPR), pages 187-191, 2016.

. Oussama Zayene, Mathias Seuret, Sameh Masmoudi Touj, Jean Hennebert, Rolf In-

gold and Najoua Essoukri Ben Amara. Text Detection in Arabic news Video Based on
SWT Operator and Convolutional Auto-encoders. In 12" TAPR Workshop on Docu-
ment Analysis Systems(DAS), pages 13-18, 2016.

Oussama Zayene, Sameh Masmoudi Touj, Jean Hennebert, Rolf Ingold and Najoua
Essoukri Ben Amara. Data, protocol and algorithms for performance evaluation of
text detection in Arabic news video. In 2™ International Conference on Advanced
Technologies for Signal and Image Processing (ATSIP), pages 258-263, 2016.

. Oussama Zayene, Jean Hennebert, Sameh Masmoudi Touj, Rolf Ingold and Najoua

Essoukri Ben Amara. A dataset for Arabic text detection, tracking and recognition
in news videos —AcTiV. In 13" International Conference on Document Analysis and
Recognition (ICDAR), pages 996-1000, 2015.



PUBLICATION LIST 145

9. Oussama Zayene, Sameh Masmoudi Touj, Jean Hennebert, Rolf Ingold and Najoua
Essoukri Ben Amara. Semi-automatic news video annotation framework for Arabic text.
In 4% International Conference on Image Processing Theory, Tools and Applications

(IPTA), pages 1-6, 2014.



