In several technical domains, such as civil engineering, numerical simulation programs based on finite elements help simulate the behaviour of the studied components. This project studies the process of excavations for building construction. In this field, the ZSWalls software is known to be able to predict accurately internal forces in the support system (concrete or steel wall, anchors, ...) and associated displacements, given the geometry of the excavation, the stratigraphy, the water level, and the support system itself. We take advantage of this software to build a synthetic database composed of thousands of excavations, and then use machine learning to predict the results of a new case, which is much faster than a new numerical simulation.

OptiSoil

Artificial Intelligence applied to the process of excavation for buildings construction

CONTEXT

In several technical domains, such as civil engineering, numerical simulation programs based on finite elements help simulate the behaviour of the studied components. This project studies the process of excavations for building construction. In this field, the ZSWalls software is known to be able to predict accurately internal forces in the support system (concrete or steel wall, anchors, ...) and associated displacements, given the geometry of the excavation, the stratigraphy, the water level, and the support system itself. We take advantage of this software to build a synthetic database composed of thousands of excavations, and then use machine learning to predict the results of a new case, which is much faster than a new numerical simulation.

INNOVATIONS

- Reproduction of numerical simulation results by a neural network
- Data-sets generation through numerical simulation, opposed to the traditional method of data collection. Any field with numerical simulation at disposal could use this method
- Transformation of numerical data to CNN-compatible format (image-like data)

RESULTS: CONVOLUTIONAL NEURAL NETWORK AND APPLICATION

The generated database is used to train a convolutional neural network (CNN) which computes the behavior of the excavation (internal forces and displacements), and classify whether or not the excavation will hold. A particular data processing step is necessary to transform physical values to convolutional-network-compatible input. Classification gives about 6% false-negative for no false-positive.

<table>
<thead>
<tr>
<th>Settlement</th>
<th>Deviation</th>
<th>Moment max</th>
<th>Moment min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric 4 [%]</td>
<td>4.26</td>
<td>7.24</td>
<td>5.93</td>
</tr>
</tbody>
</table>

Results of the models

The “Metric 4” is a customized metric, similar to the relative error, modified to avoid amplifying errors close to 0.

An application is developed which generate synthetic cases and uses the trained models to predict the behavior of a new case. An optimization process allows selecting cases that are good candidates to stabilize the excavation while minimizing the cost.

OBJECTIVES

- Create and train models in order to predict collapse (classification), settlement, deviation and bending moment (regression)
- Implement an application which uses these models in order to find the best configuration for a given excavation (optimization)

CHALLENGES

The project still faces two main challenges:

- Database: database quality is absolutely crucial for the model to work properly. In the future, a new synthetic database will be created, in order to correct the detected flaws, and cover most real-life cases
- Model training: help the machine learning algorithm to think like an engineer

Thanks to S. Commend & S. Wattel from GeoMod SA for the preparation of the database.

Applicant: Jonathan Donzallaz

Professor-s: Pierre Kuonen, Jean Hennebert & Beat Wolf

Project proposed by: iCoSys (Profs. Kuonen and Hennebert) iTec (Prof. Commend)