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Abstract—We propose to classify intestinal glands as normal
or dysplastic using cell-graphs and graph-based deep learning
methods. Dysplastic intestinal glands can lead to colorectal
cancer, which is one of the three most common cancer types
in the world. In order to assess the cancer stage and thus
the treatment of a patient, pathologists analyse tissue samples
of affected patients. Among other factors, they look at the
changes in morphology of different tissues, such as the intestinal
glands. Cell-graphs have a high representational power and
can describe topological and geometrical properties of intestinal
glands. However, classical graph-based methods have a high
computational complexity and there is only a limited range of
machine learning methods available. In this paper, we propose
Graph Neural Networks (GNNs) as an efficient learning-based
approach to classify cell-graphs. We investigate different variants
of so-called Message Passing Neural Networks and compare them
with a classical graph-based approach based on approximated
Graph Edit Distance and k-nearest neighbours classifier. A
promising classification accuracy of 94.8% is achieved by the
proposed method on the pT1 Gland Graph dataset, which is an
increase of 11.5% over the baseline result.

I. INTRODUCTION

Pathologists consider many different aspects of tissue, such
as density of certain cells, morphological changes, and the
spatial relationship between cell (sub-)types. For example,
dysplasia is a morphological correlate of progression towards
cancer defined by certain cytological and architectural features,
such as nuclear enlargement, crowding, stratification, mucin
depletion and complex architecture. Dysplasia of intestinal
glands is especially important in pT1 colorectal cancer, which
refers to the earliest stage of invasive colorectal cancer. The
invasive cancer arises from a precursor termed adenoma, which
by definition is dysplastic (either low- or high-grade) [1].

In diagnostics, pathologists look at thin cuts of tissue
under the microscope, which are stained to highlight the
morphological features. These tissue slides can be scanned
as high-resolution images and used for digital pathology and
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computer-aided diagnosis. Unlike photographs, these images
are rotational equivariant since the tissue they depict does not
have an orientation. This can be challenging for image-based
methods [2], [3].

Graph-based methods however do not face this challenge, as
graphs are not oriented. Graph-based representations have the
ability to capture the geometrical and topological properties of
the tissue morphology orientation-independent and in a more
abstract way. They have become popular in the field of digital
pathology and have been used to solve a range of different
tasks, such as classification, segmentation and Content-Based
Image Retrieval (CBIR) [4]. In mathematics, a graph G is
defined as a tuple of (N,E, α, β), where N is the finite set
of nodes (or vertices), E is the set of edges, α is the node
labelling function and β is the edge labelling function. The
labelling functions define the node and edge features, which
are usually real-valued numbers.

In our previous work [5], we published the pT1 Gland
Graph (pT1-GG) dataset, which consists of cell-graphs based
on histopathological images of normal and dysplastic intestinal
glands. Cell-graphs are a popular graph type in histopathol-
ogy [6]–[8]. In these type of graphs, each node represents
a single cell, or nucleus. To establish a baseline, we used
an approximation of the upper bound of the Graph Edit
Distance (GED), i.e. an improved version of the bipartite
graph-matching method (BP2) [9], coupled with a k-nearest
neighbours (k-NN) classifier to perform the classification, as
well as forward search feature selection. Inexact graph match-
ing methods are a long-standing and big part of structural
pattern recognition, as they provide an error-tolerant similarity
measure between two graphs [10]. This approach is the current
state-of-the-art (SOTA), and achieves a performance of 83.3%.

Deep learning has become state-of-the art in many computer
vision tasks. However, until recently, it has been limited to
data from the Euclidean domain [11], which is data sampled
on a grid, e.g. images. Scarselli et al. [12] were the first to
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(a) Normal gland (b) Dysplastic gland

Fig. 1: Examples of cell-graphs in the pT1 Gland Graph dataset overlaid on the H&E image. Cells are represented as nodes in the graph
(in orange) and are connected with edges (in green) based on the physical distance between them.

introduce what they called a Graph Neural Network (GNN),
which extended the application of deep learning to graphs.
Since then, many more methods for graph convolution have
been developed [13]. This new research domain is sometimes
also referred to as geometric deep learning, which is an
umbrella term for deep neural models that can learn from
non-Euclidean data, such as graphs. GNNs have also been
applied to a number of tasks in digital pathology, such as
region-of-interest classification [14], detection of malignancy
and invasiveness [7], as well as survival-analysis [15].

However, only little research has been done so far to
understand the properties and limitations of GNNs [16]. In
this paper, we investigate eight different GNN architectures
for classifying cell-graphs, which encompass a range of re-
cently introduced graph convolutional layers. We provide an
introduction to the general Message Passing Neural Network
method, as well as a detailed description of the layers and
parameters used. The performance and behaviour of the GNNs
are studied on the pT1-GG benchmark dataset.

We first describe the dataset in section II, the network
architectures in section III, and the experimental evaluation
in section IV, before we draw some conclusions in section V
and give an outlook to future lines of research.

II. THE PT1 GLAND GRAPH DATASET

The pT1-GG dataset [5] is publicly available1 and consist
of 520 cell-graphs based on images of intestinal glands from
20 pT1 colorectal cancer patients. Tissue samples of pT1
colorectal cancer patients always contain healthy gland tissue
as well as dysplastic glandular areas. In a cell-graph [6], each
cell is represented as a node in the graph.

The images used to create the graphs are scanned tissue
slides that were stained with Hematoxylin and Eosin (H&E).
The H&E staining [17] is a routine staining in histopathology.
It is used to distinguish different cell and tissue structures.
The cell nuclei are stained blue by hematoxylin and the
extracellular matrix and cytoplasm is stained pink by eosin.
Other structures have a varying degree of staining in between.
Based on this staining, individual cells were detected and

1https://github.com/LindaSt/pT1-Gland-Graph-Dataset

TABLE I: List of the available node features in the pT1-GG dataset
based on the segmented cells of each intestinal gland (total of 33).
They are either based on the whole cell, just the cytoplasm, just the
nucleus or other factors. The features used by the GED-baseline [5]
are denoted with a star (*).

BASED ON AVAILABLE FEATURES

CELL

- EOSIN STAIN MEAN, STD, MIN AND MAX
- CIRCULARITY
- ECCENTRICITY
- PERIMETER
- AREA
- CALIPER MIN AND MAX

CYTOPLASM - EOSIN MEAN, STD, MIN* AND MAX

NUCLEUS

- CIRCULARITY
- EOSIN STAIN SUM, MEAN, STD, MIN,
- MAX AND RAGE
- HEMATOXYLIN STAIN SUM, MEAN*, STD,
- MIN*, MAX*, AND RANGE
- AREA
- CALIPER MIN AND MAX
- PERIMETER
- ECCENTRICITY

MISC - NUCLEUS/CELL AREA RATIO

for each cell 33 features (see Table I) are available to be
used as node features. The features are normalised using Z-
normalisation, i.e. each node feature value is normalised such
that z = x−µ

σ where x is the node features value, and µ and σ
are the mean and standard deviation of the respective feature
based on the training set. Edges are inserted between nodes
based on the proximity, each node is connected to its two
spatially closest neighbours. For those networks that can use
edge features, the distance between the nodes is added as an
edge feature, which are also z-normalised.

The dataset is annotated for a binary classification task,
glands are either classified as normal or dysplastic. Figure 1
shows an example for each class, where the cell-graph is
over-layed onto the original H&E image. The dataset contains
graphs with a number of nodes in the range of 16 and 639,
the median graph size is 65 (also see Table II).
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TABLE II: Overview of the graphs size distribution and number of
patients of the four cross-validation splits of the pT1 Gland Graph
dataset. Each split contains 65 normal and dysplastic gland cell-
graphs (total of 130 graphs per split).

DATASET SPLIT # PATIENTS
# NODES PER GRAPH

MIN MAX MEDIAN

1 5 17 386 67
2 5 16 535 61
3 5 19 639 61
4 5 16 434 75

OVERALL 20 16 639 65

TABLE III: Overview of the mathematical notations used in this
paper.

NOTATION DESCRIPTION

A THE ADJACENCY MATRIX A
eij FEATURE VECTOR OF EDGE BETWEEN ni AND nj

F FEED-FORWARD NEURAL NETWORK
G GRAPH
I IDENTITY MATRIX
i, j NODE INDEX
k MESSAGE PASSING ITERATION / LAYER INDEX
K TOTAL NUMBER OF MESSAGE PASSING LAYERS

mk
i OUTPUT OF A MESSAGE PASSING ITERATION

M MESSAGE PASSING FUNCTION
N(i) NEIGHBOURS OF NODE i
|N(i)| DEGREE OF NODE i
R READOUT FUNCTION
σ NON-LINEARITY FUNCTION (E.G. RELU)
vG FEATURE VECTOR OF THE WHOLE GRAPH

W k LEARNABLE WEIGHT MATRIX OF THE kth LAYER

xki FEATURE VECTOR / HIDDEN STATE OF A NODE

III. GRAPH NEURAL NETWORKS

In this section, we introduce the concept of Message Passing
Neural Networks (MPNNs), followed by a description of the
different GNN architectures considered for intestinal gland
classification. Table III provides an overview of the mathe-
matical notations and figure 2 gives a schematic overview of
the network architectures.

A. Message Passing Neural Networks

As in CNN, where the local neighbourhood of a pixel is
aggregated during convolution, graph convolution creates a
hidden representation for each node based on its adjacent
nodes.

MPNNs aggregate the information of the neighbourhood
of every node in a graph G using so-called messages. A
message mk+1

i for a given node i is constructed using a
message function Mk and an aggregation function β which
together aggregate information from the local neighbourhood
of node i. The message is then used as input for an update
function Uk which updates the node’s representation xki . The
first graph convolution layer aggregates the information of the
1-hop neighbourhood. By adding multiple such layers, the

TABLE IV: Overview of the number of parameters in each of the
Graph Neural Network architectures, as well as the Convolutional
Neural Network (CNN) baseline.

NUMBER OF PARAMETERS

# NODE FEATURES

4 (BASELINE) 33 (ALL)

1-GNN 29′570 33′282
GAT 21′506 23′362
GCN 21′122 22′978
GCN-JK 45′698 47′552
GIN 33′602 35′458
GRAPHSAGE 21′122 22′978
GRAPHSAGE-JK 45′698 47′554
ENN 199′910 240′742

VGG-16 138′365′992

aggregation is extended to the k-hop neighbourhood, where
k is the number of graph convolutional layers.

These K graph convolution layers are considered as the
message passing phase. One single message passing layer can
mathematically be formulated as

mk+1
i = βj∈N(i)(M

k(xki , x
k
j , eij)) (1)

xk+1
i = Uk(xki ,m

k+1
i ), (2)

where β is the permutation invariant aggregation scheme (e.g.
sum, mean, max) and N(i) denotes the neighbouring nodes of
node i. For the first iteration, the hidden node state is simply
the node feature vector. For example, a very simple way of
doing this is taking the mean of the node feature vectors of
the node itself and all the neighbouring nodes. Edge features
can be included in this process as well, however, not many
GNN architectures consider them.

After k iterations of message passing, in order to get a
graph classification, the information over the whole graph is
collected, summarised into a vector and forwarded to a linear
classification layer. In this so-called read-out phase, a readout
function R returns a feature vector vG that is representative
for the whole graph:

vG = R(xKi |i ∈ G). (3)

There are different options to achieve this, a very simple one is
to take the average over all the feature vectors. Often, multiple
methods are used and their output is concatenated.

Generally, the read-out function only considers the hidden
node representations after the last message passing iteration.
The so-called Jumping Knowledge (JK) [18] connections ex-
tend the read-out phase to include the hidden representations of
the previous layers. All the intermediate representations with
different k-hop neighbourhoods can be used and combined
for the computation of the last hidden state for each node.
This allows the model to have a different neighbourhood
size for each node. JK is sometimes also referred to as skip
connections.
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B. Graph Neural Network Architectures

In the following, we describe in more detail the GNN
architectures considered for cell-graph classification. They
only differ in the way they construct the messages, update
the node’s hidden representation and in how they obtain the
graph-level feature vector, while still following the concept of
a message passing and readout phase [19]. Figure 2 gives a
schematic overview of the architectures, and table IV gives an
overview of the number of parameters in each architecture. In
GNNs, the number of parameters is dependent on the number
of node and edge features, as their aggregation is learned.

1) Graph Convolutional Network: Kipf and Wellings Graph
Convolutional Network (GCN) [20] is a spectral-based GNN.
Spectral-based models define the graph convolution in the
Fourier space, where the Fourier transform of a graph signal is
multiplied with a spectral filter. To avoid the computationally
expensive eigen-decomposition needed for the graph Fourier
transform, GCN simplifies the spectral graph convolution by
using a first-order approximation of Chebyshev polynomials.
This results in spatially localized filters and places the GCN
right at the boarder between spectral- and spatial-based ap-
proaches. The updated node feature matrix X ∈ RN×C (where
C is the number of node features, and N is the number of
nodes) after one layer is

X(k+1) = σ(D̂−
1
2 ÂD̂−

1
2XkW ), (4)

where Â = A+ I is the adjacency matrix with inserted self-
loops, D̂ii =

∑
j=0 Âij denotes its diagonal degree matrix,

W ∈ RC×F is the weight matrix (where F is the number of
neurons), and σ denotes a non-linearity function.

Gilmer et al. [19] have reformulated this equation as a the
message passing layer, which makes it easier to compare to
the other message passing functions described in this section.
The MPNN formulation is as follows:

mk+1
i =

∑
j∈N(i)∪i

xkj√
|N(j)||N(i)|

(5)

xk+1
i = σ(W kmk+1

i ), (6)

where |N(j)| and |N(i)| denote the node degree of node
j and i respectively, W k denotes a layer-specific trainable
weight matrix and σ is a non-linearity function. The node
degrees of the neighbouring nodes is used as a per-neighbour
normalisation and results in a weighted average aggregation
scheme [19], [20].

2) GraphSAGE: GraphSAGE [21] is a spatial-based
method introduced by Hamilton et al. They propose three dif-
ferent aggregation functions: a mean aggregator, a long short-
term memory (LSTM) aggregator and a pooling aggregator.
For our experiments, we use the mean operator, hence the
node representations are updated according to

mk+1
i =MEANj∈N(i)∪i(x

k
j ) (7)

xk+1
i = σ(W kmk+1

i ). (8)

In contrast to the aggregator of GCN, which assigns
neighbour-specific, predefined weights based on the node
degree, the mean operator of GraphSAGE assigns the same
weights to all neighbours of a given node.

3) Graph Attention Network: The Graph Attention Net-
work (GAT) [22] is a attention-based GNN. In contrast to
GraphSAGE and GCN, which use predefined weights when
aggregating the information from neighbouring nodes, GAT
uses a neural network architecture to learn neighbour-specific
weights. More particularly, an attention coefficient akij for
two neighbouring nodes i and j is computed by passing the
concatenated linear transformations of xki and xkj through a
single-layer perceptron with LeakyReLU activation. The linear
transformations are obtained by using a shared weight matrix
W k. Normalising the attention coefficients across all choices
of j with a softmax function finally results in the following
formula for computing the attention coefficient:

akij = softmaxj(F (W
kxki ,W

kxkj )), (9)

where ·, · denotes the concatenation and F is the single-layer
perceptron with LeakyReLU activation. The attention coeffi-
cients are used to update the node representations according
to

mk+1
i =

∑
j∈N(i)

akijW
kxkj (10)

xk+1
i = σ(akiiW

kxki +mk+1
i ), (11)

where σ is a non-linearity.
4) Edge Network: The GNNs discussed so far are only able

to learn from node features, but do not use the edge features.
Edge Network (enn) [19] is a network that also takes into
account the edge features. A layer-specific neural network
F k maps the edge feature vector eij to a matrix that can
be multiplied with the node feature vector xkj . The message
passing layer is defined as:

mk+1
i =

∑
j∈N(i)

xkj · F k(eij) (12)

xk+1
i = σ(W kxki +mk+1

i ), (13)

where eij denotes the edge feature vector of the edge between
node i and j. For F k we use a Multilayer Perceptron (MLP)
with two hidden layers.

5) Graph Isomorphism Network: The Graph Isomorphism
Network (GIN) [16] is a spatial-based GNN that aggregates
neighbourhood information by summing the representations of
neighbouring nodes. The representation of node i itself is then
updated using an MLP:

mk+1
i =

∑
j∈N(i)

xkj (14)

xk+1
i = F ((1 + ε) · xki +mk+1

i ), (15)

where F is the MLP and ε is either a learnable parameter
or fixed. We use an MLP with one hidden layer and ReLU
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Fig. 2: Graph Neural Network Architecture. All models were evaluated using three message passing layers (graph convolution), two linear
layers (linear) and a dropout layer (dropout). The dotted and dashed arrows correspond to the setup with and without Jumping Knowledge [18]
respectively. The three graph convolution layers make up the message passing phase, whose final output is then used by the read-out phase
to compute a vector representation of the whole graph vG. The classification task is binary (normal or dysplastic).

INPUT FEATURE MATRIX X0

JUMPING KNOWLEDGE
GRAPH CONVOLUTION

GRAPH CONVOLUTION

GRAPH CONVOLUTION

FINAL REPRESENTATIONS Xfinal = X3

X1

X2

X3

Xfinal = CONCAT (X1, X2, X3)

vG = CONCAT (GAddP (Xfinal), GMeanP (Xfinal), GMaxP (Xfinal))

LINEAR

DROPOUT (p = 0.5)

LINEAR

CLASS PREDICTION ŷ

activation to keep the model simple and set ε to zero since
in [16] the variant with ε = 0 slightly outperformed the
alternative with a learnable ε. GIN’s aggregation and read-
out functions are injective, and is thus supposed to achieve
maximum discriminative power [16].

6) 1-dimensional GNN: The 1-dimensional GNN (1-GNN)
corresponds to one of the GNN baselines used in [23].

mk+1
i =

∑
j∈N(i)

W k
1 x

k
j (16)

xk+1
i = σ(W k

2 x
k
i +mk+1

i ). (17)

The network learns neighbour-specific weights to aggregate
local information by using two distinct weight matrices W k

1

and W k
2 . W k

1 is used during message generation to linearly
transform the representations of the neighbours of node i. To
update the node representation xki the representation of node
i itself is linearly transformed using W k

2 , added up with the
message mk+1

i and passed through a non-linearity σ.

IV. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of the
different GNN architectures for the task of intestinal gland
classification on the pT1-GG benchmark dataset. They are
compared with the graph edit distance baseline system.

A. Experimental Setup

All models described in section III-B are trained using
three graph convolution layers with 64 neurons. The ReLU

activation function is used as the non-linearity σ in all the
models when updating the hidden node representations.

To get the graph-level output, the concatenation of global
add-pooling (GAddP ), global mean-pooling (GMeanP ) and
global max-pooling (GMaxP ) is used as the readout function

vG = (GAddP (XK), GMeanP (XK), GMaxP (XK)),
(18)

where ·, · denotes the concatenation and XK is the hidden
node representation matrix after the Kth graph convolution
layer (in our case K = 3). GAddP sums up the feature
vectors aross the node dimension, GMeanP averages the
node features across the node dimension and GMaxP takes
the feature-wise maximum across the node dimension of the
graph. To classify an input graph, the obtained feature vector
vG is passed through a 2-layer MLP with ReLU activation and
a dropout layer (p = 0.5) in between.

Additionally, GraphSAGE and GCN are also trained in com-
bination with Jumping Knowledge (JK) [18]. JK allows for an
adaptive neighbourhood range by aggregating representations
across different layers. To get the final hidden representation
of a node, the hidden representations of this node at the
end of each message-passing layer is concatenated such that
CONCAT (x1i , ..., x

K
i ), where ·, · denotes the concatenation.

This allows the following linear layers to consider the read-out
across all the graph convolution layers.

We use 4-fold CV to evaluate the performance of the
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TABLE V: Mean test accuracy, precision and recall along with their standard deviation (in %) of the 4-fold cross-validation (CV) for 8
different GNN models using 4 and 33 node features (100 runs per fold). Models using Jumping Knowledge are labelled with ”-JK”. For
comparison, we also establish a CNN baseline, we report the performance with and without rotation data augmentation (R). The GED-baseline
is the current SOTA result using graph-based methods.

ACCURACY PRECISION RECALL

# NODE FEATURES # NODE FEATURES # NODE FEATURES

4 (BASELINE) 33 (ALL) 4 (BASELINE) 33 (ALL) 4 (BASELINE) 33 (ALL)

1-GNN 89.2 ± 3.8 94.6± 2.3 89.7± 5.4 94.4± 3.4 89.2 ± 8.3 95.1 ± 2.2
GAT 85.5± 5.4 94.3± 2.4 86.5± 9.2 94.7± 2.9 86.2± 13.8 93.8± 3.0
GCN 85.5± 4.9 94.5± 2.6 86.8± 8.3 94.4± 3.3 85.3± 13.6 94.7± 2.7
GCN-JK 85.4± 4.5 94.8 ± 2.4 86.5± 8.1 94.7± 3.4 85.5± 13.2 94.8± 2.5
GIN 89.0± 4.1 94.5± 2.6 90.0 ± 5.5 94.1± 3.4 88.4± 10.5 95.1 ± 2.5
GRAPHSAGE 85.4± 4.5 94.8 ± 2.4 86.5± 7.9 94.7± 3.4 84.7± 14.3 95.1 ± 2.2
GRAPHSAGE-JK 85.1± 5.2 94.7± 2.4 86.4± 7.6 95.1 ± 3.1 84.9± 13.9 94.7± 2.8
ENN 89.1± 3.7 93.7± 3.0 89.7± 5.6 93.2± 4.2 88.8± 8.1 94.5± 2.7

GED-BASELINE [5] 83.3± 1.7 N/A N/A N/A N/A N/A

CNN (VGG-16) 91.8±5.5 91.2±9.5 93.7±7.0
CNN (VGG-16-R) 92.0±5.1 92.0±9.4 93.3±6.1

models on the pT1-GG dataset. The published [5], and online2

available dataset splits are used. The dataset is split into four
equal parts (130 graphs each) on a patient and whole slide level
(as we only have one slide per patient). Each subset contains
the same number of samples for both classes. Two parts are
combined to form the training set, the other two parts are used
as a validation set and test set. Table II gives an overview of
the graph sizes and number of patients in each split.

The hyper-parameters are optimised on the validation set
of each fold using the Tree-structured Parzen Estimator (TPE)
[24] from the open-source python library Hyperopt [25]. The
TPE algorithm proposes 50 different combinations for the
following hyper-parameters: learning rate, learning rate decay,
step size for the learning rate decay, and L2-regularisation
(weight decay). The step size determines the number of epochs
after which the learning rate is decreased by the learning rate
decay. The specific hyper-paramter values can be found in our
GitHub repository3.

Using the optimised hyper-parameters, each GNN model
is trained 100 times until convergence (80 epochs) using the
Adam optimiser [26], Cross-Entropy Loss and a batch-size of
64. We multi-run the experiments in order to take into account
the stochastic nature of the experiments. The average accuracy,
precision and recall on the test set of each fold is reported over
the 100 runs, along with the standard deviation.

We explore two different node feature sets. Firstly, in order
to compare our results with the current SOTA, we use the same
node features used for the previously published results [5]
(referred to as the GED-baseline). These features are the
cytoplasm eosin stain minimum, and the nucleus hematoxylin
stain mean, minimum and maximum. They were selected using
forward search feature selection. Secondly, we also train each

2https://github.com/LindaSt/pT1-Gland-Graph-Dataset
3https://github.com/waljan/GNNpT1

network using the full feature set, in order to see if this
increases the performance.

All of the GNN experiments are run using the PyTorch
Geometric library [27] and the implementation details as well
as the hyper-parameters are available open-source3.

We also establish a CNN baseline, since the pT1-GG dataset
does not only contain the gland-graphs, but also the images
from which the graphs were extracted. We train a VGG-16
network with batch normalisation [28] with an input image
size of 128x128 pixels and a batch size of 64, with and
without rotation data augmentation (rotation by a random
degree between 0 and 360 degree). For the hyper-parameter
optimisation and model evaluation, the same setup is used as
for the GNNs.

B. Results

Table V gives an overview of the results. Overall, we
outperform the current SOTA by 11.5%. Using the same
four node features as the GED-baseline, 1-GNN shows the
best performance with 89.2%, outperforming the SOTA by
5.9%. Using all available node features further increases the
accuracy, with GCN with JK and Graph-SAGE being the best-
performing models with a classification accuracy of 94.8%.
Taking the precision and recall into account, Graph-SAGE
seems to perform slightly better. These two models even
outperform the CNN baselines. It has also to be noted, that
many of the models achieve a similarly high performance to
the two best performing models, especially when using the
full node feature set.

C. Discussion

We find that all the networks can make use of the full node
feature set. Using 33 features leads to a better performance for
all tested GNN architectures. This leads to believe, that using
more information is beneficial. However, Edge Network, the
network also using edge features, which thus has even more
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Fig. 3: Visualisation of the variance of the 100 runs within each cross-validation fold for all networks. The box-plots are grouped by the
dataset, i.e. the number of node features that are used for the graph (33 is the full feature set, 4 is the subset used by the state-of-the-art
method). Models using Jumping Knowledge are labelled with ”-JK”.

(a) Normal glands classified as dysplastic.

(b) Dysplastic glands classified as normal.

Fig. 4: Example images that are misclassified by the majority of the
GNNs using the 4 baseline node features.

(a) Normal glands classified as dysplastic. (b) Dysplastic glands
classified as normal.

Fig. 5: Example images that are misclassified by the majority of the
GNNs using the full 33 node features.

available information, does not perform better than the others.
But it is noteworthy, that it performs almost equal to 1-GNN
on the 4-feature dataset, which performed the best on that
dataset. Figure 3 gives an overview of the different networks’
performance for the individual cross-validation folds. Fold
two shows the smallest difference in performance between
the 4-features and 33-features dataset. When looking at the
confusion matrices, we find that both normal and dysplastic
glands are equally classified correctly, which implies that the
GNNs are not biased towards one of the two classes.

The authors who introduced GIN [16] note that under-fitting
the data can be a problem of less powerful GNNs. On the 4-
feature baseline dataset, we find that this is indeed the case
for all the architectures. All of them plateau at approximately
95% on the training data. Using the full available feature set,
all models reach 100% training accuracy. We also find that
adding Jumping Knowledge connections does not have a big
impact on the performance of the network. This could be due
to the fact that we use shallow models with only three graph
convolution layers.

Figure 4 and 5 show examples of glands, which are mis-
classified in over 95% times in all of the runs of all the
networks. Looking at the misclassified glands, they tend to
show an uncommon shape and or staining intensity for the
class they belong to. For example, sometimes normal glands
are cut diagonally, which then results in an elongated shape.
Another example are over-stained nuclei, as nuclei in dysplasic
glands are hyperchromatic.

For the CNN-baseline, the VGG-16 model outperforms the
GED-baseline and achieves an accuracy of 92.0%. However,
it does not outperform the best-performing GNN. A possible
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reason for this could be that the pT1 dataset created with
a focus on graph creation and not CNN-based learning and
the images were extracted at different magnification levels.
Additionally, the rotational equivariance of the data, which is
the case in digital pathology, has been shown to be challenging
for CNNs [2], [3]. We can see that adding rotation data aug-
mentation helps to counteract this effect, but it still performs
around 3% worse than the best-performing GNNs.

V. CONCLUSION

In this paper, we show that using Graph Neural Networks
instead of classical graph-based methods increases the classi-
fication accuracy on the pT1 Gland Graph dataset. We achieve
a performance of 89.2% using the same node feature set as the
current SOTA, which is an improvement of 5.9%. Furthermore,
we show that GNNs benefit from using the whole node feature
set, as using all the 33 features leads to the best performance.
Graph Convolutional Network with JKs and GraphSAGE
both achieve an accuracy of 94.8%. For future work, it will
also be interesting to explore different graph representations.
Currently each node is only connected to its two spatially
closest neighbours, which leads to very limited information
exchange during the message passing phase. The pathologists’
feedback can also be helpful in order to improve the graph
representation in terms of how to best mirror the biological
relationship between the cells. Additionally, evaluating the
expert’s performance, especially the inter-observer variability,
on this task will also be an interesting baseline. Furthermore,
adding more edge and node features could also help improve
the performance. Instead of hand-crafted node features, a
CNN, e.g. an auto-encoder [29], can be used to learn the
feature vectors. Using an ensemble of different classifiers can
also help further improve the performance.
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