
Effects of Graph Pooling Layers on Classification
with Graph Neural Networks

Linda Studer∗†, Jannis Wallau∗, Rolf Ingold∗, and Andreas Fischer∗†

∗Document Image and Video Analysis Group (DIVA)
University of Fribourg, Switzerland

{firstname}.{lastname}@unifr.ch

†Institute of Complex Systems (iCoSys)
University of Applied Sciences and Arts Western Switzerland

{firstname}.{lastname}@hefr.ch

Abstract—With the rise of graph neural networks, sometimes
also referred to as geometric deep learning, a range of new types
of network layers have been introduced. Since this is a very
recent development, the design of new architectures relies a lot on
intuition and trial-and-error. In this paper, we evaluate the effect
of adding graph pooling layers to a network, which down-sample
graphs, and evaluate the performance on three different datasets.
We find that especially for smaller graphs, adding pooling layers
should be done with caution, as they can have a negative effect
on the overall performance.

Index Terms—graph neural networks, graph pooling, graphs

I. INTRODUCTION

A very recent development in the field of deep learning

is the extension of convolution from the Euclidean space,

such as images and videos, to the non-Euclidean space, such

as graphs [1]. Graphs consist of nodes and edges, which

connect the nodes. Nodes as well as edges can have additional

information attached, typically in form of real-valued features.

Like in the Euclidean space, graph convolution aggregates the

information of the local neighbourhood. In the graphs, the

neighbourhood of a node is defined by the edges that connect

it to other nodes. Based on the features of the neighbouring

nodes, and sometimes also the features of the connecting edge,

graph convolution computes a new hidden representation for

each node. For example, a very simple aggregation function

is taking the average of the features. Another type of layers

that have the potential to improve a graph neural networks

(GNN) are graph-pooling layers [2]. Much like pooling layers

in Convolutional Neural Networks (CNNs) are used to down-

sample images, these layers are able to down-sample graphs.

They compute a pooled graph (X ′, A′) from an input graph

(X,A), where X is the matrix of node features and A is the

adjacency matrix [2].

This new part of the deep learning field has not only opened

up a whole new range of methods but also brought challenges.

One of these challenges is related to the network depth, i.e. the

number of layers. It has been demonstrated that going deeper,

which is often able to improve the performance and allows

The work presented here has been partially supported by the Rising Tide
foundation with the grant number CCR-18-130.

TABLE I
COMPARISON BETWEEN THE THREE DATASETS.

DATASET # CLASSES
NODES PER GRAPH

MIN MAX MEDIAN

LETTER (LOW) 15 1 8 5
AIDS 2 2 95 11
PT1-GLAND-GRAPH 2 16 639 65

for a more diverse set of filters to be learned in the Euclidean

space, does not necessarily improve convolutional GNNs, but

rather has the opposite effect [1]. Similarly, in this paper, we

aim to investigate the effect of adding graph-pooling layers on

the classification performance of GNNs.

II. STUDY DESIGN

In our experimental study, three different architectures with

a different number of graph pooling layers are trained. In

order to evaluate the effect of graph pooling, we select three

datasets from diverse domains with different graph sizes. Each

dataset has node features available and is annotated for graph

classification.

A. Datasets

The graphs sizes are listed in Table I. The Letter (LOW)

dataset contains the smallest graphs, the pT1-Gland-Graph

dataset the largest.

1) Letter Dataset (LOW): The graphs in this dataset repre-

sent distorted letter drawings of 15 capital letters (A, E, F, H,

I, K, L, M, N, T, V, W, X, Y, Z) [3]. Three levels of distortion

have been applied to the base dataset, we use the subset with

the lowest distortion. The nodes are labelled with the x and y

coordinates. The training, validation, and test set each contains

750 graphs.

2) AIDS Database: The AIDS database [3] consists of

4,337 graphs, of which 2,337 are used as the test set. Each

graph represents a molecule that is either active or inactive

against HIV. Each atom in the molecule is represented as a

node and each bond between the atoms is represented as an

57

2020 7th Swiss Conference on Data Science (SDS)

978-1-7281-7177-7/20/$31.00 ©2020 IEEE
DOI 10.1109/SDS49233.2020.00021

Authorized licensed use limited to: University of Fribourg - Bibliothèque cantonale et universitaire. Downloaded on September 27,2022 at 09:44:59 UTC from IEEE Xplore. Restrictions apply.

TABLE II
ARCHITECTURES USED FOR THE EXPERIMENTAL EVALUATION. THEY ALL

HAVE A DIFFERENT NUMBER OF GRAPH POOLING LAYERS, BUT THE SAME

READOUT AND LINEAR LAYERS. TKP STANDS FOR TOP-k POOLING.

ARCHITECTURES

0-TKP 1-TKP 3-TKP

GCNCONV

GCNCONV

GCNCONV

GCNCONV

GCNCONV

TOPKPOOLING

GCNCONV

GCNCONV

TOPKPOOLING

GCNCONV

TOPKPOOLING

GCNCONV

TOPKPOOLING

GLOBAL MEAN-POOLING

LINEAR

LINEAR (CLASSIFICATION)

edge. Each node is labelled with the symbol of the chemical

element (e.g. C for carbon), its charge and the coordinates.

3) pT1 Gland Graph Dataset: The pT1-GG dataset [4]

consist of 520 graphs, 130 of which are used as the test set.

These graphs have been extracted from images of pathological

tissue sections from colorectal cancer patients. Each graph

represents of either a normal or dysplastic intestinal gland.

Each cell of a gland is represented as a node, and each node

is connected to its spatially two closest neighbours. 33 features

are available for each node, such as staining intensity and the

size of the cell.

B. Experimental Setup

We use the three different architectures with a different

number of pooling layers (0, 1 and 3). Table II gives an

overview of the architectures. For the graph convolution layers

we use Graph Convolutional Network (GCN) [5] layers with

128 neurons. GCN layers can only use the node features

and do not consider edge features. For the graph pooling we

use the top-k pooling layer [2]. It is called top-k because it

reduces the number of nodes in a graph from N to kN after

the pooling layer, where k ∈ (0, 1]. We use a k of 0.8. In

order to get a graph-level output, all the node features are

averaged, so that for a single graph Gi its output is computed

as ri =
1
Ni

∑Ni

n=1 xn, where xn is the feature vector of a node.

To put our classification results into context, we also evaluated

the performance using the GCN architecture from published

work [5] with 3 layers and 128 neurons per layer. The setup

is the same as the architecture without pooling layers, but

with an added dropout layer between the two linear layers. All

experiments are run using the PyTorch Geometric library [6]

and the implementation details as well as the hyper-parameters

are available open-source1.

Each experiment is run 10 times until convergence and the

mean and standard deviation of the achieved accuracy are

reported. Z-normalisation is used to adjusts each node feature

value x such that x̂ = x−μ
σ . For the AIDS database and

the Letter (LOW) dataset, we use the same dataset split as

1https://github.com/LindaSt/SDS-2020

TABLE III
CLASSIFICATION RESULTS (IN %) FOR THE THREE DATASETS USING THE

FOUR DIFFERENT ARCHITECTURES (MEAN AND STD OVER 10 RUNS).

ARCHITECTURE LETTER (LOW) AIDS PT1-GG

0-TKP 81.8± 0.8 93.2± 3.9 93.5± 2.2
1-TKP 79.7± 2.0 90.3± 6.0 94.2± 1.0
3-TKP 78.7± 1.7 88.5± 6.6 90.8± 3.8

GCN [5] 82.9± 0.7 94.8± 2.1 94.5± 2.8

published [3]. For the pT1-GG dataset, we use the first cross-

validation split as published [4].

III. RESULTS

Table III provides an overview of the achieved perfor-

mances. Adding three pooling layers has a negative effect on

the average performance on all three datasets. However, for

the pT1-GG dataset, adding just one pooling layer slightly

improves the performance. For the other two datasets, the

model without pooling layers performs the best.

IV. CONCLUSION

We find that adding top-k pooling layers generally has a

negative effect on the performance. Only the pT1-GG dataset

with the largest graphs profits from a pooling layer, which

suggests that the usefulness of graph pooling is linked to the

graph size. This makes sense intuitively, as removing nodes

from a small graph has a much larger impact on the overall

structure. However, with just these finding, it remains difficult

to fully establish the cause of the drop in performance.
Overall, our findings support previous work which states

that adding more layers, i.e. more learnable parameters does

not necessarily improve the performance [1]. Furthermore,

although graph pooling can be beneficial for certain graph

types, one should be careful when dealing with smaller graphs.

It seems that experiences from image-based deep learning are

therefore not directly applicable in geometric deep learning.
In the future, to make a more in-depth analysis of this

phenomena, the pooled graph representations should be ex-

amined to investigate exactly which nodes in the graphs are

combined. Other aspects could also play a role, such as the

graph connectivity.

REFERENCES

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehen-
sive survey on graph neural networks,” arXiv preprint arXiv:1901.00596,
2019.

[2] C. Cangea, P. Veličković, N. Jovanović, T. Kipf, and P. Liò, “Towards
sparse hierarchical graph classifiers,” arXiv preprint arXiv:1811.01287,
2018.

[3] K. Riesen and H. Bunke, “Iam graph database repository for graph based
pattern recognition and machine learning,” in Joint IAPR International
Workshops on Statistical Techniques in Pattern Recognition and Structural
and Syntactic Pattern Recognition. Springer, 2008, pp. 287–297.

[4] L. Studer, S. Toneyan, I. Zlobec, H. Dawson, and A. Fischer, “Graph-
based classification of intestinal glands in colorectal cancer tissue im-
ages,” in 2nd COMPAY Workshop at MICCAI, 2019.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[6] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.

58

Authorized licensed use limited to: University of Fribourg - Bibliothèque cantonale et universitaire. Downloaded on September 27,2022 at 09:44:59 UTC from IEEE Xplore. Restrictions apply.

