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Abstract—The Kinematic Theory of rapid human move-
ments and its Sigma-Lognormal model enables to model human
gestures, in particular complex handwriting patterns such as
words, signatures and free gestures. This paper investigates the
extension of the theory and its Sigma-Lognormal model from
two dimensions to three, taking into account new acquisition
modalities (motion capture), multiple subjects, and unconstrained
motions. Despite the increased complexity and the new acquisition
modalities, we demonstrate that the Sigma-Lognormal model can
be successfully generalized to describe 3D human movements.
Starting from the 2D model, we replace circular with spherical
motions to derive a representation of unconstrained human move-
ments with a new 3D Sigma-Lognormal model. First experiments
show a high reconstruction quality with an average signal-to-
noise ratio (SNR) of 18.52 dB on the HDMO05 dataset. Gesture
recognition using dynamic time warping (DTW) achieves similar
recognition accuracies when using original and reconstructed
gestures, which confirms the high quality of the proposed model.

Keywords—Kinematic Theory of rapid human movements,
Sigma-Lognormal model, trajectory reconstruction, 3D motion
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I. INTRODUCTION

The Kinematic Theory of rapid human movements is used
to analyze human movements as a process depending on the
neuromuscular parameters of the human body. Applied to
handwriting, it can be used to study writer expertise [1], [2],
to verify genuine signatures [3], [4], or to synthesize artificial
handwriting [5], [6], to name just a few applications.

In this paper, we investigate the extension of the Sigma-
Lognormal model to three dimensions to analyze 3D human
movements. This modeling of 3D motions with the Kinematic
Theory of rapid human movements could potentially lead to a
wide new range of applications including, for example, neu-
romuscular disorder analysis, movement synthesis for robotics
and computer games, and person identification by gait analysis.

We pursue a natural extension of the model by replac-
ing circular with spherical motions for individual lognormal
strokes (which are hypothesized to act along a pivot). While
the estimation of the lognormal parameters from the velocity
profile remains the same as in 2D, we integrate polar angles
in addition to azimuthal angles and adapt the estimation of the
angular parameters, accordingly.

The resulting 3D Sigma-Lognormal model is empirically
tested on the HDMOS5 motion capture database, which contains

different motion classes, such as walking, dancing, kicking,
etc. We reconstruct the movements with our proposed model
and assess the quality of the reconstruction with a signal-to-
noise ratio (SNR). Furthermore, we conduct a classification
experiment based on dynamic time warping (DTW), both,
with the original and with the reconstructed trajectory, as an
additional assessment of the reconstruction quality.

The remainder of this paper is organized as follows.
Section II presents the Kinematic Theory of rapid human
movements and the 2D Sigma-Lognormal model. Section III
introduces the equations of the proposed 3D extension. In
Section IV, we present the results of our empirical evaluation.
Section V concludes and discusses future work.

II. KINEMATIC THEORY OF RAPID HUMAN MOVEMENTS

This section briefly presents the Kinematic Theory of
rapid human movements with the original Sigma-Lognormal
model [7] in two dimensions, which we will extend to three
dimensions in the next section.

A. The Sigma-Lognormal Model

The kinematic theory postulates that any movement is the
combination of movement primitives, so-called strokes, with
lognormal speed. Those strokes are initiated at time ¢g in the
central nervous system with an intended distance D. They are
then actuated with a log time delay p and a log response time
o. The Kinematic Theory formulates the speed of a stroke as
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Assuming the movement acts along a pivot, the angular
position of each stroke is given by:
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where 6 is the start angle and 6, is the end angle.

Simplest rapid movements are composed of two strokes,
the strokes of the agonist and of the antagonist action needed
to execute the movement. Those two strokes are combined
according to the Delta-Lognormal model (AA). More complex
movements in two dimensions are described as the sum of
the different strokes according to the Sigma-Lognormal model



(XA) [8]. In the general case, 2D movements (like handwrit-
ing) are described as a vector sum of strokes
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where n is the number of strokes.

Accordingly, the velocity and position of the movement in
z- and y-direction are
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In summary, a 2D movement can be represented as a com-
bination of lognormal strokes (I1,...,1,) with six parameters
each:

l:(t07D7,u‘70-a98706) . 3

For more details about the Kinematic Theory of rapid
human movements, we refer the reader to [9]-[12].

B. Stroke extraction and parameters estimation

In order to represent a movement with the Sigma-
Lognormal model, the input is first preprocessed, and then the
different strokes are extracted with their respective parameters.

The preprocessing is minimal, but required to enable the
correct modeling of the whole movement. The movement is ar-
tificially stopped at the beginning and at the end of the motion
by artificially holding the respective positions for 200ms [3].
Reducing the speed at the border of the trajectory to zero
improves the extraction of the first and the last lognormal
stroke. If the movements have been acquired with different
devices, it is recommended to interpolate the input trajectories
at a common sampling rate, i.e. 200H z [3]. If necessary, a
Chebyshev filter can also be applied to remove high-frequency
components if some noise was introduced by the acquisition
device.

From the input trajectory, we get the observed veloc-
ity ¥,(t), and then three steps are applied to extract the
different strokes as illustrated in Figure 1. First, the local
minima and maxima of the speed profile |v,(t)| are used
to detect the biggest stroke [. Second, the parameters | =
(to, D, p,0,0s,60.) of this stroke are estimated based on an
initial analytical solution using the Robust XZERO algo-
rithm [13]. These initial solutions are then refined by means
of non-linear least squares curve fitting. Third, the extracted
stroke is added to the estimated model and its estimated
velocity ¥, (t) is subtracted from the observed velocity ¥, (t).
This three-step process is repeated until the signal-to-noise
ratio (SNR) cannot be further improved.
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Fig. 1. Workflow of the Sigma Lognormal parameters estimation process.
Tlustration from O’Reilly [3]
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Fig. 2. Tllustration of the movement 3D model with ¢(¢) in addition to the
2D representation with 6(t) and p = |9(t)].

C. Model quality assessment

The quality of the reconstructed movement can be used to
assess the quality of the model by means of a signal-to-noise
ratio (SNR) between the observed movement ¥,(t) and the
reconstructed movement ¥, (t)
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where ts is the starting time and ¢. the ending time of the
movement.

SNR=10-log<

III. EXTENSION TO THREE DIMENSIONS

The Kinematic Theory of rapid human movements assumes
that strokes act along a pivot. The strokes can be described in
the two dimensional plane with the distance to the origin p
and one angle 6. In order to model human motions in three
dimensions, an additional angle ¢ is required as shown in
Figure 2.



When adding a third dimension, the velocity value from
Equation 1 does not change, but the angular position of
Equation 2 now depends on a second angle ¢
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The velocity Equations 4 and 5 become
M
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and the velocity in the z-direction is
M
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The position of the movement in z- and y-direction in
Equations 6 and 7 do not change, and the position in z-
direction is

z(t) Z/UZ<7’) dr . (14)

In summary, a 3D movement can be represented as a
combination of lognormal strokes (Iy,...,l,) with eight pa-
rameters each
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The estimation process of Figure 1 does not change, only
the angle estimation step is extended to estimate the two
new parameters. The new angle parameters ¢ and ¢, can
be estimated in a similar way as the original parameters 6,
and 6. with
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where t; are the times of the points p; as follows:

p1  Lognormal stroke beginning

pe  First inflexion point

ps  Local maximum of the lognormal stroke
ps  Second inflexion point

ps  Lognormal stroke ending

IV. EXPERIMENTS AND RESULTS

In this section, we present the results of our empirical
evaluation conducted with the proposed 3D extension of the
Sigma-Lognormal model. First, we measure the signal-to-noise
ratio (SNR) on the HDMOS dataset to assess the model quality
of the 3D gestures. Second, we investigate the impact of
using synthetic gestures for a dynamic time warping (DTW)
classifier to explore the potential for applications in the field
of 3D action recognition.

TABLE 1. COMPARISON OF THE SIGNAL-TO-NOISE RATIO (SNR)
MEAN () AND STANDARD DEVIATION (o) BETWEEN 2D AND 3D DATA.

© (dB) o (dB)
2D projection in (x,y) plane 19.19 3.77
3D motions 18.52 4.09

A. Dataset

For evaluating the 3D Sigma-Lognormal model, we use the
HDMOS5 dataset [14]. HDMOS is a motion capture (mocap)
dataset that contains the trajectories of various points on the
skeleton that was recorded with a suit containing more than
40 markers. The input data are the 3D trajectories of the suit
markers recorded at 120Hz, which allows to evaluate the 3D
Sigma-Lognormal model with a high precision. The dataset is
composed of roughly 100 classes that were performed 10 to
50 times by 5 subjects, amounting to 1,457 samples in total.

From the skeleton data, we compute the trajectories of
wrists and ankles relative to shoulders and hips, respectively,
which yield four limb trajectories [15]. Those limb vectors
are then normalized by the limb length to get a motion
representation that is independent of the morphology of the
subject [16]. This allows to get a simplified representation of
the skeleton, that is independent of the position of the skeleton
but that preserves the main characteristics of the movements.
We also use 11 selected actions [17] for our experiments
(deposit floor, elbow to knee, grab high, hop both legs, jog,
kick forward, lie down floor, rotate both arms backward, sneak,
squat, throw basketball), resulting in 249 samples.

Each limb trajectory is represented as a sequence of
(x,y, z) coordinates, from which we can extract the sequences
of velocities (v,,vy,v,) and accelerations (a,,a,, a,), which
gives a total of 36 features. All those features are computed
with second order regression [18], and they are normalized by
a z-score normalization over all sampling points [4].

B. Trajectory Reconstruction Quality

To evaluate the quality of the representation of the 3D
motions with the Sigma-Lognormal model, we measure the
signal-to-noise ratio (SNR) between the original and recon-
structed trajectories [7]. To reconstruct trajectories, we extract
the Sigma-Lognormal model parameters from the 36 features
of the input samples, and then we try to reconstruct the
motions (with the 36 features) from the Sigma-Lognormal
model parameters.

Figure 3 shows the original (in blue) and reconstructed (in
red) trajectories of the wrists and ankles of a kick motion
sample. Visually, the original and reconstructed trajectories
look very much alike. Figure 4 shows the original (in blue)
and reconstructed (in red) velocity profiles of the four limbs
of the same kick motion sample. Again, the reconstruction is
very close to the original.

In order to quantify the quality of the reconstruction,
we measure the SNR between the original and reconstructed
trajectories [7]. Figure 5 presents the SNR distribution for all
the four reconstructed trajectories of the 249 samples (hence
996 reconstructions). The mean SNR is 18.52dB (with a
standard deviation of 4.09dB) which suggests a high quality
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Fig. 3. Original trajectories (blue) and reconstructed (red) trajectories of
wrists and ankles in a kick motion sample.
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Fig. 4. Original (blue) and reconstructed (red) velocity profiles of right wrist,
left wrist, right ankle and left ankle of the kick motion of Figure 3.

of the 3D Sigma Lognormal modeling. The general quality
of the 3D reconstructions is as good as the quality of the
2D reconstructions, which we can obtain by discarding the
z—dimension, as shown in Table I.

C. Motion Recognition Results

In order to further investigate the quality of the proposed
3D Sigma-Lognormal model, we use reconstructed movements
to perform action recognition on the HDMOS5 dataset. We use
dynamic time warping (DTW) to compute a distance between
two movements. To avoid unusual warping paths and to speed
up the computation, a Sakoe-Chiba band [22] is employed.
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Fig. 5. Distribution of signal-to-noise ratio (SNR) values of the reconstructed
3D trajectories of the HDMOS dataset (996 samples).

TABLE II. COMPARISON OF THE DIFFERENT COMBINATIONS OF INPUT
DATA (FOUR SUBJECTS AS REFERENCES AND ONE SUBJECT FOR TESTING).

DTW input data Accuracy (%) SD (%)
Position 93.61 4.14
Velocity 96.44 4.54
Acceleration 91.51 5.56
Position + Velocity 95.35 3.39
Velocity + Acceleration 95.76 3.33
Position + Acceleration 95.43 2.81
Position + Velocity + Acceleration 95.34 4.17

The classification of a test sample is done by computing the
DTW distance to a set of reference samples and predicting the
class of the nearest reference sample.

First, we study the importance of the position, velocity
and acceleration profiles. Table II presents the recognition
accuracy obtained when using the original movements of four
subjects as reference samples and those of the remaining
subject as test samples. The average accuracy and the standard
deviation (SD) over the five experiments are indicated. The
best results are obtained when using only the velocity profile.
In fact, adding either the position or acceleration (or both)
yield lower recognition accuracies. Since the velocity profile
performed best, we proceeded using only 12 velocity features
(3 dimensions and 4 limbs).

Next, we compare our classification results with other state-
of-the-art methods. Table III shows the results of the proposed
velocity-based DTW classifier on the same train/test split that
is typically used in the literature [17]. The results indicate that
our classifier is able to reach state-of-the-art performance.

Finally, we compare the recognition accuracy obtained

when using reconstructed movements as reference samples,

TABLE III. COMPARISON OF RECOGNITION ACCURACY ON THE
HDMOS5 BENCHMARK (USING THE PROPOSED TRAIN-TEST SPLIT [17]).

Accuracy (%)

Cov3DJ + SVM [19] 95.41
HOD + SVM [20] 97.27
BIPOD + SVM [21] 96.70
HIF3D + SVM + Level = 2 [15] 98.17
Our approach (DTW + velocity profile) 97.25




TABLE IV. COMPARISON OF THE RECOGNITION ACCURACY (%) FOR
ORIGINAL OR RECONSTRUCTED REFERENCE SAMPLES.

Number of training subjects

1 2 3 4
Originals 72.93 78.70 86.53 96.44
Reconstructions 72.84 78.57 86.56 96.06

while still testing on the original test samples. We use five-fold
cross-subject splitting and vary the number of subjects whose
movements are used as reference sequences. The samples of
all remaining subjects are used for testing. Each setting is run
five times, accordingly, and the results are averaged. Table IV
shows the results obtained when using original movements
as reference samples or when using reconstructed movements
(always using original samples for testing). The accuracy
obtained with reconstructed samples is very similar to the
one obtained with the original samples and a paired t-test
shows no significant difference between the two sets of results
(p > 0.05, n.s.). This result confirms the high model quality
of the proposed 3D Sigma-Lognormal model.

V. CONCLUSION

In this paper, we presented a 3D extension of the Sigma-
Lognormal model to represent unconstrained 3D human move-
ments. First experiments show a good model quality, as
demonstrated by a high signal-to-noise ratio (SNR) of recon-
structed motions and the fact that similar classification results
have been achieved with original and reconstructed reference
samples.

The best classification results were achieved using only the
velocity profile. This observation is consistent with the under-
lying hypothesis of the Kinematic Theory that the velocity is
the main control variable used by the central nervous system
to plan and execute a movement. It is also consistent with the
basic property of the velocity vector, which is tangent to the
trajectory, allowing learning by observing [23].

A promising line of future research is the synthesis of
3D movements, which is expected to support classification
systems with artificial but realistic training data. In general,
there is a wide range of applications that could emerge
from modeling 3D motions with the Kinematic Theory in
biometrics, biomedicine, and robotics.
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