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Abstract. The present paper is concerned with graph edit distance,
which is widely accepted as one of the most flexible graph dissimilarity
measures available. A recent algorithmic framework for approximating
the graph edit distance overcomes the major drawback of this distance
model, viz. its exponential time complexity. Yet, this particular approxi-
mation suffers from an overestimation of the true edit distance in general.
Overall aim of the present paper is to improve the distance quality of
this approximation by means of a post-processing search procedure. The
employed search procedure is based on the idea of simulated anneal-
ing, which turns out to be particularly suitable for complex optimization
problems. In an experimental evaluation on several graph data sets the
benefit of this extension is empirically confirmed.

1 Introduction

Due to their power and flexibility, graphs have found widespread application in
pattern recognition and related fields [1,2]. Prominent examples of a classes of
patterns, which can be formally represented in a more suitable and natural way
by means of graphs rather than with feature vectors, are chemical compounds [3],
binary executables [4], or networks [5].

The problem of computing graph dissimilarity is commonly solved via a par-
ticular graph matching algorithm. Graph matching has been the topic of numer-
ous studies in pattern recognition over the last decades [1,2], resulting in powerful
methods such as, for instance, spectral methods [6] or graph kernels [3]. Graph
edit distance [7], introduced about 30 years ago, is still one of the most flexible
graph distance models available. Yet, the run time of exact graph edit distance
computation is exponential in the number of nodes of the involved graphs, which
limits its applicability to rather small graphs.

In [8] the authors of the present paper introduced an algorithmic framework
for the approximation of graph edit distance in cubic time. Yet, one of the major
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problems of this particular approximation framework is that it overestimates the
true edit distance quite often. The present paper is concerned with an extension
of this approximation that aims at making the distance approximation more
accurate. The idea of this extension is based on a post-processing procedure
that takes the result of the original approximation as a starting point for a
(non-exhaustive) search process.

Note that in [9] several search procedures for the improvement of the approx-
imation accuracy have already been proposed (amongst others, greedy forward
search procedures). The novelty of the present paper is twofold. First, it presents
a search strategy which takes into account both a lower and an upper bound on
the true edit distance (rather than only the upper bound as proposed in [9]).
Second, we make use of a different search method which is based on simulated
annealing [10,11].

The basic idea of simulated annealing is to explore the search space in a
random fashion and accepting solutions as long as they are getting better than
the previous solution. Yet, in contrast with pure greedy algorithms, simulated
annealing also accepts worse solutions with a certain probability (which slowly
decreases during run time). The property of accepting worse solutions is funda-
mental as this allows to escape local minima during the search process.

The remainder of this paper is organized as follows. Next, in Sect. 2, the
approximation framework for graph edit distance is reviewed. In Sect. 3, the novel
search procedure based on simulated annealing is described in detail. Eventually,
in Sect. 4, we empirically confirm the benefit of this extension on three graph
data sets. Finally, in Sect. 5, we conclude the paper.

2 Graph Edit Distance (GED)

2.1 Basic Definition of GED

A graph g is a four-tuple g = (V,E, μ, ν), where V is the finite set of nodes,
E ⊆ V × V is the set of edges, μ : V → LV is the node labeling function, and
ν : E → LE is the edge labeling function. The labels for both nodes and edges
can be given by the set of integers L = {1, 2, 3, . . .}, the vector space L = R

n,
a set of symbolic labels L = {α, β, γ, . . .}, or a combination of various label
alphabets from different domains. Unlabeled graphs are obtained by assigning
the same (empty) label ∅ to all nodes and edges, i.e. LV = LE = {∅}.

Given two graphs, g1 = (V1, E1, μ1, ν1) and g2 = (V2, E2, μ2, ν2), the basic
idea of graph edit distance (GED) [7] is to transform g1 into g2 using edit oper-
ations, viz. insertions, deletions, and substitutions of both nodes and edges. The
substitution of two nodes u and v is denoted by (u → v), the deletion of node
u by (u → ε), and the insertion of node v by (ε → v)1. A set of edit operations
λ(g1, g2) = {e1, . . . , ek} that completely transform g1 into g2 is called an edit
path between g1 and g2.

1 A similar notation is used for edges.
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Let Υ (g1, g2) denote the set of all admissible edit paths between two graphs
g1 and g2. To find the most suitable edit path out of Υ (g1, g2), one introduces
a cost c(ei) for every edit operation ei, measuring the strength of the corre-
sponding operation. The idea of such a cost is to define whether or not an edit
operation represents a strong modification of the graph. The graph edit distance
dλmin between two graphs g1 = (V1, E1, μ1, ν1) and g2 = (V2, E2, μ2, ν2) is then
defined by

dλmin(g1, g2) = min
λ∈Υ (g1,g2)

∑

ei∈λ

c(ei).

2.2 Approximate Computation of GED

The problem of minimizing the graph edit distance can be reformulated as an
instance of a Quadratic Assignment Problem (QAP) which in turn belong to
the class of NP-complete problems. QAPs basically consist of a linear and a
quadratic term which have to be simultaneously optimized. In case of graph edit
distance, the linear term of QAPs can be used to model the sum of node edit
costs, while the latter is commonly used to represent the sum of edge edit costs
(see [12] for further details).

The graph edit distance approximation framework introduced in [8] reduces
the QAP of graph edit distance computation to an instance of a Linear Sum
Assignment Problem (LSAP). Similar to QAPs, LSAPs deal with the question
how the entities of two sets can be optimally assigned to each other. We formally
represent assignments by means of permutations (ϕ1, . . . , ϕn) of the integers
(1, 2, . . . , n). Such a permutation refers to the assignment where the i-th entity of
the first set is mapped to the entity at position ϕi in the second set (i = 1, . . . , n).

For solving LSAPs, which cope with a linear term only, a large number of
efficient algorithms exist (see [13] for an exhaustive survey). The time complexity
of the best performing exact algorithms for LSAPs is cubic in the size of the
problem. Hence, LSAPs can be – in contrast with QAPs – quite efficiently solved.

In order to reformulate the graph edit distance problem to an instance of an
LSAP, the use of a square (n + m) × (n + m) cost matrix C has been proposed
in [8]. This particular cost matrix represents the costs of all possible node substi-
tutions as well as all possible node deletions and node insertions. The framework
proposed in [8] optimizes the linear term of the LSAP stated on C.

By omitting the quadratic term during the assignment process, we neglect the
structural relationships between the nodes (i.e. the edges between the nodes). In
order to integrate knowledge about the graph structure, to each entry cij ∈ C,
i.e. to each cost of a node edit operation (ui → vj), the minimum sum of edge
edit operation costs, implied by the corresponding node operation, is added.
This particular encoding of the minimum matching cost arising from the local
edge structure enables the LSAP to consider information about the local, yet
not global, edge structure of a graph.

A minimum cost permutation (ϕ1, . . . , ϕn+m) derived on C = (cij) via LSAP
solving algorithm corresponds to the assignment of all nodes of g1 to all nodes of
g2. Assignment ψ includes edit operations of the form (ui → vj), (ui → ε), and
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(ε → vj)2. Two different distance approximations can now be instantly derived
from this node assignment, viz. an upper and a lower bound on the true graph
edit distance.

ψ = ((u1 → vϕ1), (u2 → vϕ2), . . . , (um+n → vϕm+n
))

For the upper bound we observe that edit operations on edges are uniquely
defined by the edit operations on their adjacent nodes. That is, whether an
edge (u, v) is substituted with an existing edge from the other graph, deleted, or
inserted actually depends on the operations performed on both adjacent nodes
u and v (and whether or not there is an edge between the matching nodes of the
other graph). Hence, we can use the node assignment ψ to infer the complete
set of globally consistent edge edit operations. The sum of costs of the node
edit operations plus the costs of the implied edge operations gives us a first
approximation value for the graph edit distance. Note that this approximation
generally overestimates the true edit distance and actually builds an upper bound
on the exact distance [14]. Thus, we denote this approximation with dup(g1, g2),
or dup for short.

The second approximation, which actually provides a lower bound dlow on
the true edit distance [14], can be additionally inferred from the optimal assign-
ment (ϕ1, . . . , ϕn). Remember that every entry cij ∈ C reflects the cost of the
corresponding node edit operation (ui → vj) plus the minimal cost of editing the
incident edges of ui to the incident edges of vj . Hence, given an optimal permu-
tation (ϕ1, . . . , ϕ(n+m)), the minimal sum

∑(n+m)
i=1 ciϕi

can be subdivided into
costs for node edit operations and costs for edge edit operations. Since every edge
(ui, uj) is adjacent with two individual nodes ui and uj , every edge is considered
twice in two independent entries in the optimal sum

∑(n+m)
i=1 ciϕi

(viz. once in
entry ciϕi

and once in entry cjϕj
). In order to derive a suitable approximation

for the true edit distance, the cost of edge edit operations encoded in the sum∑(n+m)
i=1 ciϕi

has thus to be multiplied by 1
2 . In summary, we obtain a lower

bound on the true edit distance by summing up the cost of all node and half the
cost of all edge edit operations, given the optimal assignment.

It is important to note that the permutation (ϕ1, . . . , ϕn+m) can be arbitrar-
ily permuted and the resulting approximation dup remains an admissible upper
bound on the true edit distance. Yet, this does not account for the lower bound
as defined above. That is, dlow constitutes a lower bound on the exact edit dis-
tance, if, and only if, the underlying permutation (ϕ1, . . . , ϕn+m) refers to the
optimal solution of the LSAP stated on C.

3 Improving the Accuracy with Simulated Annealing

It has been observed that both bounds dup and dlow might introduce a
(substantial) approximation error compared to the exact edit distance dλmin .

2 Edit operations of the form (ε → ε) can be dismissed, of course.
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The present work aims at improving the overall distance quality of the approxi-
mation by means of a post processing procedure which searches within the inter-
val [dup, dlow]. The proposed search procedure is based on simulated annealing,
which emulates a phenomenon in material science, viz. the annealing of solids.
Simulated annealing has been originally proposed to obtain a state of minimum
energy of a multiparticle physical system [10] and has later been adopted to solve
difficult optimization problems [11].

The basic idea of solving optimization problems with simulated annealing is
to start with a (random) initial solution and then randomly disturb it. As long
as the resulting solution is better than the previous one, it is accepted and used
in the following step. If the resulting solution is worse than the previous one,
it may still be accepted with a certain probability. This probability is typically
reciprocally proportional to the quality difference of the current and the previous
solution and proportional to the current temperature. Usually, one starts with
a high temperature in order to rather frequently allow deteriorations in the
first iterations. Yet, during the running process the temperature is gradually
decreased, and thus the probability that a worse solution is accepted becomes
smaller. This reflects the idea of initially sampling the search space in larger steps
and then gradually focusing on smaller, promising areas for the final solution.

The detailed algorithmic procedure for the improvement of the distance accu-
racy is given in Algorithm1. As input parameters the algorithm takes the cost
matrix C, the upper and lower bound of the true edit distance dup and dlow, the
maximum number of iterations N , the starting temperature T , as well as the
temperature decrease factor F .

On line 1 of Algorithm1 two counters (counter1 and counter2) are initialized
with zero. The former controls the number of iterations, while the latter is used
to compute the probability of resetting the current search to a new random
starting point (details follow below). Next, on line 2 and 3, a list with the first
(n + m) integers is initialized (in ascending order) and dmin as well as dcurrent
are initialized with the original upper bound dup.

On line 4 the main loop of the search procedure starts. In every iteration we
aim at improving, i.e. decreasing, the current upper bound dcurrent by means of
slightly changing the assignment ψ. In any case dcurrent remains a valid upper
bound on the exact edit distance. However, remember that the lower bound dlow
cannot be improved, i.e. increased, during the proposed search process.

The main loop of Algorithm 1 is repeated until the current upper bound
dcurrent becomes equal to dlow. In this case we have found the optimal edit
distance and can stop the procedure. Yet, this can only occur when the lower
bound is equal to the true edit distance, of course (i.e. when dlow = dλmin).
Otherwise, the maximum number of iterations N have to be carried out. In
either case, dmin, which corresponds to the minimal upper bound that has been
found during the search process, is finally returned by the algorithm.

In every iteration of the main loop a new candidate for the upper bound
is generated by means of the sub-procedure Candidate-Generator, which takes
ordercurrent and C as parameters (see line 6). This sub-procedure, outlined in
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Algorithm 1. Compute-Improvement(C, dup, dlow, N, T, F )
1: counter1=0 and counter2=0
2: ordercurrent = (1, 2, . . . , (n + m))
3: dmin = dup and dcurrent = dup

4: while ((dmin − dlow) > 0 and counter1 < N) do
5: counter1++
6: (dcand, ordercand) = Candidate-Generator(ordercurrent, C)
7: Δ = |dcand − dcurrent|
8: select random number r from [0, 1]

9: if (dcand < dcurrent) or
(

r < exp
(

−Δ
Δavg×T

))
then

10: dcurrent = dcand

11: ordercurrent = ordercand

12: end if
13: if (dcurrent < dmin) then
14: dmin = dcurrent

15: counter2=0
16: else
17: counter2++
18: end if
19: select random number r from [0, 1]

20: if
(

r <
counter2

N

)
then

21: ordercurrent = random permutation of (1, 2, . . . , (n + m))
22: end if
23: T = F × T
24: end while

25: return dmin

Algorithm 2, randomly changes the current order on one position. Formally, the
integer at position r in ordercurrent is moved to the head of the current list (the
remaining parts remain unaltered). Next, the LSAP stated on C is solved with
a suboptimal assignment algorithm in O((n + m)2) time [15]. This algorithm
iterates through the rows of C and assigns every node to the minimum unused
node in the respective row in a greedy manner. By removing column ϕi in C it is
ensured that every column of the cost matrix is considered exactly once (i.e. ∀j
refers to available columns in C). This assignment procedure crucially depends
on the order in which the rows are processed (actually defined in ordercurrent).
Due to the (slight) change of the processing order introduced at the beginning of
Algorithm 2, an alternative assignment ψ and thus an alternative upper bound
can be expected. Finally, we return both the candidate processing order ordercand
and the corresponding distance approximation dcand to the main procedure.

Both ordercand and dcand are accepted when dcand is lower than dcurrent
(i.e. we observe an improvement of the current upper bound) – see line 9 to
12 of Algorithm 1. If the distance approximation dcand is greater than (or equal
to) the current upper bound dcurrent, it may still be accepted with probability

P = exp
( −Δ

Δavg × T

)
,

where Δ refers to the absolute difference between dcand and dcurrent, the normal-
izing factor Δavg corresponds to the running average of all values of Δ at that
time, and T is the current temperature. Note the influence of Δ and T on the
probability P . The greater the deterioration Δ, the smaller is P . Vice versa, the
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greater the current temperature T , the greater is P (yet, note that temperature
T is gradually lowered by factor F at the end of every iteration – see line 23).

On line 13 to line 18 we verify whether the current distance dcurrent is smaller
than the minimal upper bound dmin that has been found so far. Whenever a new
minimal distance has been found, counter2 is reset to zero, otherwise counter2 is
increased by one (i.e. we count the number of iterations without improvements
of the minimal upper bound). This counter is eventually used to control whether
or not the current solution is reset to a new random starting point. Formally, the
probability that the current processing order (ordercurrent) is randomly disturbed
on all positions increases with counter2 (see line 20 to 22). The rationale behind
this resetting is that whenever the number of iterations without improvements
exceeds a certain limit, a restart of the search procedure from another point in
the search domain might be beneficial.

Algorithm 2. Candidate-Generator(order = (i(1), i(2), . . . , i((n+m))), C)
1: select random integer r from [0, (n + m)]
2: order = (i(r), i(1), i(2), . . . , i(r−1), i(r+1), . . . , i((n+m)))

3: ψ = {}
4: for i ∈ order do
5: ϕi = argmin

∀j
cij

6: Remove column ϕi from C
7: ψ = ψ ∪ {(ui → vϕi

)}
8: end for

9: return (dψ, order)

4 Experimental Evaluation

4.1 Experimental Setup

The experimental evaluation aims at investigating the benefit of the post process-
ing search procedure proposed in the present paper in a graph matching scenario.
In particular, we measure the approximation error and the computation time
on three different real world data sets from the IAM graph database reposi-
tory [16]3. The first graph data set involves graphs that represent molecular
compounds (AIDS). The graphs from the second and third data set represent
images of fingerprints (FP) and images of symbols from architectural and elec-
tronic drawings (GREC). For details on the graph extraction methods and the
graph characteristics we refer to [16]. From all data sets, subsets of 1,000 graphs
are randomly selected on which 1,000,000 pairwise graph edit distance compu-
tations are conducted.

Rather than choosing an appropriate starting temperature T it might be more
intuitive to define the probabilities Ps and Pe of accepting a worse solution at the

3 www.iam.unibe.ch/fki/databases/iam-graph-database.

www.iam.unibe.ch/fki/databases/iam-graph-database
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beginning and at the end of the optimization process, respectively. Eventually,
one can define the starting and end temperature according to

Ts =
1

ln(Ps)
and Te =

1
ln(Pe)

.

The end temperature Te is merely used for a proper definition of the decrease
factor F for the temperature T(n+1) in iteration (n + 1) with respect to the
current temperature Tn. Formally, given the the total number of iterations N ,
the decrease factor F can be defined as

F =
(

Te

Ts

)1/(N−1)

.

In our evaluation we set the starting and end probability to Ps = 0.8 and Pe =
0.01 and we test the novel algorithm with N = 1000 and N = 10, 000 iterations
(referred to as BP-SA(1) and BP-SA(10), respectively).

4.2 Empirical Investigation

In Table 1 the mean computation time per graph pair (t) as well as the approx-
imation error, i.e. the degree of overestimation (o), is indicated for the different
edit distance algorithms on all data sets. Exact-GED and BP-GED refer to an
exact computation via tree search algorithm and the original approximation
framework presented in [8] (these two algorithms are the reference systems).
The first reference system is mainly used to control whether our novel method’s
computation time remains below the computation time of an exact algorithm,
while the second reference system is mainly used to investigate the impact of
the novel method on the approximation quality.

We first focus on the computation time. We note that BP-GED needs some
fractions of a millisecond on average for one graph matching. With the proposed
extension we observe an increase of the mean computation time to 1–3 ms and
10–25 ms on average with BP-SA(1) and BP-SA(10), respectively. Yet, compar-
ing these matching times with the matching times of the exact algorithm (which
takes 3–5 s per matching on average), the increase of the run time seems to be
acceptable.

Taking the sum of distances of BP-GED as reference point for the overestima-
tion (i.e. we take the sum of distances returned by BP-GED as 100%), we observe
reductions of the approximation error of approximately 77%, 98%, and 85% on
the three data sets (using BP-SA(1)). The approximation error can be further
reduced by increasing the number of iterations from N = 1000 to N = 10, 000.
That is, with 10,000 iterations we can report reductions of the approximation
error of approximately 89%, 99%, and 93%.

The substantial improvement of the approximation accuracy can be also
observed in the scatter plots in Fig. 1 (on the GREC data set4). These scatter

4 On the other data sets very similar plots can be observed.
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Table 1. The mean run time for one matching (t) and overestimation error (o) using
a specific graph edit distance algorithm.

Data Set Algorithm
Exact-GED BP-GED BP-SA(1) BP-SA(10)
t o t o t o t o

AIDS 5.63 s 0.00 0.07 ms 100.00 2.95 ms 23.42 25.44 ms 10.82
FP 5.00 s 0.00 0.29 ms 100.00 1.24 ms 1.91 9.46 ms 0.44
GREC 3.10 s 0.00 0.20 ms 100.00 2.21 ms 14.23 17.84 ms 6.40

(a) BP-GED (b) BP-SA(1) (c) BP-SA(10)

Fig. 1. Exact (x-axis) vs. approximate (y-axis) graph edit distance on the GREC data
computed with (a) original framework BP-GED, (b) BP-SA(1), and (c) BP-SA(10).

plots give us a visual representation of the accuracy of our approximations. We
plot for each pair of graphs its exact (horizontal axis) and approximate (vertical
axis) distance value. The reduction of the overestimation using our proposed
extension is clearly observable and illustrates the power of BP-SA.

5 Conclusions

In the present paper we propose to improve the graph edit distance quality of a
recent approximation framework by means of simulated annealing. The basic idea
of this search process is to start with the upper- and lower bound on the true edit
distance and then randomly search in the neighborhood of the current solution.
As long as we improve the current distance, the new solution is accepted. Yet,
also a deterioration of the solution might be accepted by the algorithm with
a certain probability (that depends on both the level of deterioration and the
search progress). This allows the search procedure to overcome local minima and
possibly find the globally optimal solution. With an empirical investigation on
three data sets we observe that substantial improvements of the approximation
quality can be made with our novel extension.
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