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Abstract—In this paper we assess about the recognition of
User Interaction events when handling electrical devices. This
work is placed in the context of Intrusive Load Monitoring used
for appliance recognition. ILM implies several Smart Metering
Sensors to be placed inside the environment under analysis
(in our case we have one Smart Metering Sensor per device).
Our existing system is able to recognise the appliance class (as
coffee machine, printer, etc.) and the sequence of states (typically
Active / Non-Active) by using Hidden Markov Models as machine
learning algorithm. In this paper we add a new layer to our
system architecture called User Interaction Layer, aimed to infer
the moments (called User Interaction events) during which the
user interacts with the appliance. This layer uses as input the
information coming from HMM (i.e. the recognised appliance
class and the sequence of states). The User Interaction events
are derived from the analysis of the transitions in the sequences
of states and a ruled-based system adds or removes these events
depending on the recognised class. Finally we compare the list
of events with the ground truth and we obtain three different
accuracy rates: (i) 96.3% when the correct model and the real
sequence of states are known a priori, (ii) 82.5% when only
the correct model is known and (iii) 80.5% with no a priori
information.

Keywords—User-Appliance Interaction; Intrusive Load Moni-
toring (ILM); Appliance Identification

I. INTRODUCTION

Researches estimate that in the United States 30% of the
total energy consumption is due to lighting and to appliances in
the residential sector [1]. Users have an important role in total
energy consumption when choosing appliances (e.g. different
energy efficiency labels) and how they use them. The analysis
of the relationship between users and appliances could provide
information about usual activities and how energy is consumed.
This is possible through the monitoring of the appliances and
the analysis of the activities.
There are mainly two methods for monitoring the electrical
appliance consumption in a Smart Home / Building: the Non-
Intrusive Load monitoring (NILM) and the Intrusive Load
Monitoring (ILM). In the first case one Smart Meter is placed
at panel level and the consumption of the whole household
is collected. The contribution of single appliances can be
recovered through some disaggregating algorithms [2]. This
approach is not effective for the detection of appliances
poorly contributing to the total electrical consumption [3].
ILM method relies on several Smart Metering Sensors placed
in the monitored environment and measuring the electrical

consumption of single appliances or aggregation of few of
them. The term Intrusive underlines the fact that the Smart
Metering Sensors have to be physically placed inside the
environment.
The activity recognition task applied to the appliance mon-
itoring could have different facets and levels of granularity,
depending on the application:

1) Activity of Daily Living (ADL) recognition. Long-
term activities, as eating, bathing, etc., usually involve
the use of appliances. The main ADLs can be re-
trieved from the analysis of the electrical signatures.
It has its major applications in health and elderly
surveillance fields.

2) Occupancy Detection. The interaction with a non
remote-controlled appliance implies the presence of
a person close to it and can provide information about
the spatial occupation. The field of application is
mainly linked to energy efficiency: the occupancy de-
tection could allow to apply energy saving measures.

3) User-Appliance Interaction. The User-Appliance
Interaction events represent the finest level of granu-
larity that could be achieved. Knowledge about when
and how many times the user interacts with the
appliances is inferred.

In this paper we present a new method for recovering the
User-Appliance Interaction events, i.e. the moments in time in
which a User has interacted with an Appliance. For sake of
simplicity, in this paper we use the expression User Interaction
events. Such a method has several fields of applications, like
(i) user profiling [4], (ii) evaluation of the User-Appliance
interactions [5], (iii) contribution to the ADL recognition in
Smart Homes [6], (iv) energy saving through the indirect
information about the occupancy. To accomplish this task, we
add a module dedicated to the detection of the interactions
to our existing system architecture based on Hidden Markov
Models (HMM). The existing system is able to recognise the
appliance class and the sequence of hidden states [7].
In Section 2 we provide details about related work dealing with
activity recognition when using NILM and ILM. In Section
3 we present the system architecture, providing information
about data, feature extraction and the module dedicated to
the detection of the interactions. In Section 4 we explain the
test procedure used for our module validation. In Section 5
we present and discuss the results. Finally in Section 6 we
conclude the paper with an insight about our future works.
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II. RELATED WORK

Existing research deals with the activity recognition when
using NILM. The analysis of signals coming from a single
Smart Meter can give important information about human
activities, in particular ADLs. On the other hand NILM signals
are quite simple to be obtained and information about ADLs
could entail security problems and privacy violation. Noury et
al. [8] develop a system for monitoring elderly people living at
home through the energy consumption of the whole building.
Their system is designed to retrieve an index related to the
daily activities. The index provides a first-level alarm, that
has to be confirmed by an expert. They detect activities of
13 elderly people during 9 months and prove the validity of
the index with data gained from 12 elderly people during
6 months. Chen et al. [9] introduce the notion of Non-
Intrusive Occupancy Monitoring (NIOM), using the data from
a single electricity Smart Meter to infer occupancy. They relate
the occupancy ground truth with the electrical load in two
homes and develop a simple threshold-based algorithm for the
occupancy recovering. They obtain an overall accuracy rate of
about 90.6% and 79.1% for the two homes under analysis.
In literature some works use more than one Smart Meter
dedicated to an area of the home and monitoring the aggrega-
tion of more than one appliance. This case is classified as
ILM, according to its definition. As stated in [10] ILM is
used for the activity recognition. Lee et al. [11] use a small
number of power meters instead of using one power meter
per appliance to recognise the operating state of appliances
in use. They make a model that associates several activities
with the possible appliances in use: with that relationship they
can detect the unattended appliances that are wasting energy
without being concerned by the user activity. Users receive
information about the appliance operating states, including the
unattended appliances. Cho et al. [12] collect data from a
Smart Socket (SMPT) that provide the location of the off-state
appliances. They extract the activity from SMTPs and they
provide the users with an analysis of their power consumption.
They alert the users about their energy wasting and propose
them energy saving measures.
Finally, when one Smart Metering Sensor per device is used, is
the typical ILM case. The contribution of single appliances is
directly acquired and no disaggregation algorithm is required.
France et al. [13] record the electrical activity of lights and
appliances for the recognition of ADL of elderly people. They
monitor 13 elderly people for more than 6 months and calculate
the probabilities of eating, toileting and bathing every day.
They work up to well differentiate the diurnal and nocturnal
activity and they discover that the eating activity is the most
accurately detected ADL. Lee et al. [14] propose an automatic
stand-by power reduction system based on the user-context
profiling. Their system analyses the occupancy patterns tighter
with the appliance utilisation. The system is able to predict
the appliance usage and it applies energy saving measures by
managing the stand-by power. They monitor several appliances
in 4 homes and predict their activation and deactivation: as
result, they save in 3 weeks between 27% and 44% of the
total energy consumption.
Despite many years of research, the accuracy of systems deal-
ing with aggregation of several signatures is still not precise
enough, especially when working with small appliances [3].
The works previously mentioned propose solutions focused on

the ADL recognition or the occupancy detection. Our solution
is based on the identification of the User-Appliance Interaction
events, which, as stated in the Introduction, retrieve the finest
level of granularity. This work will constitute a good starting
point for the development of several possible applications, as
the application of energy saving measures, recognition of ADL,
User profiling and improvement of the User-Appliance way of
interaction.

III. SYSTEM ARCHITECTURE

A. Appliance and State Recognition System

In this Section we clarify the context of our work by
presenting our system for the appliance and state identification
based on HMM [7] and the ACS-F2 database used for its
evaluation [15]. The system takes as input features coming
from a Smart Plug and communicates with a PC that performs
the feature extraction and the machine learning task. The
system is able to detect in real time the appliance class and the
state of the appliances. Another version of our system is able to
perform appliance and state recognition directly on distributed
devices by using the Internet-of-Things (IoT) paradigm [16].
The ACS-F2 database contains 450 electrical signatures com-
ing from 225 appliances. Every appliance has been recorded
two times for one hour, generating two signatures of one
hour length each. The first hour of recording is called first
session, in the same way the second one is called second
session. The appliances are uniformly divided into 15 classes:
mobile phone (via chargers), coffee machine, computer station
(including monitor), fridge and Freezer, Hi-Fi system (CD
players), lamp (CFL), laptop (via chargers), microwave oven,
printer, television (LCD or LED), fan, shaver, monitor, lamp
(incandescent) and kettle. The signatures are recorded at low
sampling frequency (10−1 Hz). Six different features are avail-
able: real power (W), reactive power (var), network frequency
(Hz), RMS current (A), RMS voltage (V) and phase of voltage
relative to current (φ).
The ACS-F2 database has two interesting characteristics that
make it different from the other databases:

• All the appliances belong to different brands and/or
models without any repetitions inside the database
and the classes are equally represented. This might
simplify the construction of generic models using a
fair number of different appliances per class.

• The database comes with two evaluation protocols
(intersession and the unseen appliance protocol), that
might help researchers to compare their results. More
details can be found in [15].

For all the signatures we added information about their
dynamic evolution by the inclusion of the velocity and accel-
eration coefficients (respectively comparable to the first and
second derivative, as explained in [17]). The six original fea-
tures and their coefficients contain not relevant and redundant
information. We performed a feature selection based on the
computation of the entropy and the information available from
the theory of electricity. For the intersession protocol we were
able to reduce the feature space by a half, while for the unseen
appliance protocol we did not apply any modification [7].
As machine learning algorithm we used HMM. This choice has
been made mainly for two reasons. In the first place, HMM are
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Fig. 1: The system architecture: the appliance, recorded with a Smart Plug, communicate with a PC on which a HMM-based
algorithm runs. The output of HMM (i.e. the appliance class detected and the sequence of states) is taken as input of the User
Interaction Layer that finds the User Interaction events.

well-known to provide excellent performances when applied to
temporal signals having stationary stretches. This is exactly the
case when dealing with electrical signatures, given their state-
based nature that fits well with HMM state-based approach.
Secondly, when using consciously the HMM algorithm, we can
associate every hidden state with a real state of the appliances.
In such way, we can retrieve the state sequence through the
alignment of the Viterbi algorithm, that is implicitly used by
HMM.
This system has been already presented and is able to run
in real-time. We also implemented an interface showing the
identified appliance and its actual state (the last of the state
sequence) [7]. The state sequence could give information about
the User Interaction events with the appliance, but it depends
on the appliance class and the type of category which it belongs
to. In the next paragraph we define the appliance categories
according to the User Interaction events.

B. Categories Definition

For the majority of the appliances, User Interaction events
can be recovered through an analysis of the state sequence.
Usually an interaction with the device implies a command
to the device that will bring to the transition of the state of
the appliance. HMM technique can potentially retrieve this
information from the hidden state transitions.
The difficulty in retrieving the user interaction events depends
on the category the device belong to. Several categorization are
possible. Hart [18] proposed a categorisation depending on the
operational state: two-state devices, multi-state appliances and
continuously variable devices. Lee et al. [14] proposed another
separation based on the temporal usage of home appliances:
Background Appliances, Occupancy-Reactive Appliances and
User-Interactive Appliances. In this paper we refer to the
following separation proposed by Zaidi et al. [19]:

• Usage dependent appliances (UDA). The devices
change their state depending on the interaction with
the user (e.g. microwave). An User Interaction usually
corresponds to a change of state.

• Fixed operation appliances (FOA). The device is
characterised by a pre-established sequence of op-
erations that are started by the User. If every fixed
operation is represented by a hidden state, the User
Interaction will imply a change from a specific state
to another but will not involve the other transitions.

Fig. 2: The trend of the active power of a fridge is represented.
We used points of different colours according to their state:
green for a non-compression phase, red for the compression
phase and blue for the door opening. The state transitions are
highlighted by using rectangular boxes.

For instance, a washing machine could be switched
off (state 1), wash (state 2), rinse (state 3), spin (state
4) and maintenance wash (state 5). In this case the
transition from state 1 to 2 implies User Interaction,
but not the other transitions. In some cases FOA could
be modelled by grouping a certain number of hidden
states in one, for instance the washing machine could
be ”off” (state 1) or ”on” (state 2).

• Thermostatically controlled appliances (TCA).
TCA are appliances that either provide heating or
cooling depending on the temperature of a certain
environment, for instance fridges. In this case the
electrical consumption is not directly depending on the
user activity. However, in certain cases, other sources
of consumption could be activated when interacting
with users: for instance, fridge internal lamp is auto-
matically switched on when the door opens.

Finally we have to consider that some appliances can be
battery based. In particular some UDAs as the laptop change
their energy consumption depending on their usage and the
battery charge level of the battery, making hard to identify the
single contributions.
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C. User Interaction Layer

The system described in the previous paragraph is able
to detect the appliance class and the state sequence without
explaining the User Interaction with the appliances. For this
reason we created an additional layer, called User Interaction
Layer, that takes as input the output of the HMM and which
is able to provide the User Interaction events. In Figure 1 we
represent the new system architecture: the output of the HMM
algorithm is taken as input of the User Interaction Layer.
In most cases User Interaction event involves a change of
the operational appliance mode and therefore a change of
its state. Depending on the modelling choice, this change
could correspond to a change of the model hidden state. As
a consequence, the analysis of the transitions of the state
sequence could provide information on the User Interaction
events. Not all the transitions recovered by the state sequence
are User Interaction events, but depend on the appliance class
and its category (UDA, FOA or TCA). This information is
available from the output of the HMM: the winning appliance
class and consequently the category to which it belongs to. In
Figure 2 we show the concept of the Transition Detection: the
trend of the active power of a fridge is represented using points
of different colours depending on their state (green (state 1)
for a non-compression phase, red (state 2) for the compression
phase and blue (state 3) for the door opening). The transitions
of states are potential indicators of User Interaction events. The
HMM provide additional information on the recognised class
(Fridge), therefore we know that only the transitions involving
the state 3 are due to User Interactions.
By using the information coming from the Transition Detection
and the winning model, we are able to determine if an user
has interacted with device or not for almost all cases. For the
remaining ones, the system shows some limitations: (i) the user
interaction happens inside the same state (Interaction without
transition) and (ii) under specific conditions the transitions
have different meanings and have to be filtered (Transition
selection).
Interaction without transition. This circumstance occurs
when we choose to model a device with a lower number of hid-
den states than necessary, therefore a single state of the model
could represent more than one real state. As a consequence,
state transitions do not detect all User Interactions. To detect
the missed interactions, we applied certain rules on portions
of the signal having a stationary hidden state. For instance,
the Fan class of the ACS-F2 database includes devices of
different brands and/or models with a different number of real
states, for example mechanical fan with 2, 3 or more power
levels. Given the heterogeneity of the devices, we decided to
represent the Fan class with a 2-state HMM: ”active” and ”not
active” states. If a specific fan has more than 2 power levels,
these are grouped inside the ”active” state. As a consequence,
when the user increases or decreases the fan speed without
passing through the ”not active” state, the interaction is not
automatically detected. The Fan case is reported in Figure 3A.
This problem is solved by analysing the portions of the signal
having a stationary hidden state. With a simple rule-based
system we are able to recover the User Interactions events
that do not have a transition in the state sequence.
Transition selection. This circumstance occurs when the
transition from one state to another has different meaning
depending on the context: in some cases the transition can

be caused by the User Interaction but not in others. For the
selection of the transitions linked to User Interactions we
applied a rule-based algorithm on the portions of the signal
corresponding to the transitions. For instance, for the mobile
phone class we used a model with two hidden states: one for
the charging phase (”on”) and the other for the charged phase
(”off”). The transition from ”off” to ”on” states means an User
Interaction event (typically the user plugs the device or is using
it). The transition from ”on” to ”off” could have two reasons:
the device is charged or the device has been unplugged. In the
first case, no user interaction event should be notified, while
the opposite should occur in the latter case. Using a rule-based
system, we verified if some conditions are satisfied: if the
difference of the active power between the two states exceeds
a threshold, the device has probably been unplugged (User
Interaction), in the opposite case the device is fully charged
(no User Interaction). The mobile phone case is reported in
Figure 3B.
For solving the system limitations (Interaction without tran-
sition and Transition selection) we applied a simple rule-
based system. In both cases the rules are determined by
using decision trees with binary splits for classification. The
decision trees are built by using the examples in the training
data. The decision trees can be translated in a sequence of
conditions (rules), for instance for the printer class we obtain
the following rules:

if ∆P < 8.7225 then
if ∆Q < −5.4495 then

class = 1
else

class = 0
end

else
class = 1

end

where ∆P is the velocity coefficient of the active power, ∆Q
is the velocity coefficient of the reactive power and class
determines if the event should be considered or not.

IV. TEST METHODOLOGY

We perform some tests on the data coming from the ACS-
F2 database in order to determine the accuracy of our system
in the recognition of the User Interactions. We recover the
ground truth by finding manually the user interactions in the
signals. This task is simple for some categories having a
clear distinction among the states (kettle, lamp, etc.), while
is difficult for some others having complex electrical con-
sumption trend in time (computer station and laptop). In the
latter case, we select only the clear interactions. We divide
the appliances by using the categorisation of Zaidi [19]. As
UDA we have mobile phone (via chargers), computer station
(including monitor), Hi-Fi system (CD players), lamp (CFL),
laptop (via chargers), television (LCD or LED), fan, shaver,
monitor, lamp (incandescent); as FOA we have printer, coffee
machine, microwave oven and kettle; as TCA the fridge and
freezer. Hi-Fi system and fan have problems of Interaction
without transitions, while mobile phone those of Transition
selection; the signatures belonging to these three classes are
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Fig. 3: A) Fan signature having 3 power levels and B) mobile
phone signature. In black the events detected by the analysis
of the transitions (E=). In red the events added (E+) and in
green (E−) the one removed by the rule-based algorithm.

treated with the rule-based system.
We compute the accuracy rate in three different tests:

1) When the correct model and the real sequence of
states are known a priori. In this case we measure
the performance of our system making the hypoth-
esis that the HMM is performing a perfect Viterbi
alignment with a perfect appliance class recognition.

2) When only the correct model is known. In this case
we measure the performance of our system making
the hypothesis of an HMM performing a perfect
appliance class recognition and we use the computed
Viterbi alignment.

3) With no a priori information. In this case we use
the computed appliance class recognition and Viterbi
alignment.

For each test we measure the accuracy rate of the correct
detection of the User Interaction events. We consider the
detection correct when the elapsed time between the real and
the detected interaction is under 30 seconds (corresponding
to 3 samples distance with the sampling frequency of 10−1

Hz). For the misclassifications we separate false positive (FP)
and false negative (FN): in the first case an interaction is
not detected when it occurs, in the second an interaction is
detected when not present. Given the difficulty of the task,
we perform the test following the Intersession protocol, the
simplest between the two described with the ACS-F2 database.

V. RESULTS AND DISCUSSION

As first step, we run the HMM algorithm to determine
the appliance class identifications and state sequences. This

information is sent to the User Interaction Layer that recover
the User Interaction events. We obtain an accuracy rate of
96.5% for the appliance class recognition and 97% for the
state recognition.
As a next step, we send the test data and the HMM outputs to
the User Interaction Layer to perform the three tests presented
in previous Section. In Table I we show the results obtained
after the User Interaction Layer.

Test 1 Test 2 Test 3
class type TP FP FN TP FP FN TP FP FN
Hi-fi UDA 49 3 3 37 15 17 37 15 17
Television UDA 40 3 0 38 5 3 38 5 3
Mobile P. UDA 16 4 5 10 10 3 10 10 3
Coffee M. FOA 39 0 0 34 5 7 34 5 7
Computer UDA 22 5 2 22 5 0 22 5 0
Fridge TCA 14 0 0 9 5 0 9 5 0
Lamp Inc. UDA 54 0 0 54 0 0 54 0 0
Laptop UDA 23 2 0 13 12 4 13 12 17
Oven FOA 59 0 0 59 0 4 59 0 4
Printer FOA 45 0 0 37 8 26 37 8 28
Fan UDA 107 4 0 106 5 0 106 5 0
Kettle FOA 55 0 0 55 0 0 55 0 0
Lamp CFL UDA 58 0 0 57 1 1 57 1 1
Monitor UDA 62 0 0 61 0 5 61 1 4
Shaver UDA 155 0 0 152 3 13 149 6 13

TABLE I: Results (in terms of number of events) obtained
when applying the User Interaction Layer for the three tests:
Test 1 when the correct model and the real sequence of states
are known a priori, Test 2 when only the correct model is
known and Test 3 with no a priori information.

In the first test we obtain an accuracy rate of 96.3%.
Having the a priori information about the correct model and
the sequence of states, the User Interaction Layer performs
well. Several classes attain the 100% of accuracy rate. In the
second test we obtain an accuracy rate of 82.5%. We notice a
drop in the performances when we let the HMM compute the
alignment with the Viterbi algorithm. The small error rate in
the state recognition (about 3%) has a great impact in the ac-
curacy rate of the User Identification events. This is explained
by the importance of recovering the correct state sequence for
the computation of the state transitions. In fact, it directly
influences the User Interaction events detection through the
Transition Detection phase. In the third test we obtain an
accuracy rate of 80.5%. We notice a small deterioration in
performances compared to the previous case. The difference
is small because the accuracy rate computed on the appliance
detection is quite high (96.5%) and misclassifications among
similar models provide similar sequences of states.
Finally we notice that our system of rules improves the results
for the class on which it has been applied: in the three tests we
have a mean improvement of the 25.8% for the Hi-Fi class, of
the 16.5% for the mobile phone class and of 18% for the fan
class. In particular the rules related to the Interaction without
transition improve the FP, while those related to the Transition
selection improve the FN.
We remark that some classes are more challenging than
others, as Hi-Fi, computer and laptop. This observation can be
explained by the fact that the appliances belonging to these
classes require high level of interaction with the User and
during the labelling phase the errors are more frequent. Finally
we ascertain that the mobile phone, even after the application
of the rules, remains a difficult class for the event identification.
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VI. CONCLUSION

In this paper we deal with the recognition of the user
interaction events in ILM context. In a previous work [7],
we developed a system based on HMM able to recognise
the appliance category and the sequence of states of an
electrical device. In this work we add a new layer, called
User Interaction Layer, able to retrieve the User Interaction
events. We use the ACS-F2 database [15], that contains the
electrical signatures of 225 appliances uniformly spread into
15 appliance classes. All the appliances belong to different
brand and/or models and are recorded with a low sampling
frequency of 10−1Hz.
The User Interaction Layer uses the information about the
recognised appliance class and the sequence of states com-
ing from HMM. As first step, the transitions between states
are recovered from the sequences. We select the transitions
corresponding to User Interactions depending on the winning
appliance class. This method shows some limitations and
for certain appliance classes we use a rule-based system to
refine the list of User Interaction events. We separate two
cases: (i) the user interaction happens inside the same state
(Interaction without transition) and (ii) when the transitions
have different meaning depending on the context (Transition
selection). For both cases the solution consists in a rule-based
system respectively able to find extra-events inside portions of
signatures with stationary hidden state and filter events that
should not be considered.
We compare the list of User Interaction events with the ground
truth and we obtain three different accuracy rates: (i) when
the correct model and the real sequence of states are known a
priori, (ii) when only the correct model is known and (iii) with
no a priori information. We report the number of correct event
detections, the number of false positives and false negatives.
As expected, the best case is when the a priori information
about the correct model and state sequence is used. In terms
of accuracy rate, we obtain 96.3%. In the second case, we
observe a drop in the performances in terms of accuracy rate,
achieving 82.5%. This drop is due the to difference between
the real state sequences and the computed state sequences
that has a significant influence in the computation of the
transitions. In the last test (with no a priori information) the
system achieves an accuracy rate of 80.5%. We observe a small
difference with the previous test because the accuracy rate
computed on the appliance detection is quite high (96.5%)
and because misclassifications among similar models provide
similar sequences of states.
In conclusion, we demonstrate a simple way of extracting
information about User Interaction events starting from an
existing modelling system based on HMM. Even if the ACS-F2
database contains several signatures, more data could increase
the reliability of our system. Such problem could be solved
by including other signatures coming from other databases,
as the Tracebase [20] or ECO data-set [21]. We plan to use
smart and more complex algorithms for the rule computation
that should lead to better performances. We also plan to apply
energy saving measures by using the information coming from
the User Interaction Layer.
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