
Benchmarking Zero-Shot Foundation Time Series
Forecasting Models for Industrial Applications
Benjamin Pasquier1,∗,†, Frédéric Montet1,† and Beat Wolf1

1 iCoSys, HEIA-FR, HES-SO University of Applied Sciences and Arts Western Switzerland

Abstract
Time-series forecasting foundation models recently emerged with zero-shot capabilities, leveraging generalized
training on diverse datasets. This study compares zero-shot foundation models to traditional statistical, machine
learning, and deep learning methods using industrial and academic multivariate datasets. Results show foundation
models, particularly Moirai large, often outperform traditional methods while reducing dataset-specific tuning
needs. These findings highlight their industrial potential by allowing for simpler, yet more accurate forecasting.

Keywords
zero-shot forecasting, foundation models, time series analysis, industrial applications, model benchmarking

1. Introduction

Forecasting is indispensable across various domains, including weather prediction, financial markets,
energy management, anomaly detection, and many more. All of these areas benefit from robust
predictors that can accurately fit the data for a subsequent task. Influenced by trends in the deep
learning community, the technologies used to create state-of-the-art predictors have begun to shift in
recent years. For some tasks, statistical methods still hold value, while in more complex use cases, deep
learning methods such as Transformer-based or other frontier models are increasingly needed. In this
context, foundation models are introducing a modeling approach that challenges traditional practices
by training on all kinds of time-series data to make predictions on a target time series.

One of the strengths of foundation models is their ability to produce qualitative forecasts in a zero-
shot context, i.e., where the model has never seen the data it is asked to predict. In this paper, we
explore three research questions. RQ1: What is the performance of those models in a zero-shot setting
compared to traditional machine learning approaches? RQ2: What are those models performance on
yet unreleased and industrial datasets, given the complexity to assess either overfitting or data leakage?
RQ3: Given the many parameters such as window length, co-variates, and gaps between inputs and
targets, how can we evaluate those models in a fair and reproducible way?

This study addresses these challenges by proposing a structured approach to evaluate foundation
models and benchmark them against traditional methods across diverse datasets. Evaluating and
comparing forecasters on these questions empowers practitioners to make informed decisions when
selecting models for specific projects.

In the following sections, we introduce our approach to benchmarking multiple foundation and
classical models on five different datasets from industrial and academic sources. The paper follows the
classical structure of scientific method sections, concluding with a discussion that assesses the quality
of the tested models.

AI days HES-SO ’25 January 27–29, 2025, Switzerland
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open benjamin.pasquier@hefr.ch (B. Pasquier); frederic.montet@hefr.ch (F. Montet); beat.wolf@hefr.ch (B. Wolf)
Orcid 0009-0009-7414-7279 (B. Pasquier); 0000-0003-0439-5559 (F. Montet); 0000-0002-9307-7212 (B. Wolf)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:benjamin.pasquier@hefr.ch
mailto:frederic.montet@hefr.ch
mailto:beat.wolf@hefr.ch
https://orcid.org/0009-0009-7414-7279
https://orcid.org/0000-0003-0439-5559
https://orcid.org/0000-0002-9307-7212
https://creativecommons.org/licenses/by/4.0/deed.en

Table 1
Overview of the forecasting methods used in this research.

Model Type Prediction type # Parameters

NaïveSeasonal Statistical Univariate Not applicable
AutoARIMA [2] Statistical Univariate < 100
GRU [7] Deep learning Multivariate 5-20k
TSMixer [3] Deep learning Multivariate 26-48k
Chronos Tiny [6] Foundation Univariate 8m
Chronos Large [6] Foundation Univariate 710m
Moirai small [5] Foundation Multivariate 14m
Moirai large [5] Foundation Multivariate 311m

2. Methods

The aim of our experiments is to have a comparison between models that is reliable and performed
across multiple datasets. For that purpose, we extended the onTime time series analysis library with a
benchmarking framework [1]. This extension allows us to minimize the implementation work required
for new models, as well as benefiting from available academic datasets, requiring custom data loading
code only for industrial datasets.

2.1. Models

To evaluate how well foundation models perform compared to existing dataset-specific approaches,
we select several well-established methods in the field of time series forecasting. First, Naïve Seasonal
forecasting and AutoARIMA [2] models serve as baseline benchmarks. Additionally, we incorporate
more advanced deep learning methods, including a GRU model and the TSMixer [3] model, which
have demonstrated their effectiveness in prior studies. These four models are implemented using the
wrappers provided by the Darts library, applied in their simplest forms with default parameters [4].
For the deep learning methods, only the input and output chunk lengths are adjusted to align with the
specific dataset’s input and target lengths. Finally, we evaluate two foundation models, Moirai [5] and
Chronos [6], which are currently the only ones integrated into our benchmarking framework. We use
checkpoints of the smallest, respectively the biggest models, available on the Hugging Face platform1,2.
Table 1 presents the model details.

It is worth noting that Naïve Seasonal forecasting, AutoARIMA, and Chronos are univariate models,
meaning they do not account for cross-correlations between features. Consequently, their univariate
predictions are combined to produce a single multivariate prediction.

2.2. Datasets and Pre-processing

Five different multivariate datasets are tested, as presented in Table 2. For each of them, a realistic
predictive task is defined by setting the input and target length for one prediction.

ETTh1 is data from an electricity transformer temperature. This dataset is multivariate, containing
oil temperature data and six power load features, with a one hour resolution. The most common task
with this data is to predict the future power oil temperature as a function of the power load.

The Energy dataset showcases the hourly energy demand generation and weather in Spain from
2015 to the end of 2018. 28 features are available including different type of energy generation such as
coal, oil, geothermal, etc. However, we remove eight constant features from the dataset as they offer no
predictive value and could potentially cause division by zero errors when calculating specific metrics.

1Chronos checkpoints used : https://huggingface.co/amazon/chronos-t5-tiny and https://huggingface.co/amazon/
chronos-t5-large

2Moirai checkpoints used : https://huggingface.co/Salesforce/moirai-1.0-R-small and https://huggingface.co/Salesforce/
moirai-1.0-R-large

https://huggingface.co/amazon/chronos-t5-tiny
https://huggingface.co/amazon/chronos-t5-large
https://huggingface.co/amazon/chronos-t5-large
https://huggingface.co/Salesforce/moirai-1.0-R-small
https://huggingface.co/Salesforce/moirai-1.0-R-large
https://huggingface.co/Salesforce/moirai-1.0-R-large

Table 2
Datasets used for the benchmark

Dataset Type Nb. Features Resolution Input length Target length

ETTh1 [8] Academic 7 1 hour 4 days 1 day
Energy [9] Academic 20 1 hour 4 days 1 day
HEIA10min Industrial 24 10 minutes 1 day 2 hours
HEIA1h Industrial 24 1 hour 4 days 1 day
MeteoSwiss [10] Industrial 8 10 minutes 1 day 2 hours

HEIA10min and HEIA1h are datasets that represent the electrical consumption of the University of
Applied Sciences in Fribourg, Switzerland. Two variants of this dataset are available with a 10 minutes
resolution as well as an hourly one. In this data, six buildings do provide electrical measurement of
sub-circuits for: the main circuit, the lightning, the “UPS power” (Uninterruptible Power Supply) and
the emergency power circuit.

The last dataset, MeteoSwiss, represents meteorological data from a national weather station located
in the Fribourg/Grangeneuve region. The data has a 10 minutes resolution and includes eight features
such as pressure, wind speed, wind direction, relative humidity, etc.

In terms of pre-processing, the time series from each dataset are first divided into training and test
sets using a standard 80%-20% split. Subsequently, the testing data is segmented into samples with
varied input (the portion used for prediction) and target (the portion to be predicted) splits, simulating
possible real-world use cases. Missing values in the datasets are handled using linear interpolation to
ensure continuity.

2.3. Evaluation

Although some datasets are designed such that certain features are used as inputs while others are
exclusively forecasted, we adopt a systematic approach where all available features are used for both
input and forecast.

To assess the models’ forecasts, we employ a rolling evaluation on the test set with a stride equal
to the prediction length. This approach ensures that all time steps in the dataset are utilized, while
avoiding repeated use of the same point as a target in multiple samples.

For evaluation metrics, we select two that are scale-invariant, allowing us to aggregate performance
across features even when they have different units or scales. The first metric is the Mean Absolute
Scaled Error (MASE), which measures the forecast MAE relative to a naïve seasonal baseline. MASE is
computed as shown in Equation 1:

MASE =
1
𝑇 ∑

𝑡𝑝+𝑇
𝑡=𝑡𝑝+1 |𝑦𝑡 − ̂𝑦𝑡|

1
𝑡𝑝−𝑚

∑
𝑡𝑝
𝑡=𝑚 |𝑦𝑡 − 𝑦𝑡−𝑚|

(1)

Here, 𝑦𝑡 represents the true values, ̂𝑦𝑡 the predicted values, 𝑇 is the prediction length, 𝑡𝑝 is the end of
the training period, and 𝑚 is the seasonal lag. In our case, we use a naïve forecast with 𝑚 = 1, where
the forecast at each step simply repeats the value from the previous time step.

The second metric is the Symmetric Mean Absolute Percentage Error (sMAPE), which evaluates
the relative error as a percentage, symmetrically penalizing over- and under-predictions. sMAPE is
calculated as shown in Equation 2:

sMAPE = 200 × 1
𝑇

𝑇
∑
𝑡=1

|𝑦𝑡 − ̂𝑦𝑡|
(|𝑦𝑡| + | ̂𝑦𝑡|)

(2)

Unlike traditional MAPE, sMAPE avoids division by zero and ensures that the metric remains bounded,
making it well-suited for datasets with values near zero.

By combining these two complementary metrics, we obtain a comprehensive evaluation of the models’
performance across diverse datasets and features.

3. Results

Table 3 presents a comparison of different forecasting models across multiple datasets, evaluated
using the MASE and sMAPE metrics. Among the models, Moirai large consistently achieves the best
performance, as evidenced by its lowest MASE and sMAPE values across most datasets, including the
ETTh1, Energy, HEIA10min, HEIA1h, and MeteoSwiss datasets. The Chronos models also perform
competitively, with results often close to Moirai, particularly on datasets like HEIA10min and Energy,
where the differences in metrics are relatively small.

Surprisingly, the Naïve Seasonal model demonstrates strong performance in certain cases, such as on
the HEIA10min and MeteoSwiss datasets, where it achieves the best sMAPE, while showing comparable
MASE to more advanced models. However, traditional machine learning and deep learning approaches,
such as GRU and TSMixer, tend to underperform. For instance, GRU shows particularly poor results on
the Energy and MeteoSwiss datasets.

Overall, the table underscores the strength of foundation models, particularly Moirai, in multivariate
forecasting tasks while highlighting the limitations of simpler baselines and older deep learning models
in this context.

Table 3
Comparison of models across datasets (MASE and sMAPE metrics).

Dataset ETTh1 Energy HEIA10min HEIA1h MeteoSwiss
Metric MASE sMAPE MASE sMAPE MASE sMAPE MASE sMAPE MASE sMAPE
Model

NaïveSeasonal 3.21 73.02 5.70 35.22 3.27 14.29 2.95 33.48 3.73 29.75
AutoARIMA 2.99 81.95 5.86 43.56 3.43 15.78 3.48 52.58 3.52 44.37
GRU 2.89 60.92 77.83 133.43 15.36 44.01 19.50 56.67 485.55 81.23
TSMixer 2.53 56.77 19.74 52.78 14.31 36.68 12.67 43.90 15.98 48.07
Chronos Tiny 2.08 46.80 5.93 33.74 4.69 16.79 3.08 29.14 9.90 50.25
Chronos Large 2.13 47.41 6.02 33.74 4.21 17.08 6.15 27.45 19.40 50.33
Moirai small 1.83 43.61 4.52 31.38 2.44 15.53 2.47 33.11 2.54 46.25
Moirai large 1.78 42.95 4.45 30.18 2.28 14.81 2.09 27.35 2.48 43.87

Table 4 compares training and inference times across models and datasets. Naïve Seasonal and
AutoARIMA skip explicit training, integrating their fitting process into inference, with Naïve Seasonal
being the fastest by simply reusing historical values. Deep learning models like TSMixer require
offline training (e.g., 1,079 seconds on MeteoSwiss) but achieve rapid inference (0.01–0.02 seconds).
Foundation models, operating in zero-shot mode, avoid training entirely; Moirai delivers significantly
faster inference (0.02–0.06 seconds) compared to Chronos, whose larger variants take up to 0.57 seconds.
Overall, Moirai combines scalability with fast inference, outperforming Chronos in efficiency.

4. Discussion

In this paper, we compared eight models performance across five different datasets with two metrics:
MASE and sMAPE. Such a benchmarking task allowed us to gather knowledge about the complexity
inherent to model comparison. Indeed, the number of parameters that one has to choose to compare
different models between each other influences the results. Furthermore, the metric used is also a
particularly important choice.

To come back to the research questions stated in the introduction, we could take a position related to
each of them. In relation to RQ1 How do those models perform compared to traditional machine learning

Table 4
Comparison of training and inference time across datasets, in seconds.

Dataset ETTh1 Energy HEIA10min HEIA1h MeteoSwiss
Time Train. Inf. Train. Inf. Train. Inf. Train. Inf. Train. Inf.
Model

NaïveSeasonal - 0.01 - 0.03 - 0.03 - 0.03 - 0.01
AutoARIMA - 0.68 - 1.90 - 2.18 - 2.19 - 0.82
GRU 313.78 0.01 86.25 0.02 138.87 0.01 7.28 0.01 487.78 0.01
TSMixer 71.44 0.01 104.59 0.01 117.25 0.02 20.82 0.02 1079.56 0.02
Chronos Tiny - 0.17 - 0.17 - 0.09 - 0.17 - 0.09
Chronos Large - 0.57 - 0.57 - 0.32 - 0.57 - 0.30
Moirai small - 0.02 - 0.02 - 0.03 - 0.02 - 0.02
Moirai large - 0.05 - 0.05 - 0.06 - 0.05 - 0.05

approaches? and RQ2 What are the performances of those models across various industrial datasets?, the
results of our benchmark allowed us to rank the performance of each model.

The table 3 presents those results and showcases the competitiveness of the selected foundation
models against other approaches. Using those models in zero-shot context has shown a great developer
experience with no complex training process needed to reach good performance across many datasets.
Nevertheless, the benchmarking process should include hyperparameter optimization of all ML/DL
models, in order to get the maximum performance for all of them; thus allowing for a fairer comparison.

An aspect to consider is the way predictions are calculated. In a case like Chronos, a multivariate
forecast is calculated component after component. Therefore, it misses out potentially important
cross-component correlations that could improve the forecast. Also, the inference time takes more time
as it evolves linearly, the more components are to be predicted.

One notable finding from this benchmark is that the simplest models are still relevant. This highlights
the importance of choosing a model that remains adapted to the data at hand and promotes a sort of
technological sobriety.

Finally, the answer to RQ3 Given the significant responsibility placed on developers when modeling
time series data, how can we ensure reliable comparisons between different forecasting models?, the answer
is more subtle. Transparency of the pre-processing is of paramount importance, so are the metrics used.
About the latter, none of the metrics we identified did provide an optimal way to compare multivariate
time series forecasts without falling into issues such as division by zero, or else. Therefore, new metrics
could be an area of improvement of the study in addition to more zero-shot models.

5. Conclusion

Our study reveals the challenges in comparing eight models in various datasets. foundation models
perform impressively in zero-shot contexts, offering ease of use without extensive training, yet simpler
models remain effective when well-matched to the data. The necessity of fine-tuning and choosing
appropriate metrics is critical, as these factors greatly influence performance and fairness in comparisons.
Limitations in current forecasting methods and metrics point to a need for new approaches that better
capture cross-component correlations and improve the reliability of the evaluation. Future research
should focus on improving transparency in pre-processing and developing innovative metrics to advance
model benchmarking.

References

[1] ontime.re, onTime: Your library to work with time series, GitHub repository, 2024. https://github.
com/ontime-re/ontime (accessed on 18.11.2024).

[2] R. J. Hyndman, Y. Khandakar, Automatic time series forecasting: The forecast package for r,
Journal of Statistical Software 27 (2008) 1–22. URL: https://www.jstatsoft.org/index.php/jss/article/
view/v027i03. doi:10.18637/jss.v027.i03.

[3] S.-A. Chen, C.-L. Li, N. Yoder, S. O. Arik, T. Pfister, Tsmixer: An all-mlp architecture for time series
forecasting, 2023. URL: https://arxiv.org/abs/2303.06053. arXiv:2303.06053.

[4] J. Herzen, F. LÃ¤ssig, S. G. Piazzetta, T. Neuer, L. Tafti, G. Raille, T. V. Pottelbergh, M. Pasieka,
A. Skrodzki, N. Huguenin, M. Dumonal, J. KoÅ›cisz, D. Bader, F. Gusset, M. Benheddi, C.Williamson,
M. Kosinski, M. Petrik, G. Grosch, Darts: User-friendly modern machine learning for time series,
Journal of Machine Learning Research 23 (2022) 1–6. URL: http://jmlr.org/papers/v23/21-1177.html.

[5] G. Woo, C. Liu, A. Kumar, C. Xiong, S. Savarese, D. Sahoo, Unified training of universal time series
forecasting transformers, 2024. URL: https://arxiv.org/abs/2402.02592. arXiv:2402.02592.

[6] A. F. Ansari, L. Stella, C. Turkmen, X. Zhang, P. Mercado, H. Shen, O. Shchur, S. S. Rangapuram,
S. Pineda Arango, S. Kapoor, J. Zschiegner, D. C. Maddix, H. Wang, M. W. Mahoney, K. Torkkola,
A. Gordon Wilson, M. Bohlke-Schneider, Y. Wang, Chronos: Learning the language of time series,
arXiv preprint arXiv:2403.07815 (2024).

[7] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio,
Learning phrase representations using rnn encoder-decoder for statistical machine translation,
2014. URL: https://arxiv.org/abs/1406.1078. arXiv:1406.1078.

[8] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang, Informer: Beyond efficient
transformer for long sequence time-series forecasting, in: The Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Virtual Conference, volume 35, AAAI Press, 2021, pp.
11106–11115.

[9] Energy consumption, generation, prices andweather, 2019. URL: https://www.kaggle.com/datasets/
nicholasjhana/energy-consumption-generation-prices-and-weather, accessed: 2024-11-17.

[10] MeteoSwiss, Federal office of meteorology and climatology, 2024. URL: https://www.meteoswiss.
admin.ch/, accessed: 2024-11-18.

https://github.com/ontime-re/ontime
https://github.com/ontime-re/ontime
https://www.jstatsoft.org/index.php/jss/article/view/v027i03
https://www.jstatsoft.org/index.php/jss/article/view/v027i03
http://dx.doi.org/10.18637/jss.v027.i03
https://arxiv.org/abs/2303.06053
http://arxiv.org/abs/2303.06053
http://jmlr.org/papers/v23/21-1177.html
https://arxiv.org/abs/2402.02592
http://arxiv.org/abs/2402.02592
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather
https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather
https://www.meteoswiss.admin.ch/
https://www.meteoswiss.admin.ch/

	1 Introduction
	2 Methods
	2.1 Models
	2.2 Datasets and Pre-processing
	2.3 Evaluation

	3 Results
	4 Discussion
	5 Conclusion

