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Computer-aided diagnostics in histopathology are based on the digitization of glass slides. However, heterogeneity be-
tween the images generated by different slide scanners can unfavorably affect the performance of computational algo-
rithms. Here, we evaluate the impact of scanner variability on lymph node segmentation due to its clinical importance
in colorectal cancer diagnosis. 100 slides containing 276 lymph nodes were digitized using 4 different slide scanners,
and 50 of the lymph nodes containing metastatic cancer cells. These 400 scans were subsequently annotated by 2 ex-
perienced pathologists to precisely label lymph node boundary. Three different segmentation methods were then ap-
plied and compared: Hematoxylin-channel-based thresholding (HCT), Hematoxylin-based active contours (HAC), and
a convolution neural network (U-Net). Evaluation of U-Net trained from both a single scanner and an ensemble of all
scanners was completed. Mosaic images based on representative tiles from a scanner were used as a reference image to
normalize the new data from different test scanners to evaluate the performance of a pre-trained model. Fine-tuning
was carried out by using weights of a model trained on one scanner to initialize model weights for other scanners.
To evaluate the domain generalization, domain adversarial learning and stain mix-up augmentation were also imple-
mented. Results show that fine-tuning and domain adversarial learning decreased the impact of scanner variability and
greatly improved segmentation across scanners. Overall, U-Net with stain mix-up (Matthews correlation coefficient
(MCC) = 0.87), domain adversarial learning (MCC = 0.86), and HAC (MCC = 0.87) were shown to outperform
HCT (MCC = 0.81) for segmentation of lymph nodes when compared against the ground truth. The findings of this
study should be considered for future algorithms applied in diagnostic routines.
Introduction

Development of algorithms to assist pathologists in their daily diagnos-
tic routine is an active and thriving area of research.1–5 Slide scanners are
used to digitize tissue slides from glass to whole slide images (WSI). How-
ever, each scanner has its own set of parameters and properties (i.e. camera
sensors, illumination sources, software etc.). This diversity leads to scanner
induced heterogeneity issues in WSI data that contributes to differences in
stain presentation and contrast distributions, shown to affect downstream
image analytics.6–9

Various approaches have been proposed on how to generalize machine
learning algorithms to WSI data from multiple sources. For instance,
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Lafarge et al10 demonstrated that a combination of domain adversarial
and color augmentation improved cross-scanner mitosis detection on both
internal and external cohorts. In Ciompi et al,11 they found that the stain
normalization is an important step in training and evaluation of colorectal
cancer (CRC) classification to minimize source variability.

Similarly, Tellez et al12 showed that the convolutional neural network
(CNN) classifiers performed better with the combination of color augmen-
tation and stain color normalization. In Zheng et al,13 an adaptive color
deconvolution technique is proposed to normalize the WSI, showing im-
provement in the performance of sentinel lymph nodemetastasis detection.
These prior works all compare slides generated frommultiple sources. As a
result, these slides have not only stain and contrast heterogeneity, but also
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suffer from inter-patient differences. Therefore, it is difficult to disentangle
the various sources of heterogeneity imparted on the images.

To the best of our knowledge, the effects of heterogeneity caused by the
slide scanners on the performance of image analysis algorithms in compu-
tational pathology has not yet been systematically evaluated. This study at-
tempts to fill this niche via the lymph node segmentation across 3 different
algorithms under various experiments: Hematoxylin-channel-based
thresholding (HCT), Hematoxylin-based active contours (HAC), and a con-
volution network (U-Net). Identifying the precise boundaries of lymph
nodes are critical to assist downstream efforts in CRC diagnosis.14,15 Knowl-
edge of positive lymph nodes for metastatic cancer is critical for guiding ad-
juvant chemotherapy planning.16,17 According to clinical guidelines a
minimum of 12 lymph nodes should be histologically assessed. For lymph
node metastasis diagnosis, a single tumor cell counts, therefore, a precise
lymph node segmentation is a critical factor for propermetastasis detection.
Here, the impact of scanner variability on determining the precise localiza-
tion of lymph nodes on WSI was evaluated.

Materials and methods

The overall workflow adopted in this study is shown in Fig. 1. Briefly,
the same lymph node glass slide cohort is digitized using 4 different scan-
ners. Each WSI was subsequently annotated by the pathologists for lymph
node boundaries. After dividing into training and testing set, 3 different
segmentation methods were applied (see Segmentation methods). Results
were compared to the ground truth using two different evaluation metrics
(Matthews correlation coefficient and Hausdorff Distance, see Evaluation
measures). The following subsections describe each step of the workflow
in more detail.

Dataset

From n= 69 patients (metastatically positive cases: 28, negative cases:
41) at the Institute of Pathology, University of Bern, 100 glass slides of
lymph node tissues were stained with Hematoxylin and Eosin (H&E).
These slides contained 276 lymph nodes (metastatically positive: 50, nega-
tive: 226). The glass slides were scanned using 4 scanners: 3Dhistech P250,
3Dhistech P1000, Aperio GT450, and Hamamatsu S360. Due to proprietary
issues, all scanners are anonymized as Scanner A, B, C, and D. The
Fig. 1. The workflow to assess the impact of scanner variability on lymph node segment
given to expert pathologists for lymph node annotations. The annotated WSI are then dis
different segmentation methods (i.e. core method in orange color): Hematoxylin-cha
convolution network (U-Net). In order to minimize scanner variability, the segmenta
learning, and stain mix-up experiments. Upon application of segmentation methods, t
segmented nodes (i.e in green color) by eliminating the undesired pixels around the re
not require final post-processing step.

2

magnification and resolution varied depending on the scanner type:
(a) Scanner A and B have 20× objective magnification and a pixel resolu-
tion of 0.460 μm and 0.243 μm respectively, and (b) Scanners C and D
have 40×magnification (with 20× objective magnification and a 2× ap-
erture boost) with 0.243 μm and 0.262 μm pixel resolution respectively.
Fig. 2 shows the stain variability between the same slide scanned with the
4 different scanners. A detailed visual representation of stain vectors for
all the data from four different scanners can be seen in Fig. A.2. In addition,
the structural similarities (based on luminance, contrast, and structure)
across the images from all the scanners can be observed in Fig. A.1.

Lymph node annotations and observer variability

Upon scanning the slides, the acquired WSI from each scanner were vi-
sually inspected. Apart from variations in stain color and contrast, tissue de-
tection (e.g. missing tissue) related issues differed by scanner, likely due to
differences in hardware and software. As a result, digital images from the
same glass slide cannot be perfectly registered across scanners. Particularly,
Scanner B has mechanical limitations in scanning the full tissue region of
the glass slide, and as such lymph node areas at the borders and corners
of the glass slide were not scanned and thus missing from theWSI. To com-
pensate for these issues, lymph nodes were independently annotated per
WSI. Two experienced pathologists at the Institute of Pathology, University
of Bern traced each lymph node (capsule and subcapsular sinus region)
using the polygon tool of the Automated Slide Analysis Platform (ASAP)18

(see Fig. 4 column (b)).
In order to evaluate the inter and intra-observer variability, the 100WSI

from Scanner A were employed. This scanner was selected due to its
existing validation on diagnosticworkflows at the institute.WSI are divided
equally into 2 sets of 50 and provided to both pathologists who were also
asked to re-annotate them again after an approximate 3 months washout
period.

Segmentation methods

An especially challenging lymph node is shown in Fig. 3 that tends to
confound segmentation methods. The undesired tissue regions around
lymph nodes are similar in stain color and morphology to the capsule or
small blood vessels inside a lymph node. Differentiating between these
ation. Same lymph node glass slide cohort is digitized using 4 different scanners and
tributed into test and train sets to evaluate the scanner variability with the help of 3
nnel-based thresholding (HCT), Hematoxylin-based active contours (HAC), and a
tion methods are evaluated with normalization, fine-tuning, domain adversarial
he post-processing (i.e in yellow color) is used for HCT and U-Net to achieve final
gion of interests. The HAC method uses an iterative smoothing operator and does



Fig. 2. A sample slide scanned with 4 different scanners. The whole slide images (right) and corresponding stain vectors (left) show the stain color and contrast differences
when digitized with (a) Scanner A, (b) Scanner B, (c) Scanner C, and (d) Scanner D.
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regions is thus fraught with difficulties. Image segmentation tasks are typi-
cally performed via intensity, morphology, or deep learning-based
methods, so one approach of each is introduced below and employed in
this study for comparison.
Hematoxylin-channel-based thresholding
The selection of Hematoxylin-channel-based thresholding (HCT) was

motivated by Lee and Paeng,19 where tissue regions of sentinel breast
lymph nodes were successfully segmented for cancer stage classification.7

In HCT ,the Otsu threshold20 is applied to the Hematoxylin-channel of
each image after conversion from RGB to HED color vectors.21,22 Upon
thresholding, the local median was calculated with a disk structural ele-
ment of 2 pixels and all holes were then filled in the binary mask, In
order to obtain the final segmented lymph nodes, local binary morpholog-
ical operations, dilation, and erosionwith 6×6 and 3×3filters respectively
were used to remove spurious objects.
Fig. 3.An exemplarywhole slide image explains themorphology of the lymph node,whe
the subcapsular sinus. From the diagnostic point of view, the quantification of positive ly
Metastases ) staging is an important prognostic-marker and this visual search for tumor c
contains fatty tissue, blood vessels, and muscle tissue; and is similar in stain color and m

3

Hematoxylin-based active contours
Hematoxylin-based active contours (HAC) uses the morphological active

contours method23,24 where the lymph nodes were segmented using initial
seeds. Down-sampled WSI were first deconvolved to separate Hematoxylin
from Eosin stain21,22 and Otsu threshold20 was then applied to the separated
Hematoxylin channel to get the seeds (as performed inHCT). These seeds cor-
respond to Hematoxylin rich areas, likely candidates for lymph node pres-
ence. The seeds then grow to the boundaries of the lymph node capsule.
The number of iterations and number of times the smoothing operator is
applied per iteration were empirically chosen.
Convolution network: U-Net
The U-Net architecture with a small modifications was selected.25 The

network is consisting of 23 convolution layers and around 7.5 millions of
parameters. The network summary is attached with the supplementary
material.
re the region densewith nuclei is packedwithin a capsule and the inner area is called
mph nodes (i.e. visual identification of tumor cells) in TNM (Tumor , Lymph Nodes ,
ells starts at the capsular region. The outer region (outward from the capsule) mostly
orphology to the capsule.
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Experimental design

All WSI were first down-scaled to 20× to ensure fair comparison re-
gardless of base magnification, and then subsequently down-scaled again
by a factor of 64, allowing them to fit into memory. The corresponding
ground-truth annotations were similarly down-scaled.

HCT and HAC experiments
In bothHCT andHAC, neithermethod requires a supervised training set

and therefore could be applied to all WSI. As a pre-processing step, a Gauss-
ian filter with a kernel size of 3×3 was applied to smooth the input image,
helping to reduce noise. In HAC, the parameters such as number of itera-
tions and number of times the smoothing operator is applied per iteration
were empirically chosen as 150 and 10, respectively.

U-Net experiments
To train the U-Net, the down-scaled WSI were re-scaled further to

512×512 pixels to fit to the network. To evaluate the method across all
the samples, the WSI from each scanner were divided into training (n =
80) and test (n = 20) sets by using 5-fold cross-validation. To compare
the performance across all the scanners, same indiceswere used in each cor-
responding fold from all scanners to split data into training and test sets.
The weights of the network were optimized using binary cross-entropy
loss function, minimized with the Adam optimizer.26 The learning rate
was explicitly reduced upon plateau by a factor of 0.1. In order to minimize
over-fitting, training samples were augmented by flipping, color, and
brightness augmentations. For color augmentation, the image was con-
verted from RGB to HED and stain vectors were then modified with linear
contrast having alpha range of [0.5, 0.2], whereas brightness was randomly
modified by multiplying and adding the factor of 0.75 and 15,
respectively.12,27 In the post-processing step, the final binary mask was ob-
tained by considering the pixels with a higher probability than 50%. Five
sets of experiments were executed: Single scanner versus all scanners train-
ing, stain color normalization, fine-tuning using inter-scanner weights, do-
main adversarial learning, and stain mix-up augmentation.

Single versus all scanners training. In single versus all scanners training,
the U-Net was trained using data from one scanner and the best performing
model on its associated cross-validation set was applied to the test sets from
all other scanners. Training sets from all scanners were then merged and
used to train a singular U-Net which was again applied on the held-out test-
ing folds. In both cases, the network was trained for 200 epochs with a
learning rate of 1e-3.

Stain color normalization. The literature suggests that color normaliza-
tion improves U-Net resilience to stain and scanner variability.28,29 Here,
normalization was performed by creating a reference mosaic image that
contained a balanced set of representative tiles from background and fore-
ground regions (lymphnode tissues) of theWSI belonging to a scanner. This
referencemosaic image is then used to normalize all theWSI from test scan-
ners successively by using 3 different image normalization methods,
Macenko, Vahadane, and Reinhard.21,30,31 The first 2 methods use stain
deconvolution to adjust the specific hematoxylin and eosin stain vectors
and the latter is based on color distribution in the Lab color space. A few ex-
ample mosaic images created from WSI of different scanners are presented
in Fig. A.5.

Fine-tuninginter-scanner weights. To test the hypothesis that the
pre-existing model of one scanner could achieve similar performance on
the target scanner in a computationally cost-effective way, fine-tuning
was employed. Fine-tuning sees the initialization of a new model with
weights from a previously trained model. For example, after the U-Net for
Scanner A converges, these weights are employed to initialize a new
model for training on Scanner B. One can then measure the performance
difference from applying Scanner A to Scanner B data directly versus via
the fine-tuned model. The fine-tuning process is performed for 25 epochs
at a low learning rate of 1e-5, by unfreezing first 3 and last 3 convolutional
layers of contraction and expansion paths of the proposed U-Net model
respectively.
4

Domain adversarial learning. Domain adversarial learning (DAL) is a
method for domain adaptation where additional unlabeled data from mul-
tiple known domains is used to train a domain discriminator using the ini-
tial model’s output embedding. However, gradients from the domain
discriminator are reversed thereby training the main model to focus on do-
main invariant features rather than overfitting to domain-specific ones. In
this experiment, we simultaneously trained a U-Net for lymph node seg-
mentation and an additional CNN to discriminate between the input do-
mains using activations of the U-Net.32 An adversarial training step
through a gradient reversal layer is introduced to optimize segmentation
and domain discriminator networks while decreasing the amount of
domain-specific information in the U-Net output activations. The domain
discriminator CNN consists of 4 convolutional layers, each with ReLu acti-
vations, batch normalization, and a max-pooling, then 3 fully connected
layers with ReLu activations.32 In this experiment, each scanner is consid-
ered a domain and assigned an integer label. To train the DAL network
over all the scanners, each time, a scanner is considered as a training do-
main and the rest of the 3 scanners as unseen domains. In the training do-
main, the samples contain annotated lymph node masks and domain
labels, whereas, in the unseen domains, the samples contain only domain
labels without any annotated mask. The training of the DAL network was
performed in three steps using a similar schedule as Scannell et al.,32 but
for 200 epochs. In the first step, the U-Net network was trained on the do-
main scanner for 50 epochs with a learning rate of 1e-3. In the second
step, the domain discriminator was trained for the next 50 epochs with a
learning rate of 1e-4. In the third step, both U-Net segmentation and do-
main discriminator CNN were trained together with adversarial update.
After 50 epochs, the adversarial update was increased with a linear factor
from 0 to 1. Each training cycle was performed with a 5-fold cross-
validation, data augmentation, optimizer, and loss function (except the do-
main discriminator was trained by using Categorical Cross-entropy loss
function) similar to the baseline experiments (i.e. Single versus all scanners
training). The DAL model was evaluated by comparing the results of train-
ing and unseen domains on their respective test samples.

Stain mix-up augmentation. The stain mix-up augmentation shows un-
seen color domain generalization in pathological images by encouraging
the model during the training to learn variations in the stain colors.33 In
the training step, the stain mix incorporates the stain colors of unseen do-
mains to generalize the model. In this experiment, we employed the stain
mix-up technique to train the U-Net for the segmentation of lymph nodes.
Each training cycle consisted of a pair of 2 scanners, where 1 scanner was
considered a training domain and the other a test domain. Two mosaic im-
ages were created from the background and foreground samples of each
training set of training and test domains. Their stain vectors were then esti-
mated and during the training of the segmentation model a random stain
color augmentation was applied by mixing the 2 estimated stains. Each
training cyclewas performedwith a 5-fold cross-validation, data augmenta-
tion, optimizer, loss function, number of epochs, and learning rate the same
as the baseline experiments (i.e. Single versus all scanners training). The
final model was evaluated to compare the results on the corresponding
test sets of training and test domains. This technique was repeated for all
possible combinations of scanners by considering them as training and
test domains.

Evaluation measures

The segmentationmethods are quantitatively evaluated using 2metrics.
Pixel-level differences are measured using the Matthews correlation coeffi-
cient (MCC).34,35 The MCC between ground truth and segmented labels are
calculated as given in Eq. (1).

MCC ¼ TP� TN � FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TN þ FPð Þ TN þ FNð Þp (1)

where TP is the number of true positives, TN the number of true negatives,
FP the number false positives, and FN the number of false negatives. MCC
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ranges between−1 and+1where+1 represents a perfect prediction, 0 an
average random prediction, and −1 inverse prediction when comparing
with the ground truth. Boundary differences are measured using the
Hausdorff Distance (HD).36 HD calculates themaximum Euclidean distance
from all the minimum distances between boundaries of ground truth
(A) and boundaries of segmentation region (B) as given in Eq. (2).

HD A;Bð Þ ¼ max h A;Bð Þ; h B;Að Þð Þ ð2Þ

where h(A,B) is the directed Hausdorff distance based on Equation (3)

h A;Bð Þ ¼ max
a∈A

min
b∈B

a−bk k ð3Þ

where ‖a − b‖ represents the Euclidean distance. HD between 2 perfectly
overlapped boundaries is equal to zero. Expected ranges of HD for good, ac-
ceptable, and bad scores could be less than 100 μm, between 100 μm and
150 μm and higher than 150 μm, respectively. Statistical significance be-
tween different experiments on MCC accross different scanners is deter-
mined with the Wilcoxon, Friedman test and Nemenyi post-hoc test.37–39
Table 1
The outcome of observer variability across the lymph node annotations (ground
truth) carried out by 2 pathologists, average scores on the scale MCC and HD.

MCC HD (μm)

Inter-observer (n=50) 0.94±0.07 80.51±41.48
Intra-observer (n=50) 0.95±0.06 76.00±43.84

Table 2
MeanMCC and HD scores onHCT and HAC lymph node segmentationmethods without a
normalization methods, the mean MCC and HD scores of the test scanners are upon n
respectively). P-values are based on MCC scores from all scanners.

Methods Test scanner

No normalization

HCT

A
B
C
D

HAC

A
B
C
D

Macenko

HCT

A
B
C
D

HAC

A
B
C
D

Vahadane

HCT

A
B
C
D

HAC

A
B
C
D

Reinhard

HCT

A
B
C
D

HAC

A
B
C
D
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Results

Observer variability

The mean MCC values for inter- and intra-observer variability are
shown in Table 1. These results suggest that inter- and intra-observer vari-
ability is small, and the minimal differences that are present were not
deemed to be clinically relevant.
HCT and HAC experiments

The results from HCT and HAC lymph node segmentation without and
with normalization using Macenko, Vahadane, and Reinhard methods are
presented in Table 2. In case of no normalization, the HCT showed a perfor-
mance in the range of 0.76 and 0.81 on MCC score by Scanner D and A, re-
spectively. The higher boundary losses (HD) were observed, especially on
Scanner C. Comparatively, HAC showed better performance than HCT for
3 out of 4 scanners, where Scanner A has scored 0.87 on MCC and Scanner
B outperformed on HDwith a score of 120.58 μm. In the case of normaliza-
tion methods, the overall performance variability increased on both HCT
and HAC methods. After normalizing with Macenko, both the methods
showed drop in the performance in all test scanners except Scanner C in
HAC. Similar trend is noticed in the Vahadane and Reinhard normaliza-
tion-based results. However, in comparison with other 2 normalization
methods, the Reinhard technique was able to minimize the variability
with an overall drop in performance in HAC. The post-hoc analyses on
both HCT and HAC with and without normalization (see Fig. A.3 and
Table A.1) suggested that the performance of the HAC method was consis-
tent for both pre- and post-normalization, whereas HCT showed variability
in performance when normalization was introduced.
ndwith normalization usingMacenko, Vahadane, and Reinhardmethods. In case of
ormalizing with best performing scanners (e.g. Scanner B and A in HCT and HAC,

MCC HD (μm) P-value

0.80 ± 0.21 185.43 ± 126.12

6.09E − 08
0.81 ± 0.26 123.52 ± 54.36
0.80 ± 0.25 214.94 ± 184.80
0.76 ± 0.29 185.48 ± 91.44
0.87 ± 0.21 165.76 ± 98.53

5.78E − 08
0.82 ± 0.27 120.58 ± 49.43
0.85 ± 0.26 171.63 ± 96.46
0.81 ± 0.29 177.58 ± 82.63
0.77 ± 0.24 189.20 ± 106.38

2.29E − 11
0.81 ± 0.26 123.52 ± 54.36
0.79 ± 0.25 175.36 ± 76.02
0.69 ± 0.34 206.14 ± 116.46
0.87 ± 0.21 165.76 ± 98.53

1.27E − 09
0.79 ± 0.29 124.27 ± 49.31
0.85 ± 0.25 153.31 ± 62.57
0.75 ± 0.35 193.25 ± 107.46
0.67 ± 0.35 243.07 ± 196.36

4.25E − 09
0.81 ± 0.26 123.52 ± 54.36
0.79 ± 0.25 176.36 ± 78.40
0.58 ± 0.43 253.35 ± 171.29
0.87 ± 0.21 165.76 ± 98.53

3.72E-09
0.77 ± 0.30 126.44 ± 47.76
0.85 ± 0.23 155.72 ± 64.58
0.62 ± 0.43 241.99 ± 158.82
0.74 ± 0.30 222.00 ± 192.50

1.29E − 10
0.81 ± 0.26 123.52 ± 54.36
0.64 ± 0.32 237.24 ± 129.03
0.71 ± 0.31 226.80 ± 166.68
0.87 ± 0.21 165.76 ± 98.53

1.53E − 05
0.76 ± 0.35 159.10 ± 110.34
0.75 ± 0.35 197.78 ± 103.86
0.76 ± 0.35 212.37 ± 176.00



Table 4
Mean MCC and HD values using U-Net-based lymph node segmentation by stain
color normalizingWSI of test scanner to train scanner (mosaic-based normalization)
by using using Macenko, Vahadane, and Reinhard methods. P-values are based on
MCC scores between train and normalized scanners.

Methods Train
scanner

Normalized
scanner

MCC HD (μm) P-value

Macenko

A

A 0.80 ± 0.22 141.95 ± 82.36

0.190
B 0.74 ± 0.27 84.98 ± 44.72
C 0.73 ± 0.27 150.04 ± 74.95
D 0.73 ± 0.29 149.56 ± 80.04

B

A 0.60 ± 0.39 175.15 ± 102.93

0.002
B 0.81 ± 0.20 87.52 ± 46.23
C 0.73 ± 0.27 149.89 ± 66.38
D 0.65 ± 0.35 161.21 ± 84.03

C

A 0.52 ± 0.41 176.48 ± 83.22

5.37E − 18
B 0.76 ± 0.27 86.29 ± 42.75
C 0.81 ± 0.19 156.70 ± 79.84
D 0.62 ± 0.37 167.56 ± 90.85

D

A 0.55 ± 0.30 203.10 ± 119

3.58E − 19
B 0.78 ± 0.25 87.64 ± 50.55
C 0.77 ± 0.25 144.48 ± 76.96
D 0.83 ± 0.19 149.67 ± 83.95

A

A 0.80 ± 0.22 141.95 ± 82.36

1.83E − 04
B 0.73 ± 0.27 84.86 ± 43.82
C 0.70 ± 0.28 153.00 ± 75.57
D 0.58 ± 0.36 177.73 ± 98.97
A 0.46 ± 0.49 190.18 ± 118.82
B 0.81 ± 0.20 87.52 ± 46.23
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U-Net experiments

Single versus all scanners training
There are several findings when comparing single versus all training

(see Table 3). The model outperformed (MCC= 0.87) when it was trained
by Scanner D and tested on C. When U-Net was trained on the data from
Scanner A, B, and C, and tested on Scanner D, then the model showed
slightly poor performance on the MCC metric, likely, due to the low-
contrastedWSI. By considering the training and test set from the same scan-
ner, the network outperformed on Scanner B and C with a mean MCC of
0.81 and the boundary losses reduced to ameanHDof 87.52 μmby Scanner
B. In addition, when the network was trained on the samples from all 4
scanners, the mean MCC and HD in each scanner were even improved to
what we have achieved on the single scanner training and testing except
Scanner D that shown slight drop in performance (see Table 3). The net-
work achieved the highest mean MCC value of 0.85 and mean HD reduced
to 80 μm on Scanner B. In the single scanner training experiment, the per-
formance variability was increased in all test scanners when compared to
the outcome with the training scanner. When Scanner D was used as train-
ing scanner than variations were less compared to other 3 experiments
where Scanners A, B, and C were used as training scanners. In all scanners
training-based experiments, a similar trend was noticed where the U-Net
performedworse on the ScannerD as compared to other scanners. Nonethe-
less, all scanners training have shown less variance in performance com-
pared to the first 3 combinations of experiments in single scanner training.
Vahadane

B 1.81E − 07
C 0.72 ± 0.27 157.17 ± 74.03
D 0.49 ± 0.49 190.49 ± 106.54

C

A 0.40 ± 0.52 188.89 ± 99.36

5.61E − 17
B 0.75 ± 0.28 87.33 ± 44.97
C 0.81 ± 0.19 156.70 ± 79.84
D 0.47 ± 0.50 197.69 ± 116.63

D

A 0.49 ± 0.39 202.32 ± 112.66

1.81E − 23
B 0.77 ± 0.26 88.21 ± 51.92
C 0.76 ± 0.26 148.11 ± 82.23
D 0.83 ± 0.19 149.67 ± 83.95

Reinhard

A

A 0.80 ± 0.22 141.95 ± 82.36

0.44
B 0.76 ± 0.26 85.08 ± 52.23
C 0.78 ± 0.23 143.79 ± 73.66
D 0.77 ± 0.26 145.12 ± 84.41

B

A 0.74 ± 0.24 140.53 ± 82.76

0.11
B 0.81 ± 0.20 87.52 ± 46.23
C 0.76 ± 0.25 139.67 ± 66.05
D 0.75 ± 0.25 145.39 ± 81.53

C

A 0.71 ± 0.25 149.52 ± 92.46

1.13E − 05
B 0.71 ± 0.25 91.69 ± 54.42
Stain color normalization
In stain normalization experiments, a mosaic from the test set of each

fold of the training scanner was created and then each WSI from the corre-
sponding fold of the test scanner was normalized to that mosaic by using
Macenko, Vahadane, and Reinhard normalization methods. Same models
trained in the single scanner training experiments on the corresponding
training scanners were used to segment the lymph nodes on the normalized
images of the each test scanner. The results of the mosaic reference image
normalization approaches are tabulated in Table 4. In all 3 normalization
methods, the overall performance was dropped, however, Scanner D has
shown improved performance of around 54% as compared to single train-
ing experiments when tested on the model trained on Scanners A, B, and
C. The Macenko and Reinhard normalization approaches have shown bet-
ter performance as compared to Vahadane to minimize the variability of
outcome. Overall, Reinhard has shown better resilience to performance
Table 3
Mean MCC and HD scores using U-Net for lymph node segmentation with single
versus all scanners training strategy. P-values are based on MCC scores between
train and test scanners when the U-Net is applied.

Train scanner Test scanner MCC HD (μm) P-value

Single scanner

A

A 0.80 ± 0.22 141.95 ± 82.36

2.72E − 25
B 0.76 ± 0.23 85.03 ± 41.89
C 0.81 ± 0.20 150.91 ± 79.45
D 0.38 ± 0.40 248.79 ± 132.49

B

A 0.78 ± 0.20 149.63 ± 83.08

3.74E − 29
B 0.81 ± 0.20 87.52 ± 46.23
C 0.79 ± 0.20 159.13 ± 78.71
D 0.22 ± 0.27 284.86 ± 122.38

C

A 0.78 ± 0.20 154.20 ± 91.41

1.02E − 44
B 0.79 ± 0.20 90.81 ± 47.93
C 0.81 ± 0.19 156.70 ± 79.84
D 0.18 ± 0.22 292.53 ± 119.52

D

A 0.69 ± 0.29 170.25 ± 100.26

2.52E − 16
B 0.84 ± 0.18 74.77 ± 41.86
C 0.87 ± 0.15 132.36 ± 71.71
D 0.83 ± 0.19 149.67 ± 83.95

All scanners

A 0.82 ± 0.21 133.74 ± 76.78

1.03E − 19
B 0.85 ± 0.21 80.00 ± 42.21
C 0.82 ± 0.20 146.01 ± 71.24
D 0.76 ± 0.25 162.67 ± 82.14

C 0.81 ± 0.19 156.70 ± 79.84
D 0.72 ± 0.25 156.30 ± 92.03

D

A 0.76 ± 0.22 149.22 ± 98.30

6.02E − 07
B 0.75 ± 0.23 93.85 ± 55.99
C 0.78 ± 0.22 154.53 ± 90.29
D 0.83 ± 0.19 149.67 ± 83.95
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variances in all experiments compared to its counterparts. Such perfor-
mance by these normalization methods can also be observed from the
post-hoc analyses presented in Fig. A.4, Table A.2, and Table A.3.
Fine-tuninginter-scanner weights
A significant improvement can be seen in all metrics when fine-tuning

was employed (see Table 5). In comparison with the single scanner training
and stain color normalization approaches, the fine-tuning showed promis-
ing improvement to reduce scanner variabilities (see Tables 3 and 4). Spe-
cifically, both MCC and HD variances were significantly reduced in
contrast with the mosaic image-based normalization approaches. The per-
formance on Scanner D has improved most evidently up to 10% on MCC
when a pre-trained model was fine-tuned for other scanners. The model
has outperformed when trained on Scanner D and fine-tuned with Scanner
C (MCC0.87). These results reflect fine-tuning as an effective approach that
requires a smaller number of epochs to achieve consistent results on the
data from another scanner.



Table 5
Mean MCC and HD values using U-Net-based lymph node segmentation by fine-
tuning test scanner to pre-trained weights of train scanner. P-values are based on
MCC scores between train and fine-tuned scanners.

Train scanner Fine-tuned scanner MCC HD (μm) P-value

A

– 0.80 ± 0.22 141.95 ± 82.36

4.55E − 05
B 0.81 ± 0.21 82.17 ± 40.96
C 0.85 ± 0.18 137.51 ± 68.12
D 0.77 ± 0.25 151.87 ± 78.28

B

A 0.80 ± 0.20 141.27 ± 84.15

3.31E − 05
– 0.81 ± 0.20 87.52 ± 46.23
C 0.82 ± 0.18 149.71 ± 75.07
D 0.73 ± 0.26 173.04 ± 92.99

C

A 0.78 ± 0.20 154.43 ± 91.76

1.52E − 14
B 0.82 ± 0.19 84.59 ± 45.32
– 0.81 ± 0.19 156.70 ± 79.84
D 0.75 ± 0.25 169.19 ± 97.35

D

A 0.86 ± 0.17 123.87 ± 74.08

8.71E − 05
B 0.85 ± 0.19 77.58 ± 42.05
C 0.87 ± 0.16 130.02 ± 67.91
– 0.83 ± 0.19 149.67 ± 83.95

Table 7
Mean MCC and HD values using U-Net-based lymph node segmentation stain mix-
up augmentation method. P-values are based on MCC scores between training
and test domains (scanners) using Wilcoxon.39

Training domain Test domain MCC HD (μm) P-value

A

A 0.73 ± 0.28 115.30 ± 95.00
0.61

B 0.76 ± 0.24 81.85 ± 42.58
A 0.76 ± 0.25 145.95 ± 84.14

0.52
C 0.83 ± 0.20 143.07 ± 67.13
A 0.85 ± 0.19 143.07 ± 63.43

3.24E − 14
D 0.66 ± 0.31 183.79 ± 91.54

B

B 0.87 ± 0.19 73.24 ± 38.21
3.9E − 18

A 0.10 ± 0.14 274.07 ± 95.99
B 0.87 ± 0.14 71.94 ± 36.34

1.16E − 07
C 0.82 ± 0.19 140.86 ± 68.00
B 0.87 ± 0.15 73.84 ± 39.51

1.68E − 15
D 0.73 ± 0.25 165.55 ± 83.49

C

C 0.85 ± 0.18 133.43 ± 70.55
6.09E − 09

A 0.59 ± 0.33 169.90 ± 89.55
C 0.85 ± 0.18 133.18 ± 71.81

0.45
B 0.83 ± 0.20 73.21 ± 37.79
C 0.85 ± 0.16 139.40 ± 73.80

5.33E − 15
D 0.67 ± 0.28 182.90 ± 96.47

D

D 0.76 ± 0.26 160.33 ± 89.42
4.67E − 18

A 0.07 ± 0.07 318.31 ± 132.31
D 0.79 ± 0.24 150.97 ± 84.22

4.67E − 18
B 0.77 ± 0.22 78.75 ± 34.81
D 0.76 ± 0.23 158.65 ± 83.22

4.51E − 03
C 0.82 ± 0.17 139.91 ± 65.55
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Domain adversarial learning
In this set of experiments, all the training domains (scanners) have

shown similar outcomes when tested on their respective test sets (i.e. Scan-
ner A, B, and C scored MCC=0.86 and Scanner D scored MCC= 0.85, see
Table 6). Overall, all metrics improve when comparing with single scanner
training, stain normalization and fine-tuning approaches. Scanner B
outperformed all previous experiments in this studywith a very low bound-
ary losses (HD = 72.79 μm). However, the DAL-trained model still per-
formed poorly on Scanners D and A when trained on Scanners A, B, C,
and D, respectively and having D and A as unlabeled target scanners. Nev-
ertheless, the DAL has shown to be an effective technique to train the seg-
mentation model on the unseen domains without any additional
annotation required to cope with performance variances.
Stain mix-up augmentation
In stain mix-up augmentation-based experiments, the U-Net performed

differently in each training and test domain combination (see Table 7).
However, the Scanners B and C maintained performance on their test sets
when combined with other scanners and outperformed most of the previ-
ous techniques in this study (i.e. Scanner B scoredMCC=0.87 and Scanner
C scored MCC = 0.85). Nonetheless, in the same experiments, their
counterpart scanners have shown higher variances in the performance.
Similarly, Scanner B also achieved even better performance in the bound-
ary loss reduction compared to the DAL method (HD = 71.94 μm) when
stain mix-up was performed with Scanner C. Scanners A and D were the
Table 6
Mean MCC and HD values using domain adversarial learning-based lymph node
segmentation. P-values are based on MCC scores between training and unseen
domains (scanners).

Training domain Unseen domain MCC HD (μm) P-value

A

– 0.86 ± 0.17 120.54 ± 61.25

7.39E − 31
B 0.86 ± 0.18 72.79 ± 36.79
C 0.86 ± 0.16 138.77 ± 67.04
D 0.59 ± 0.32 201.67 ± 102.97

B

A 0.54 ± 0.34 179.34 ± 96.06

7.01E − 27
– 0.86 ± 0.16 74.87 ± 39.61
C 0.80 ± 0.19 152.30 ± 75.45
D 0.67 ± 0.28 176.16 ± 102.91

C

A 0.84 ± 0.15 127.59 ± 72.42

1.59E − 29
B 0.81 ± 0.20 77.69 ± 39.12
– 0.86 ± 0.15 135.59 ± 72.14
D 0.52 ± 0.31 221.54 ± 109.77

D

A 0.64 ± 0.35 179.04 ± 109.84

6.09E − 08
B 0.84 ± 0.20 83.32 ± 49.29
C 0.83 ± 0.20 153.92 ± 82.13
– 0.85 ± 0.18 135.02 ± 74.26
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worse domains when combined with other domains to train on stain mix-
up-based augmentation. Scanners A and C in a few cases have presented
fewer variances when combined with Scanner B, C, and B, respectively.

Discussion

Due to the growing demand for digitization at institutes of pathology, it
is very likely that multiple different scanners will be in use. In such a situa-
tion, the integration of computational algorithms into downstreamdiagnos-
tics can become challenging, since the stain variability arising from
different scanners can directly impact the outcome of machine learning-
based trainedmodels, as we have shown in this study. A change in the scan-
ner can therefore lead to unexpected and poor outcomes in a diagnostic
task, which was previously performing well. Furthermore, the techniques
proposed in the literature such as normalization13,40–42 of data to a single
domain to overcome such variability are more focused on data acquired
from different patients. Hence, it is difficult to disentangle the various
sources of heterogeneity imparted on the whole slide images.

In order to systematically evaluate the impact of scanner variability, we
have conducted several experiments. Firstly, our study highlights how such
effects impact the outcome of 3 different lymph node segmentation
methods, which is an important upstream task for diagnostics. Secondly,
the study focuses on already available techniques such as normalization
to reduce the heterogeneity in the data. Thirdly, we presented how inter-
scanner weights based on fine-tuning can help to overcome the effect of
scanner variability in a deep learning-based pipeline. Lastly, we investi-
gated, how domain generalization methods such as domain adversarial
learning and stain mix-up augmentation can be useful besides normaliza-
tion and fine-tuning to minimize the performance variances.

The lymph node segmentation results have shown that the
thresholding-based method (HCT) is more affected by scanner variability
in contrast to the morphology-based (HAC) and deep learning-based tech-
niques (U-Net). In the case of HCT, the intra-scanner intensity differences
directly impact the performance, whereas the U-Net and HAC were able
to overcome those differences. HAC stands out by U-Net in both pre- and
post-normalization when comparing the variance of the outcome. Since
the same tissue slides were used to acquire imaging data from all scanners,
one could expect similar performance on all scanners with a model trained
on one scanner. However, there are noticeable differences due to scanner
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variability in the results from the single scanner training experiment. In
fact, due to a large number of training samples, an improvement was ob-
served when combined training samples from all scanners were used
to train the U-Net, but there is still statistically significant variance in the
outcome.

In spite of stain color normalization, performance variance has in-
creased in most cases of mosaic image-based normalization. Among the
normalization methods, Reinhard has shown fewer variances in the perfor-
mance as compared to Macenko and Vahadane. In contrast, the fine-tuning
inter-scanner weights experiments have shown significant improvement to
reduce the performance variance. With only a small difference in MCC on
Scanner D when fine-tuned with Scanners A, B, and C. Interestingly, the
fine-tuning approach also showed improved performance on Scanners A,
B, and C when the model was trained on the lower contrast Scanner D.
The results reflect fine-tuning as an effective approach that requires a
smaller number of epochs to achieve consistent results on the data from an-
other scanner. Hence, the generalizability through fine-tuning have shown
to be helpful to reduce the scanner variability. Similarly, domain adversar-
ial learning has shown to be a very effective technique to learn domain-
independent features to have similar performance curve on new or unseen
domains without any additional annotation requirements compared to the
seen domains. However, Scanners A andD have remained challenging in all
experiments indicating that further work is required to investigate these
specific image differences. Likewise, the stain mix-up augmentation-based
U-Net model has outperformed the single scanner versus all scanners
Fig. 4.A few qualitative examples of segmentation results by 3methods across 4 scanners
Particularly, U-Net and HAC shown a better performance detecting the boundaries. HCT
the fact that the thresholding could not adapt to the intensity variations.
training, fine-tuning, and domain adversarial learning on Scanner B with
better MCC and HD scores. Nevertheless, the counterpart paired scanners
could not maintain performance in most of the cases. Again, Scanners A
and D benefitted less from such domain adaptation technique.

In an overall inter-scanner comparison, Scanners B and C have been
shown to have suitable contrast and brightness combinations for lymph
node segmentation methods (see Fig. 4). Particularly, Scanner B has
achieved a better segmentation performance on the sinus boundary regions
and the HD was in a good range. Scanner D has been depicted as a poor-
performing scanner due to its low contrast and brightness distribution in
WSI compared to other scanners. Similarly, ScannerA has shown to be chal-
lenging in many experiments to achieve better segmentation performance.
Based on our analysis, it is suggested that the thresholding based method
should not always be used for batch processing where the higher variance
of intensity could lead to false detection of lymph nodes.

Before scanning the cohort for this study, each scanner was calibrated
using internal software based on certain parametric criteria. However,
this study also suggests that pre-calibration of all scanners within an insti-
tute to a reference glass slide before data acquisition could be beneficial.
However, the choice of such a reference slide would still be challenging
due to tissue morphology and stain variance originating from pre-
analytical factors such as tissue thickness. One possibility would be to cali-
brate all scanners to the same slide printedwith a color scheme according to
the International Color Consortium (ICC) standards. A comparative analysis
of current results using fine-tuning and domain adversarial learning with
, column (a) re-scaledWSI, (b) ground truth, (c) HCT, (d) HAC, and (e) U-Net results.
method slightly failed to fully segment the lymph nodes, which most likely is due to
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pre-calibrated data would be helpful to understand the differences. This
will further help to choose a scanner and machine-learning-based pipeline
for the computational tasks that are downstream used for pathological
diagnostics.

Conclusions

In this paper, we have presented a systematic study to assess the im-
pact of scanner variability on lymph node segmentation. By employing
the same glass slides scanned across different scanners, we are able to re-
move all non-scanner variabilities from downstream consideration. Our
results demonstrate that solely these scanner variabilities can severely
negatively affect both traditional and deep learning algorithms. That
said, modern deep learning approaches, such as U-Nets, may be more ro-
bust to these differences. Stain color normalization appears to have fur-
ther improved upon these metrics but was impacted by increased
performance variability. This is in line with other studies which have
shown similar trends. Fine-tuning a pre-trained U-Net model using a spe-
cific scanner’s images shows potential in minimizing the effects of WSI
heterogeneity on lymph node segmentation with a minimal training
time of a few epochs. However, domain adversarial learning and combi-
nations of stain mix-up augmentation could also help to develop more
generalized models with less or no additional annotations required on
new unseen scanners.

The study is limited to the use of H&E and that of a single task of lymph
node segmentation. Future studies will investigate fine-tuning and domain
adversarial learning on different stains as well as other tasks in computa-
tional pathology. In conclusion, this study provides insights into the effects
of scanner variability on segmentation methods and shows several
Fig. A.1. The multiscale structural similarity index (SSIM)43 measure to visualize the
difference.
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approaches on how to deal with this challenge. Fine-tuning of pre-trained
models and domain adversarial learning particularly for unseen data pro-
vide a promising solution to mitigate scanner imparted variabilities.
These techniques may be valuable for institutes of pathology with large-
scale heterogeneous digital repositories arising from scanner and slide
preparation.
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Fig. A.2. The plots (a) and (b) contain the Hematoxylin and Eosin stain vectors (points) respectively of the images from all 4 scanners. The variability of stain color can be
visually observed.
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Fig. A.3. The plots from (a) to (e) contains the P-values of Nemenyi posthoc test from all the comparisons across all the scanners, when evaluated by (a) single scanner
training, (b) all scanners training, (c) inter-scanner normalization (Macenko), (d) inter-scannerfine tuning, and (e) HCT andHACmethods or experiments. The corresponding
P-values are presented in Table A.1 for a detail overview.
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Fig. A.4. The plots from (a) to (e) contains the P-values of Nemenyi post-hoc test from all the comparisons across all the scanners, when evaluated by (a) inter-scanner nor-
malization by Vahadane, (b) Reinhard, (c) HAC, and HCT methods with Vahadane and Reinhard, (d) Domain adversarial learning experiments. The corresponding P-values
are presented in Tables A.2–A.5 for a detail overview.
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Fig. A.5.A few example mosaic images build of a balanced set of representative background and foreground (lymph node tissue region) tiles of whole slide images from one
scanner to normalize the data of other scanners.
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Table A.1
The tables from (a) to (e) contains the P-values of Nemenyi post-hoc test from all the comparisons across all the scanners, when evaluated by (a) single scanner training, (b) all
scanners training, (c) inter-scanner normalization (Macenko), (d) inter-scanner fine tuning, and (e) HCT and HAC methods or experiments. The overall results with help of
plots are presented in Fig. A.3 for a prompt overview.

Trained on A Trained on B

A B C D A B C D

A 1 0.532 0.900 0.001 A 1 0.001 0.002 0.001
B 0.532 1 0.199 0.001 B 0.001 1 0.900 0.001
C 0.900 0.199 1 0.001 C 0.002 0.900 1 0.001
D 0.001 0.001 0.001 1 D 0.001 0.001 0.001 1

Trained on C Trained on D

A B C D A B C D

A 1 0.001 0.001 0.001 A 1 0.001 0.001 0.001
B 0.001 1 0.297 0.001 B 0.001 1 0.732 0.340
C 0.001 0.297 1 0.001 C 0.001 0.732 1 0.039
D 0.001 0.001 0.001 1 D 0.001 0.340 0.039 1

(a) Single scanner training

Trained on combined set (A, B, C, D)

A B C D

A 1 0.002 0.046 0.001
B 0.002 1 0.001 0.001
C 0.046 0.001 1 0.013
D 0.001 0.001 0.013 1

(b) All scanners training
Trained and normalized on A Trained and normalized on B

A B C D A B C D

A 1 0.311 0.270 0.257 A 1 0.001 0.057 0.244
B 0.311 1 0.900 0.900 B 0.001 1 0.609 0.244
C 0.270 0.900 1 0.900 C 0.057 0.609 1 0.900
D 0.257 0.900 0.900 1 D 0.244 0.244 0.900 1

Trained and normalized on C Trained and normalized on D

A B C D A B C D

A 1 0.001 0.001 0.008 A 1 0.001 0.001 0.001
B 0.001 1 0.037 0.001 B 0.001 1 0.900 0.111
C 0.001 0.037 1 0.025 C 0.001 0.900 1 0.244
D 0.008 0.001 0.025 1 D 0.001 0.111 0.244 1

(c) Inter-scanner normalization
Trained on A and fine-tuned for each scanner Trained on B and fine-tuned for each scanner

A B C D A B C D

A 1 0.900 0.007 0.468 A 1 0.900 0.001 0.900
B 0.900 1 0.053 0.150 B 0.900 1 0.001 0.900
C 0.007 0.053 1 0.001 C 0.001 0.001 1 0.001
D 0.468 0.150 0.001 1 D 0.900 0.900 0.001 1

Trained on C and fine-tuned for each scanner Trained on D and fine-tuned for each scanner

A B C D A B C D

A 1 0.001 0.001 0.900 A 1 0.283 0.900 0.001
B 0.001 1 0.066 0.001 B 0.283 1 0.593 0.066
C 0.001 0.066 1 0.001 C 0.900 0.593 1 0.001
D 0.900 0.001 0.001 1 D 0.001 0.066 0.001 1

(d) Inter-scanner fine-tuning
HAC without normalization HAC normalized to scanner A

A B C D A B C D

A 1 0.563 0.002 0.233 A 1 0.092 0.001 0.870
B 0.563 1 0.001 0.900 B 0.092 1 0.001 0.386
C 0.002 0.001 1 0.001 C 0.001 0.001 1 0.001
D 0.233 0.900 0.001 1 D 0.870 0.386 0.001 1

HCT without normalization HCT with normalization to B

A B C D A B C D
A 1 0.001 0.578 0.013 A 1 0.001 0.402 0.419
B 0.001 1 0.001 0.043 B 0.001 1 0.001 0.001
C 0.578 0.001 1 0.283 C 0.402 0.001 1 0.900
D 0.013 0.043 0.283 1 D 0.419 0.001 0.900 1

(e) HCT and HAC methods
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Table A.2
Inter-scannernormalization (Vahadane).

Trained and normalized on A Trained and normalized on B

A B C D A B C D

A 1 0.092 0.005 0.001 A 1 0.001 0.014 0.355
B 0.092 1 0.732 0.233 B 0.001 1 0.043 0.001
C 0.005 0.732 1 0.778 C 0.014 0.043 1 0.517
D 0.001 0.233 0.778 1 D 0.355 0.001 0.517 1

Trained and normalized on C Trained and normalized on D

A B C D A B C D

A 1 0.001 0.001 0.111 A 1 0.001 0.001 0.001
B 0.001 1 0.111 0.001 B 0.001 1 0.9 0.485
C 0.001 0.111 1 0.002 C 0.001 0.9 1 0.355
D 0.111 0.001 0.002 1 D 0.001 0.485 0.355 1

Table A.3
Inter-scanner normalization (Reinhard).

Trained and normalized on A Trained and normalized on B

A B C D A B C D

A 1 0.386 0.9 0.9 A 1 0.126 0.885 0.9
B 0.386 1 0.67 0.7 B 0.126 1 0.452 0.178
C 0.9 0.67 1 0.9 C 0.885 0.452 1 0.9
D 0.9 0.7 0.9 1 D 0.9 0.178 0.9 1

Trained and normalized on C Trained and normalized on D

A B C D A B C D

A 1 0.793 0.001 0.015 A 1 0.468 0.9 0.001
B 0.793 1 0.001 0.15 B 0.468 1 0.188 0.001
C 0.001 0.001 1 0.386 C 0.9 0.188 1 0.003
D 0.015 0.15 0.386 1 D 0.001 0.001 0.003 1

Table A.4
HAC and HCT with Reinhard and Vahadane normalizations.

HAC (Reinhard) HAC (Vahadane)

A B C D A B C D

A 1 0.452 0.023 0.452 A 1 0.001 0.126 0.111
B 0.452 1 0.001 0.9 B 0.001 1 0.001 0.355
C 0.023 0.001 1 0.001 C 0.126 0.001 1 0.001
D 0.452 0.9 0.001 1 D 0.111 0.355 0.001 1

HCT (Reinhard) HCT (Vahadane)

A B C D A B C D

A 1 0.001 0.142 0.9 A 1 0.001 0.169 0.809
B 0.001 1 0.001 0.001 B 0.001 1 0.001 0.001
C 0.142 0.001 1 0.37 C 0.169 0.001 1 0.609
D 0.9 0.001 0.37 1 D 0.809 0.001 0.609 1

Table A.5
Domain adversarial learning.

Domain Scanner A Domain Scanner B

A B C D A B C D

A 1 0.547 0.9 0.001 A 1 0.001 0.001 0.111
B 0.547 1 0.232 0.001 B 0.001 1 0.007 0.001
C 0.9 0.232 1 0.001 C 0.001 0.007 1 0.001
D 0.001 0.001 0.001 1 D 0.111 0.001 0.001 1

Domain Scanner C Domain Scanner D

A B C D A B C D

A 1 0.9 0.0426 0.001 A 1 0.001 0.043 0.001
B 0.9 1 0.111 0.001 B 0.001 1 0.081 0.9
C 0.0426 0.111 1 0.001 C 0.043 0.081 1 0.039
D 0.001 0.001 0.001 1 D 0.001 0.9 0.039 1
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