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Abstract
Obtaining the granulometry is the starting point of our
pipeline for automating the calculation of concrete proper-
ties using images. For this reason, we focus on developing
the best deep learning model that can compute aggregate
gradation and can generalize to images obtained from dif-
ferent aggregate producers. We investigate two established
approaches: Convolutional Neural Networks (CNNs) and
Vision Transformers (ViTs). Our analysis includes a ded-
icated CNN model trained from scratch, alongside pre-
trained CNN and ViT models adapted through transfer
learning.
To evaluate the performances and the generalization ability
of the models, we use three different datasets: two pub-
licly available and one of our own. Our analysis shows
that transfer learning followed by fine-tuning on ViT_16
outperforms the other models, on both classification and
regression tasks, with smaller errors and greater general-
ization capabilities.

Introduction
Deep learning applied to images is successfully used for
prediction in many fields. Our aim is to use images of ag-
gregates and a deep learning model to predict the prop-
erties of concrete. Our assumption is that such a model,
trained on a dataset of aggregate images and corresponding
concrete property data, would extract meaningful features
from the visual representations of aggregates. These fea-
tures can then be used to predict concrete properties such
as compressive strength and workability.
The most influential factor on the properties of concrete
mixtures is the type of used aggregates and their gran-
ulometry. Therefore, we propose to build a system that
uses aggregate images as the foundation for the predictive
final system, which will then use additional inputs to
predict concrete properties based on the aggregate size
distribution, as shown in Figure 1. Integrating this model
with a camera system observing the aggregate conveyor
belt during concrete production allows for real-time
granulometry determination through image analysis.
Leveraging this real-time information, the entire system
can then continuously estimate key concrete properties
enabling real-time monitoring of the mix design and
ensuring consistent concrete quality.
We are interested in concrete mixes in which recycled or

Figure 1: An overview of the final expected pipeline. In this
paper, we are interested in finding the best DL model for the

granulometry task.

natural aggregates may be present in varying proportions.
Therefore, we seek for a model that can accurately and
automatically extract granulometry distribution from ag-
gregates images. In addition, this model should have a
strong generalization capability, adapting to new images
and new particle size distributions of natural or recycled
aggregates, without the need to explicitly specify the ag-
gregate type.
To carry out our study, we compare the performances of
different deep learning architectures for granulometry es-
timation, first as a classification task, then as a regres-
sion task. To obtain a deep learning model, two main
approaches can be considered: either build an own net-
work and train it, or take advantage of generalist pre-
trained models to perform the desired downstream task
using transfer learning. The latter leverages knowledge
from large datasets to improve efficiency and performance
on new tasks. In our evaluation, we take AggNet, a
specialized Convolutional Neural Network (CNN) model
(Coenen et al., 2022) on the one hand, and perform
transfer learning on pre-trained CNN models from differ-
ent families on the other: MobileNetV2 (Sandler et al.,
2018), ResNet50 (He et al., 2015) and finally the Vi-
sion Transformer (ViT) model ViT_16 (Dosovitskiy et al.,
2020), a recent architecture using self-attention mecha-
nisms (Vaswani et al., 2017).
In addition to leveraging transfer learning to enhance the
performance of pre-trained models, we use hyperparam-
eter optimization techniques to refine the predictions of
these models. ResNet50 and MobileNetV2 are two pop-
ular deep learning CNN models that has been shown to be



effective for a wide range of tasks and are relatively easy to
train and fine-tune. ViT_16 is a vision transformer (ViT)
that also shown to be state-of-the-art for image classifica-
tion. ViT architecture models are interesting in this study
because they are expected to allow a better accuracy and
generalize better than CNNs (Maurício et al., 2023).
The paper is organized as follow: the next section reviews
related works. Then, the two following sections introduce
our methodology and our experimental setup to carry on
the study for classification and regression tasks. Before
concluding, we present the results of our experiments.

Related Work
Classification and granulometry tasks to determine the dis-
tribution of particle is very important not only for esti-
mating concrete properties but for ore field in general.
To avoid the need for costly manual techniques such as
sieving, work has been carried out to automate the pro-
cess by analyzing images of aggregates or ores. Since
the emergence of deep learning, research has embraced
CNN as a primary approach. A comprehensive survey on
ore image processing using deep learning can be found in
WANG Wei and Hao (2023), which highlights similarities
to approaches employed for aggregates. The application
of deep learning for aggregates can be divided into two
main categories: those that start from scratch by building
their own models, as seen in Lau Hiu Hoong et al. (2020),
Qin et al. (2023) or Coenen et al. (2022), and those that
leverage existing pre-trained models and employ transfer
learning techniques to adapt them to specific tasks, such as
Olivier et al. (2020). In addition to this distinction, there
is another categorization based on the image processing
strategy employed. The first one is to classify individual
aggregate images as described in Sun et al. (2022), while
the second way is to regress from images of aggregate mix-
tures to granulometry distributions.
In the first category, the authors of Lau Hiu Hoong et al.
(2020) propose a customized Residual Network (ResNet)
model and a dataset of 36’000 images of individual grains.
They achieve a classification accuracy of 97% (brick, ce-
ramic, stone, etc.). They also proposed a segmentation
method to predict the nature of each grain in an image of a
multi-grain sample. In Qin et al. (2023), the study is based
on the concept of instance segmentation, using a special-
ized neural network model (AS Mask RCNN) to detect and
classify individual aggregates within mixed aggregate im-
ages. The results of their study indicate that the AS Mask
RCNN model achieved an accuracy of over 89.13%. The
approach requires a dataset made up of images and their
segmentation masks for each aggregate to be provided for
each image. All these papers demonstrate the relevance of
using deep learning models when calculating granulome-
try based on the segmentation of individual aggregates.
In the second category, where classifying and regress-
ing are used without segmentation, deep learning has also
been successfully used. In Olivier et al. (2020), the authors
use the CNN architecture VGG16 Simonyan and Zisser-

man (2015) with transfer learning to predict the ten size
fractions considered for an ore. The obtained results show
the effectiveness of a CNN in predicting the size distri-
bution of ore, with a mean model error of -0.012 and a
standard deviation of 0.107. Coenen et al. (2022) presents
a deep learning model, AggNet, for real-time determina-
tion of concrete aggregate grading curves. They propose
a dedicated CNN network model with multi-scale feature
extraction to handle diverse particle sizes and showed good
results on a classification task with an accuracy of 95.5%,
which is the best according to our knowledge.
We are interested in the second category of approaches be-
cause of their simplicity and industrial applicability. Once
trained, these models dispense with the need for labor-
intensive data preparation, allowing for direct estimation
of aggregate granulometry from images. The main diffi-
culty lies in preparing a dataset of varied aggregates im-
ages with their size distribution. Authors of AggNet pub-
lished their dataset Coenen (2022) which we rely on as it
meets our needs: each aggregate image is associated with
its particle size distribution. We use this model as a refer-
ence for our analysis to study how it generalizes to our own
dataset and to compare it to our approach which is based on
adapting pre-trained models. In Coenen et al. (2023), the
authors propose to use vision transformers and developed
again their own model based on this architecture. They
demonstrate the technical feasibility and interest of this ap-
proach. However, we believe that we can leverage the fea-
ture extraction capabilities of the pre-trained models (CNN
or ViT), acquired through training on vast image datasets,
and tailor them to our downstream tasks of classification
and regression.

Methodology
As said in the previous sections, we compare four neural
network architectures for estimating the granulometry of
aggregates from images. We separate this task into two
sub-tasks: the first one aim to classify the aggregates im-
ages toward the corresponding DIN 1045-2 Deutsches In-
stitut für Normung (2008) standard granulometry class and
the second one aim to directly estimate the mass percent-
age for each bin size considered. To perform this compara-
tive study, we use three different datasets, two are publicly
available and one is own-made.

Data
We use two publicly available datasets that contain im-
age samples of natural aggregates: the Visual Granulom-
etry dataset (Coenen, 2022) and the Deep Granulometry
dataset (Coenen, 2023). The first one is designed for a
classification task and the latter for a regression task. The
Visual Granulometry dataset contains 900 images of ag-
gregates along with their corresponding DIN 1045-2 stan-
dard granulometry class. There are nine classes in the stan-
dard (see Figure 2), each representing a grading curve, i.e.
the size distribution of the aggregates. For each class, two
samples of 5 kg of aggregates were produced and mixed



to obtain a total of 50 images per sample, and 100 images
per class.
The Deep Granulometry dataset contains 1650 images
of coarse aggregate samples with different particles sizes
ranging from 0.1 mm to 32 mm. Each image is accom-
panied by the mass percentage of each particle size bin
considered, following 33 different granulometries (11 per
largest grain size).
We then use a custom dataset with our own data that we
use only for evaluation purposes, in order to measure the
generalization of the trained models. This dataset con-
tains 174 images of both recycled or natural aggregates
from seven different sources, i.e. seven different granu-
lometries, in an unbalanced fashion. For the classification
task, we assign the DIN 1045-2 class to each of these gran-
ulometries by minimizing the mean squared error between
them and the granulometry of each class. As shown in
Figure 2, our grading curves can be far from the standard
classes, therefore the assignation is not exact but still al-
lows us to evaluate the model on our own data for a classi-
fication task. As two granulometries fall in the same class,
we have only 6 of the 9 DIN 1045-2 classes that are repre-
sented. For the regression task, we simply report the mass-
percentage for each size bin considered in the Deep Gran-
ulometry dataset.
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Figure 2: Grading curves of the DIN 1045-2 standard classes
(solid lines) and those of our sources (dashed lines).

Since the two publicly available datasets contains images
rectified by homography that were taken with a ground
sampling distance (GSD) of 0.125mm, we also rectified
our images in a similar way. However, as the setup was
not exactly the same for all taken images, 80 of images have
been cropped manually and can therefore present some de-
formations due to the perspective. In addition, the GSD of
our images is not exactly equal to 0.125mm. These vari-
ations in our own dataset will serve to assess the gener-
alization capabilities of the models we test. The Table 1
summarizes the size and characteristics of the two datasets
used.

Neural networks
Classification, i.e. classifying images of aggregates to-
wards the right DIN1045-2 standard class, is the first task
we consider. We assume that this task is simpler than
the regression one which consists of predicting the real

percentage for each size bin considered. Therefore, we
evaluate three CNN-based models, namely ResNet, Mo-
bileNetV2 and AggNet, as well as one ViT model. The Ag-
gNet model is a dedicated CNN model for granulometry
estimation and the source code of its architecture has been
made available by the authors (Coenen, 2022). The re-
maining three models are pre-trained models that we adapt
to the granulometry estimation task using transfer learn-
ing. We then adapt and evaluate the two best performing
classification models on the regression task, i.e. estimat-
ing the mass percentage for each size bin considered.

Transfer learning
As the state-of-the-art computer vision models are com-
posed of millions of parameters, they need to be trained
on large datasets. In order to adapt these models on a new
task, it is often recommended to use the weights of a pre-
trained model instead of training the model from scratch
and risking to overfit the data. This can be done by freez-
ing the weights of the pre-trained model and adding a new
fully connected layer on top of it, which will be trained on
the new task. This process is called transfer learning. In
this study, we freeze the weights of the pre-trained model
feature extraction layers, using it as a feature extractor, and
train a new fully connected layer on top of them, as shown
in Figure 3.
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Figure 3: An overview of the transfer learning process used in
this study. Feature extraction layers of the pre-trained model

are frozen and new trainable classification or regression layers
are added on top of them. Top image from (Deng et al., 2009).

To perform our comparative study, we use transfer learn-
ing on three pre-trained models, namely ResNet50, Mo-
bileNetV2 and ViT_16, all originally trained on the Ima-
geNet (Deng et al., 2009) dataset.

Training
The network parameters θ are learned by optimizing a loss
function L (θ), which differs depending on the network
task. The loss function is computed for each batch of data
and the network weights are updated according to the gra-
dient of the loss function with respect to the weights. The
compared classification networks aim to classify images
of aggregates towards M classes, where M is the num-
ber of DIN 1045-2 standard classes. To do so, they are



Table 1: Summary of the datasets used.
Dataset Task Size Images

size
Particles

size
Nb. of

classes /
size bins

Visual Granulometry
(Coenen, 2022)

Classification 900 2200x3000px 0-32mm 9

Deep Granulometry
(Coenen, 2023)

Regression 1666 2200x3000px 0-32mm 33

Own Both 174 1072x1472px 0-32mm 6 / 7

trained by minimizing the well-known cross-entropy loss
function, defined as

LCE(θ) =−
M

∑
i=1

yi log(ŷi) (1)

where yi is the ground truth label for the ith class (either 0
or 1) and ŷi is the predicted probability for the ith class.
For the regression task, we aim to predict the mass per-
centage of the M size bins considered. Therefore, the net-
works are trained by minimizing the Kullback-Leibler di-
vergence, which is the same loss used in (Coenen et al.,
2022). It is defined as

LKL(θ) =
M

∑
i=1

yi log(
yi

ŷi
) (2)

where yi is the ground truth mass percentage for the ith size
bin and ŷi is the predicted mass percentage for the ith size
bin.
For training, we systematically perform early stopping to
avoid overfitting and use the Adam optimizer (Kingma and
Ba, 2017) to optimize model weights. In order to obtain
the best performances, we then perform different optimiza-
tions and evaluate their impact on a validation set before
selecting the best model.
− Data augmentation : As the dataset used for both clas-
sification and regression are relatively small (900 to 1666
images), we perform data augmentation to allow models
to generalize better and avoid overfitting on training data.
This data augmentation is performed during the training,
on the fly, so that it is highly unlikely for the model to see
the same image twice. We test two kind of data augmen-
tation:

1. A tuned augmentation by evaluating the model many
times on different combinations of geometric trans-
formations, such as rotation, shift, zoom or shear.

2. The augmentation proposed in paper (Coenen, 2022),
performing geometric and radiometric (e.g. hue shift)
transformations.

We compare the best tuned augmentation to the one pro-
posed in (Coenen, 2022) and keep the one that performs
the best on the validation set.
− Hyperparameter tuning : We then tune the hyperpa-
rameters of the models in order to optimize their perfor-
mances. This is done by evaluating many times the model

on different combinations of hyperparameters, which are
the batch size, the neurons number in the fully connected
layers, the dropout rate and the learning rate. We keep the
combination of hyperparameters that gives the best perfor-
mances on the validation set.
− Fine-tuning : Finally, we perform a final fine-tuning
by unfreezing the weights of the pre-trained model fea-
ture extraction layers and continuing the training for a few
epochs. We then evaluate if this fine-tuning improves the
performances of the model on the validation set.

Experimental Setup
In order to evaluate the performances of the different mod-
els, we use an identical experimental setup for all of them.
We first split the dataset into a training and test set with
a ratio of 80% and 20% respectively, the latter being only
used for the final evaluation of each model. Before train-
ing, the training set is further split into a training and val-
idation set with the same ratio, allowing us to select the
best model according to different configurations and to en-
sure its good generalization. The Table 2 summarizes the
number of images used for training and evaluation for each
task.

Table 2: Number of images used for training and evaluation for
each task. Evaluation is both performed on the Deep or Visual

Granulometry (V/DG) datasets and on our own dataset.
Set Classification Regression
Training 720 1326

Evaluation V/DG 179 340
Own 174 174

As the architecture of the three pre-trained models we con-
sider are designed to take images of 224x224 pixels as in-
put, all the images are cropped to be squared and then re-
sized to this size. For the AggNet model, images are sim-
ply down-sampled to 550x750 pixels, keeping their origi-
nal size ratio.
Figure 4 summarizes the training and evaluation proce-
dures. More details for each task we consider are given
in the next sections.
Classification task
For the classification task, we train and evaluate respec-
tively four models : ResNet50, MobileNetV2, ViT_16
and AggNet. Hyperparameter tuning, data augmentation
tuning and fine-tuning are only performed on ResNet50
and MobileNetV2, as ViT_16 showed already good per-
formances without doing so (see section Results and dis-
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Figure 4: Training and evaluation procedure for each model architecture we compare, on both classification and regression tasks.

cussion) and as the authors of the AggNet model already
performed these optimizations.
To evaluate their performances, we use the accuracy met-
ric, defined as

Accuracy =
Number of correct predictions
Total number of predictions

(3)

We also compute the confusion matrix, that allows us to
see which classes the evaluated model confuses the most.
It also allows us to quickly calculate other metrics per
class, such as the precision, recall and F1-score.

Regression task
For the regression task, we only train the two best perform-
ing models on the classification task, namely ViT_16 and
AggNet (see section Results and discussion). This time,
we also perform hyperparameter tuning, data augmenta-
tion tuning and fine-tuning on ViT_16 in order to obtain
the best possible model and see if it can outperform Ag-
gNet. Training configuration for AggNet model is once
again taken from (Coenen, 2022), while the best configu-
ration we find for ViT is the following :

• Tuned hyperparameters : batch size of 64, dropout
rate of 0, hidden size of 512 and learning rate of 0.007

• Tuned data augmentation : horizontal and vertical
flip, shift range of 0.1, zoom range of 0.3 and fill mode
on reflect.

• Fine-tuning : learning rate of 0.0001.

To evaluate the performances of each model, we use the
mean absolute error (MAE) metric and the root mean
squared error (RMSE) metric, defined as

MAE =
1
N

N

∑
i=1

|yi − ŷi| (4)

and

RMSE =

√
1
N

N

∑
i=1

(yi − ŷi)2 (5)

where N is the number of predictions, yi is the ground truth
mass percentage for the ith image and ŷi is the predicted

mass percentage for the ith image. These metrics are calcu-
lated for each size bin and then averaged to obtain a single
measure of model performances.
We compute the RMSE along with the MAE because the
RMSE penalizes more the large errors than the MAE, and
thus gives us an other important information about the
model performances. We use the RMSE instead of the
MSE because it is more interpretable as it is in the same
unit as the ground truth mass percentage vector.

Results and discussion
We first discuss the results obtained by the different clas-
sification models, before focusing on the results obtained
by the two best performing ones on the regression task.

Classification
Table 3 summarizes the performances in terms of accuracy
obtained by each compared models on the two test datasets.
While they all performs significantly better on the Visual
Granulometry dataset, the ViT_16 outperforms the other
models with respective accuracies of 97% and 34% on
both datasets. As neither hyperparameter tuning nor data
augmentation tuning were performed on ViT_16, we can
assume that even better performances could be obtained
by doing so. This shows how powerful transformers can
be on various tasks, including computer vision tasks. The
AggNet model is also performing very well on the Visual
Granulometry dataset Coenen (2022), which coincide with
the results reported in Coenen et al. (2022). All the models
show a low accuracy on our own dataset, with accuracies
ranging from 26% (AggNet) and 34% (ViT_16), showing a
poor generalization of the model on the classification task.

Table 3: Performances of the different classification models on
the two test sets, i.e. the Visual Granulometry (VG) and our own

dataset.

Model Accuracy
VG data Our data

ResNet-50 0.85 0.30
MobileNetV2 0.87 0.29
ViT_16 0.97 0.34
AggNet 0.94 0.26

Figure 5 shows the confusion matrix obtained by the
ViT_16 model on our own dataset and help to understand
why models are under performing on it. As it shows high



Table 4: Regression results on the Deep Granulometry dataset with both models. Errors are computed for each grain size bins
considered and then averaged.

Grain size bins [mm] 0.25 0.5 1 2 4 8 16 31.5 63 Avg.

AggNet MAE [%] 0.22 1.23 1.36 0.67 1.65 1.61 1.73 1.69 0.21 1.15
RMSE [%] 0.28 1.56 1.78 0.86 2.11 2.18 2.61 2.72 0.47 1.62

ViT MAE [%] 0.13 0.88 0.86 0.46 0.51 0.98 0.94 0.49 0.04 0.59
RMSE [%] 0.18 1.20 1.29 0.66 0.73 1.59 1.61 1.02 0.14 0.93

accuracy on Visual Granulometry data, we do not present
here the confusion matrix obtained on this data. On our
own data, ViT_16 frequently misclassifies B16 as A32 or
A16, and A32 as A16, likely due to the fact that our data
samples do not exactly follow the particle size distribu-
tion of the classes defined by DIN 1045. For better per-
formances, we should add more classes instead of simply
assign our sample to one of the standard classes. Analyz-
ing ViT’s regression performances on our data might be
more revealing, as it predicts continuous values of the real
granulometry instead of inferred discrete classes.

Figure 5: Confusion matrix obtained on our own dataset with
the ViT_16 model.

Regression
Since the best models on the classification task on Visual
Granulometry data are the ViT_16 and AggNet models,
we only train and evaluate these for a regression task.
Table 4 first shows the results obtained by both models
on the Deep Granulometry dataset (Coenen, 2023). The
ViT model therefore fares better than the AggNet model,
with an average MAE of 0.59% versus 1.15%, i.e. half
as much. The obtained RMSE with both models also con-
firmed this observation. As far as errors by size are con-
cerned, the ViT model seems to have more difficulty in
predicting proportions for sizes from 0.5mm to 1mm and
from 4 to 31.5mm, as does the AggNet model. It shows
that either some sizes are more difficult to differentiate
than others, either the data is much more varied in certain
bin sizes than others.
The worst respectively the best predicted grading curves by
ViT on this first dataset are shown in Figure 6, along with
the ground truth. We see that the model achieve to predict
the perfect grading curve in some case, and to predict a
grading curve that is still very close from the ground truth
in the worst case.
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Figure 6: Best (top) and worst (bottom) predicted grading
curves (in blue) by ViT on the Deep Granulometry dataset,

along with the ground truth (in orange)
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Figure 7: ViT worst resulting grading curve (in blue) obtained
by averaging predictions of a same aggregates mixture on the

Deep Granulometry dataset, along with the ground truth.

If we average predictions over samples following the same
grading curve, we obtain a new prediction that is much
closer to the ground truth even in the worst case, as shown
in Figure 7. This shows that in a real setup where many
images of the same mixture of aggregates are taken, we can
predict a much more precise granulometry by averaging
the predictions made by the model.
Table 5 then shows the results obtained by both models on
our own dataset. The results are significantly worse than
those obtained on the Deep Granulometry dataset, with an



Table 5: Regression results on our own dataset with both models. Errors are computed for each grain size bins considered and then
averaged.

Grain size bins [mm] 0.25 0.5 1 2 4 8 16 31.5 63 Avg.

AggNet MAE [%] 6.06 9.0 7.22 4.64 9.46 9.87 9.04 13.33 0.41 7.67
RMSE [%] 10.01 9.45 7.88 5.44 10.15 12.07 11.66 15.63 0.71 9.22

ViT MAE [%] 6.35 4.57 4.14 5.00 8.47 11.87 9.53 10.82 0.18 6.77
RMSE [%] 10.22 5.28 4.98 6.21 10.76 13.82 11.44 12.97 0.29 8.44

average MAE of 6.77% for the ViT model and 7.67% for
the AggNet model. While these errors are similar, ViT is
still able to generalize better that the AggNet model. This
overall increase in errors can be explained by the differ-
ence in particle size distributions between the two datasets.
Indeed, the granulometries of our dataset are significantly
different from those of the Deep Granulometry dataset. As
the models are trained on the latter, it is very likely that
they will have difficulty generalizing to other data. In ad-
dition, some images in our dataset have not been rectified
by homography, this difference in images may therefore
also have an influence on model performances.
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Figure 8: Best (top) and worst (bottom) predicted grading
curves (in blue) by ViT on the Deep Granulometry dataset,

along with the ground truth (in orange)

The worst respectively the best predicted grading curves
by ViT on our dataset are shown in Figure 8, along with
the ground truth. This time, we see that the model may
struggled to predict a grading curve close from the ground
truth, especially when aggregates follow a granulometry
far from the ones the model was trained on. These re-
sults indicate that we may need aggregates training data
that follows a wider range of granulometries in order to in-
crease the generalization of the model. We can still note
that for different but close granulometries, the model is
able to make prediction with few errors, which is encour-

aging. If we average predictions over samples following
the same grading curve, we achieve to reduce the MAE
but still remains relatively high (11%) in the worst case, as
shown in Figure 9. The need for more varied training data
therefore remains.
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Figure 9: Worst resulting grading curve (in blue) obtained by
averaging predictions of a same aggregates mixture made by

ViT on our own dataset, along with the ground truth (in orange).

Conclusion
The result of our study shows that using the dedicated
CNN AggNet model of Coenen et al. (2022) for the task
of classification and calculation of the distribution of ag-
gregates from their images is a better approach than per-
forming transfer learning on the most popular pre-trained
CNNs that we used: ResNet50 and MobileNetV2. On the
other hand, our tests show that applying transfer learning
on a pre-trained model based on transformers (ViT_16) al-
lows to achieve better results on the two considered tasks.
Iman et al. (2023) positions transfer learning as a valuable
technique to unlock the full potential of deep learning. In
our case, where the images are very specific and different
from datasets of the pre-trained models, the smaller Ag-
gNet model, using multi-scale feature extraction layers, ef-
fectively handles the diverse aggregate sizes compared to
the generalist pre-trained CNNs. This specialization likely
contributes to its better performance. Similarly, ViT_16
excels in this task due to the inherent ability of transform-
ers to capture both local and global interactions within the
image, potentially explaining the advantage of ViT over
AggNet.
To evaluate the generalization ability of each model, we
employed our own dataset for testing. This dataset differs
from the publicly available one used to train and evaluate
the models in two key ways. Unlike the public dataset,
it includes both natural and recycled aggregates and it
presents different aggregate size distributions. Again, we
obtained better results with ViT_16, which reinforces the



idea of deepening this approach to improve its adaptability
to datasets that do not perfectly follow the granulometry of
the training data. While the current results of this general-
ization are not optimal, we believe incorporating a subset
of our own data into the training set has the potential to
significantly improve model performance.
Therefore, our next future task is to enlarge our own dataset
in order to cover a greater variety of grading curves. Be-
sides, our dataset is currently imbalanced, and we aim to
achieve a balanced distribution with at least 100 images
per class. While this imbalance was not a disadvantage
for the present study (used for testing only), it needs to be
addressed to determine the best strategy for ViT_16 gen-
eralization. We will explore two options: fine-tuning the
model on a subset of our own data or reapplying trans-
fer learning with hyperparameter tuning incorporating this
subset into the training dataset. Our goal is also to identify
the optimal dataset size that maximizes the generalization
performance of the ViT model for granulometry estima-
tion.
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