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Abstract
In the era of mobile imaging, the quality of document photos cap-

tured by smartphones often suffers due to adverse lighting condi-

tions. Traditional document analysis and optical character recogni-

tion systems encounter difficulties with images that have not been

effectively binarized, particularly under challenging lighting scenar-

ios. This paper introduces a novel adaptive binarization algorithm

optimized for such difficult lighting environments. Unlike many

existing methods that rely on complex machine learning models,

our approach is streamlined and machine-learning free, designed

around integral images to significantly reduce computational and

coding complexities. This approach enhances processing speed and

improves accuracy without the need for computationally expensive

training procedures. Comprehensive testing across various datasets,

from smartphone-captured documents to historical manuscripts,

validates its effectiveness. Moreover, the introduction of versatile

output modes, including color foreground extraction, substantially

enhances document quality and readability by effectively elimi-

nating unwanted background artifacts. These enhancements are

valuable in mobile document image processing across industries

that prioritize efficient and accurate document management, span-

ning sectors such as banking, insurance, education, and archival

management.
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1 Introduction
The increasing reliance on smartphones for document capture and

management brings challenges due to variable lighting conditions,

which often degrade image quality and hinder optical character

recognition (OCR) systems. Unlike cloud-based OCR technologies

that process images in grayscale, embedded OCR systems in mobile

devices require high-contrast black-and-white inputs. This under-

scores the importance of effective image binarization to enhance

readability and usability, particularly in suboptimal conditions like

challenging lighting environments.

This paper introduces ZigZag, a binarization algorithm that

builds upon our previous work with the YinYang method. Tailored

for challenging lighting conditions, ZigZag significantly simplifies

the algorithmic framework for improved efficiency and comprehen-

sion. By leveraging integral images, ZigZag reduces computational

requirements, speeds up processing, and enhances binarization

accuracy compared to its predecessor.

ZigZag distinguishes itself as a machine-learning-free solution,

offering numerous advantages over machine-learning-based ap-

proaches. Its simplicity facilitates easier implementation and com-

prehension, simplifying debugging, maintenance, and adoption

by users. Furthermore, its independence from complex machine

learning models reduces computational overhead, making it more

lightweight and efficient for resource-constrained environments

like mobile devices.

Evaluation of ZigZag in various contexts demonstrates its capa-

bility to consistently produce high-quality outputs, enhancing the

performance of OCR systems and facilitating document analysis.

This paper is organized as follows: Section 2 provides a compre-

hensive review of existing binarization algorithms, setting the stage

for a comparative analysis of ZigZag’s advancements. Section 3 de-

tails the methodology and technical implementation of the ZigZag

algorithm. Section 4 presents the results of experimental validations,

where ZigZag is benchmarked against other non-machine-learning-

based adaptive binarization techniques. Additionally, the discussion

within Section 4 explores the limitations of the current approach

and suggests potential directions for future research. Finally, Sec-

tion 5 concludes the paper by discussing the broader implications

of our findings.

2 Overview of Image Binarization Algorithms
Many algorithms have been proposed for document image binariza-

tion. In situations where lighting conditions are controlled, such

as with 2D flatbed scanners, applying a simple global threshold-

ing method has proven to be effective. The Otsu [26] method, for
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example, is particularly well-suited for providing a single, precise in-

tensity threshold by identifying the value that minimizes intra-class

variance, thereby separating the pixels into two distinct classes.

When dealing with document images captured under uncon-

trolled lighting conditions, more sophisticated methods become

necessary to account for local variations in brightness. Bernsen [5]

introduced a straightforward adaptive binarization technique based

on averaging the minimum and maximum values within a window

surrounding the analyzed pixel. Another adaptive approach, pro-

posed by Niblack [16], determines the threshold value based on

the mean and standard deviation computed within a local window

surrounding the pixel of interest.

Sauvola’s algorithm [29] builds upon Niblack’s method by in-

corporating the dynamic range of the image’s gray value standard

deviation to compute the threshold. However, Sauvola’s results can

degrade significantly when applied to images where the foreground

and background gray values are close. To address this limitation,

Wolf et al. [36] proposed normalizing Sauvola’s algorithm using

the overall image contrast and the mean gray value.

Similarly, Feng’s [11] algorithm normalizes Sauvola’s method by

incorporating image contrast and mean gray value, using a second,

larger window that encompasses the first. Before applying Sauvola’s

algorithm, Gatos et al. [12] suggest preprocessing the image with

a low-pass Wiener filter. This step is useful for removing noisy

areas, smoothing the background texture, and improving the image

contrast.

Several adaptive thresholding techniques based on local Otsu

thresholds have also been proposed. AdOtsu [23], for example,

combines background estimation with an adaptive Otsu grid. An

original modification suggested by Chou et al. [9] combines Otsu’s

local thresholding with the additional application of support vector

machines for background regions.

However, adaptive binarization methods are prone to compu-

tational complexity issues due to the need to analyze each pixel’s

neighborhood to compute local thresholds. To overcome this prob-

lem, Bradley [7] introduced a real-time adaptive thresholding tech-

nique using the concept of integral images [10]. Bradley’s method

guarantees a constant number of operations per local window,

meaning that the computational cost does not increase with the

size of the window, with only a linear amount of preprocessing

required.

Shafait et al. [30] combined the statistical constraints of Sauvola’s

method with integral images. While Bardozzo et al. [3] designed

a modified version of image integral calculation for fuzzy inte-

grals that can be used as a grayscale processing tool in real-time

and deep learning applications. Michalak et al. [21] introduced an-

other real-time method based on background image subtraction.

They used bilinear downsampling and upsampling to retain only

low-frequency image data, representing the overall brightness dis-

tribution, to estimate the background.

Some binarization algorithms focus on exploiting color infor-

mation in the image. Tsai and Lee [34], for example, introduced a

method suitable for binarizing color images, taking advantage of lu-

minance and saturation characteristics. Tabbone andWendling [32]

adapted an iterative possibilistic c-means algorithm by incorporat-

ing a fuzzy entropy criterion to split the membership function into

two clusters: background and object. Mysore et al. [25] applied a

segmentation technique based on a mean shift algorithm at differ-

ent image scales, as well as a contrast-enhanced variant of Niblack’s

thresholding method, specifically designed to binarize deteriorated

color document images.

Convolutional Neural Networks (CNNs) have achieved remark-

able success in image classification, providing significant improve-

ments over conventional techniques in a wide range of applications.

CNNs have also been applied in the field of image binarization.

For example, DeepOtsu [14], introduced the concept of training an

iterative deep learning neural network to improve input images by

removing noise and rectifying various forms of degradation. Sub-

sequently, the cleaned image undergoes binarization using Otsu’s

global thresholding method. The winner of the DIBCO’17 competi-

tion [28] uses the U-Net convolutional network architecture for ac-

curate pixel classification. Tensmeyer et al. [33] applied a fully con-

volutional neural network to multiple image scales, whereas Peng

et al. [27] and Calvo-Zaragoza et al. [8] adopted a deep encoder-

decoder architecture to address the challenges of image binariza-

tion. A hierarchical deep supervised network was proposed by

Vo et al. [35] for the binarization of degraded document images,

which achieved state-of-the-art performance on various benchmark

datasets. DP-LinkNet [37], a convolutional network for historical

document images, builds on the deep learning LinkNet architecture

to handle complex scenarios effectively. Similarly, Mondal et al. [24],

in their work on Deep Semantic Binarization, also employed the

LinkNet architecture and demonstrated superior performance on

various datasets, including mobile-captured whiteboard and glass

board images. Koloda andWang [17] introduced a context-aware bi-

narization algorithm that leverages multi-scale Sauvola thresholds

with a featurewise attention module.

Combined binarization methods have also been proposed. Su

et al. [31] introduced a classification system to combine various

thresholding methods, thus improving the overall performance of

document image binarization. Their system classifies document

image pixels into three sets: foreground pixels, background pixels,

and uncertain pixels. It then uses a final classifier to iteratively sort

uncertain pixels into either foreground or background. Hebert et

al. [15] developed a system based on Conditional Random Field

(CRF), combining the strengths of six distinct algorithms. Badekas

et al. [2] proposed a system that generates a binarized image by

aggregating the results of seven different binarization algorithms,

using a Kohonen Self Organizing Map neural network.

Despite advancements, current image binarization methods still

face significant challenges when dealing with document images

captured under uncontrolled real-world lighting conditions. The

variability among document types underscores that no single solu-

tion is universally applicable; different document classes require

specialized binarization approaches. Tackling uncontrolled lighting

conditions demands different strategies than addressing historical

images with complex backgrounds, such as textured, structured,

or damaged surfaces. This complexity highlights the need for de-

veloping new methods that can adapt more effectively to diverse

environments and enhance overall binarization performance. Ad-

ditionally, it’s worth noting that while machine learning methods

dominate the field today, there remains room for improvement and

innovation in non-machine learning approaches.
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3 Proposed Method
This paper introduces a document image binarizationmethod specif-

ically designed for images captured under suboptimal lighting con-

ditions. It is based on two fundamental assumptions: first, that

the foreground, predominantly text, is typically darker than the

background; and second, that background pixels locally outnumber

foreground pixels. Emphasizing locality is crucial, as real-world

images often show significant brightness fluctuations due to incon-

sistent lighting conditions or shadows.

To address scenarios where the text appears lighter than its

surroundings, such as white text on a dark background, a prepro-

cessing step could be integrated. This step would detect such cases

and, if necessary, invert the colors to better suit the binarization

process.

Building upon our prior research with the YinYang algorithm [6],

which was recognized for its effectiveness in OCR preprocessing

during the DocEng’22 [20] and DocEng’23 binarization competi-

tions, the ZigZag algorithm simplifies the design of its predecessor

while retaining its successful strategies. ZigZag begins by accurately

estimating the background, then isolates the foreground through

background subtraction, normalizes the foreground, and applies a

threshold to generate a clear binary image.

3.1 About Background Estimation
Background estimation methods vary significantly, each with its

own advantages and challenges, as demonstrated in Fig. 2. For

instance, the method used by Michalak & Okarma [21] involves

downscaling and upscaling the image (e.g., × 1

32
and ×32), which

provides a quick but coarse estimation of the background, as de-

picted in Fig. 2b.

Our previous algorithm, YinYang, sought a more precise back-

ground estimation by analyzing the most frequent color within

localized windows and speeding up this process through the use of

subsampling grids and interpolation. This approach, while more

accurate, is not perfect since subsampling is a compromise that

trades quality for efficiency. Consequently, it still faces challenges

under conditions of strong uneven lighting, leading to potential

inaccuracies as shown in Fig. 2c.

In contrast, ZigZag is designed to optimize efficiency while

achieving the most accurate background estimation possible. Un-

like many adaptive algorithms that directly use local statistical

measures, such as mean or standard deviation, to compute a local

threshold, ZigZag first estimates the background to ensure thorough

foreground detection. This dedicated focus on accurate background

estimation is crucial for handling uneven lighting conditions, signifi-

cantly enhancing the algorithm’s ability to recognize text effectively

in real-world settings.

3.2 ZigZag Algorithm
ZigZag leverages integral images, also known as summed area

tables, a cornerstone in computer vision and image processing. In-

tegral images streamline the calculation of pixel value sums within

any rectangular area, enabling rapid and efficient computations

crucial for real-time image processing.

An integral image, denoted by 𝑖𝑖 (𝑥,𝑦), accumulates the pixel

values of the original image 𝑖 (𝑥,𝑦). Each pixel in the integral image

represents the cumulative sum of all pixel values to its left and above,

including itself. This accumulation is mathematically represented

by Equation 1. The calculation leverages a recursive approach as

shown in Equation 2, allowing the entire image to be processed in

linear time. This formulation ensures that even large images can

be handled swiftly.

With the integral image computed, extracting the sum of pixel

values within any specified rectangular region becomes a matter

of simple arithmetic operations. By subtracting the values at the

appropriate corners of the rectangle, the sum of the interior pixels

is quickly obtained, as demonstrated by Equation 3. This ability to

perform rapid calculations regardless of the rectangle’s size is what

makes integral images particularly valuable for applications that

require frequent and dynamic area-based operations.

𝑖𝑖 (𝑥,𝑦) =
𝑥 ′≤𝑥∑︁
𝑥 ′=0

𝑦′≤𝑦∑︁
𝑦′=0

𝑖 (𝑥 ′, 𝑦′) (1)

𝑖𝑖 (𝑥,𝑦) = 𝑖 (𝑥,𝑦) + 𝑖𝑖 (𝑥 − 1, 𝑦)
+ 𝑖𝑖 (𝑥,𝑦 − 1) − 𝑖𝑖 (𝑥 − 1, 𝑦 − 1) (2)

𝑥2∑︁
𝑥 ′=𝑥1

𝑦2∑︁
𝑦′=𝑦1

𝑖 (𝑥 ′, 𝑦′) = 𝑖𝑖 (𝑥2, 𝑦2) − 𝑖𝑖 (𝑥2, 𝑦1 − 1)

− 𝑖𝑖 (𝑥1 − 1, 𝑦2) + 𝑖𝑖 (𝑥1 − 1, 𝑦1 − 1)
(3)

Building on the use of integral images, the ZigZag algorithm

is implemented through three main steps, as illustrated in Fig. 1:

background estimation (Fig. 1b), foreground extraction (Fig. 1c), and

thresholding (Fig. 1d). For a more in-depth understanding, detailed

pseudo-code for the entire algorithm is provided in Algorithm 1.

The background estimation in ZigZag proceeds in two passes,

utilizing mean filtering. In the first pass, the algorithm calculates

local mean intensities for each pixel. Pixels that are darker than

their respective local mean are likely associated with text and are

thus masked out. This initial masking step reduces the influence of

text pixels on the background estimation, allowing the algorithm to

focus on the brighter, presumably background, areas. In the second

pass, the algorithm recalculates the local mean intensities, this time

excluding the previously masked text pixels. This two-pass mean

filtering approach results in a cleaner and more precise background

estimation compared to single-pass methods, effectivelyminimizing

text interference and improving the overall quality of binarization.

A parameter, 𝑤𝑒𝑖𝑔ℎ𝑡 , can be adjusted to lower the local mean

intensity values during the first pass, making the process more

suitable for complex or irregular backgrounds. This weighted mean,

referred to as𝑚𝑒𝑎𝑛𝑤 in the pseudo-code (line 19), defaults to 1.0

(100%). The𝑤𝑒𝑖𝑔ℎ𝑡 parameter can be set within a practical range of

0.5 to 1.0, for instance, to enhance background estimation in images

with textured surfaces or with moderate back-to-front interference,

such as those found in historical documents. The impact of varying

𝑤𝑒𝑖𝑔ℎ𝑡 on the background estimation is visually demonstrated in

Figs. 2d through 2h.

In practice, the algorithm computes three integral images as

outlined in lines 2 to 27 of the pseudo-code: 𝑖𝑖 for overall pixel

intensities, 𝑖𝑖𝑏𝑔 for background pixel intensities, and 𝑎𝑟𝑒𝑎𝑏𝑔 for
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(a) Original image (b) Background (c) Foreground (d) Binarization

Figure 1: The three steps of the ZigZag image binarization process – (a) original image, (b) estimated background, (c) extracted
foreground, and (d) black and white binarized image.

counting background pixels. Lines 2 through 8 detail the computa-

tion of 𝑖𝑖 , while lines 9 to 27 explain how this data is used to generate

𝑖𝑖𝑏𝑔 , which filters out foreground pixels using the weighted mean.

Concurrently, 𝑎𝑟𝑒𝑎𝑏𝑔 tracks the count of non-masked pixels, i.e.,

those likely representing the background.

Lines 28 to 38 use 𝑎𝑟𝑒𝑎𝑏𝑔 and 𝑖𝑖𝑏𝑔 to calculate the local mean

background intensity,𝑚𝑒𝑎𝑛𝑏𝑔 , for each pixel, relying exclusively

on non-masked pixels. The local mean intensity calculated for each

pixel using 𝑎𝑟𝑒𝑎𝑏𝑔 and 𝑖𝑖𝑏𝑔 represents our estimated background

for those pixels. Pixels exceeding the estimated background thresh-

old,𝑚𝑒𝑎𝑛𝑏𝑔 , are classified as background and set to white, while

the remaining pixels use𝑚𝑒𝑎𝑛𝑏𝑔 to normalize the foreground, as

described in line 36 and explained hereafter.

Foreground normalization dynamically adjusts each pixel value

based on its neighborhood, i.e., the current local window. This step

extends the intensity spectrum from the current background es-

timation pixel value up to white (255), interpolating values from

[0,𝑚𝑒𝑎𝑛𝑏𝑔] to [0, 255]. This process boosts local contrast and nor-

malizes pixel intensities, sharpening text and allowing a single

threshold to be efficiently applied across the image.

Note that while the algorithm calculates each estimated back-

ground pixel, it does not retain a full image of it in memory. Instead,

these calculated values are used directly for efficient foreground

extraction. Consequently, the images shown in Figs. 1b, and 2d

through 2h are generated solely for illustrative purposes.

3.3 ZigZag Output Modes
ZigZag provides three versatile output modes to accommodate

diverse image processing requirements, enhancing its functionality

across applications from digital archiving to OCR and computer

vision.

Grayscale Mode: Grayscale mode extracts the foreground in

grayscale, preserving variations in intensity that are essential for

modern OCR and computer vision applications. Grayscale images

are preferred in deep learning contexts because they efficiently

convey texture and contrast information. Well-known systems such

as Google Vision OCR [13] and ABBYY Finereader [1] utilize these

grayscale inputs to optimize text and object recognition accuracy.

Color Mode: Color mode preserves full foreground color infor-

mation, which is beneficial for applications like digital archiving and

advanced image segmentation. Unlike grayscale mode, it processes

the red, green, and blue channels independently, enhancing image

fidelity while maintaining maximum information for subsequent

processing. This flexibility significantly enhances the algorithm’s

adaptability across various imaging challenges.

Binarization Mode: To preserve details and contours in the

binarized image, ZigZag first applies a two-fold upsampling to

the extracted grayscale foreground, ensuring that finer details are

retained in the output image due to the higher resolution. Subse-

quently, Otsu thresholding [26] is applied to convert the image into

a high-contrast black and white format. This mode is essential for

legacy OCR systems that rely on clear and detailed binary images

for accurate text recognition.

Each mode enables ZigZag to meet distinct archival and pro-

cessing needs, ensuring optimal data preservation, improved image

quality, and reduced file size. This adaptability makes ZigZag a

valuable tool for image processing professionals and researchers,

offering versatile functionalities suited to various technological

applications.

4 Experimental Validation
In this section, we compare ZigZag with established adaptive bina-

rization methods, focusing specifically on non-machine learning ap-

proaches. Our evaluation includesmultiple datasets and qualitymet-

rics. The algorithms assessed alongside ZigZag include Bernsen [5],

Bradley [7], Michalak [21], Nick [16], Niblack [16], Sauvola [29],

and YinYang [6], with Otsu’s method [26] serving as our baseline

for comparison.
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(a) Original image (b) Michalak BGE (c) YinYang BGE (d) ZigZag BGE (weight=100%)

(e) ZigZag BGE, weight=75% (f) ZigZag BGE, weight=50% (g) ZigZag BGE, weight=25% (h) ZigZag BGE, weight=0%

Figure 2: Comparison of background estimation (BGE) algorithms: (a) original image, (b) Michalak, (c) YinYang, and (d) ZigZag,
from least to most accurate. Images (e), (f), (g), and (h) show the effect of the mean weight parameter on ZigZag’s BGE accuracy.

Each algorithm was executed with its default settings, as spec-

ified in the original research papers. All implementations were

conducted in Java, and experiments were performed on a system

equipped with an Intel(R) Core(TM) i7-10875H CPU at 2.30 GHz.

4.1 Evaluation on Photographed Documents
We conducted evaluations using two distinct datasets to assess

the performance of the proposed binarization algorithms. The first

dataset, known as the WEZUT OCR Dataset [22], consists of 176

non-uniformly illuminated document images, each featuring the

commonly used placeholder text "Lorem ipsum. . . ", captured with

a Nikon N70 Digital Single Lens Reflex (DSLR) camera. The images

represent the photos of the documents printed using 5 different

popular font shapes (Arial, Times New Roman, Calibri, Courier

and Verdana) with some typical modifications of attributes (normal,

bold and italic versions of all fonts as well as bold italics). This

dataset is intended mainly for the evaluation of image binarization

algorithms, developed for the pre-processing of non-uniformly

illuminated document images subjected to further text recognition

using various OCR engines.

The second dataset, termed "mobile-dataset-4", was introduced at

the 2022 ACM Symposium on Document Engineering as part of the

"Quality, Space, and Time Competition on Binarizing Photographed

Documents" [20]. It comprises 48 images of printed scientific articles

captured under uneven lighting conditions with various popular

smartphone models, utilizing both on and off camera flash settings.

We excluded an additional 32 images of hardcover book pages from

the dataset due to their curved nature, which made it impractical

to establish accurate ground truth because of non-linear geometric

transformations.

For a comprehensive and thorough evaluation, we created an

OCR ground-truth by mapping text characters in the photographed
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Algorithm 1 ZigZag foreground extraction algorithm. The conditional operator (𝑎 ? 𝑏 : 𝑐) is used to represent inline-if statements, where

𝑏 is returned if 𝑎 is true, and 𝑐 otherwise. Boundary checks are omitted for clarity. In the comments, bg pixels stands for background pixels.

1: procedure ExtractForeground(𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡,𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑠𝑖𝑧𝑒,𝑤𝑒𝑖𝑔ℎ𝑡 )
2: for 𝑥 ← 1 to𝑤𝑖𝑑𝑡ℎ do
3: 𝑠𝑢𝑚 ← 0 ⊲ Initialize sum for integral image

4: for 𝑦 ← 1 to ℎ𝑒𝑖𝑔ℎ𝑡 do
5: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑖𝑛𝑝𝑢𝑡 [𝑥,𝑦] ⊲ Cumulative sum

6: 𝑖𝑖 [𝑥,𝑦] ← (𝑥 == 1 ? 𝑠𝑢𝑚 : 𝑖𝑖 [𝑥 − 1, 𝑦] + 𝑠𝑢𝑚) ⊲ Integral image

7: end for
8: end for
9: 𝑟 ← ⌊𝑠𝑖𝑧𝑒/2⌋ ⊲ Local window half-size

10: 𝑛𝑝 ← (2 × 𝑟 + 1)2 ⊲ Number of pixels in the local window

11: for 𝑥 ← 1 to𝑤𝑖𝑑𝑡ℎ do
12: 𝑐𝑜𝑢𝑛𝑡 ← 0 ⊲ Initialize count of bg pixels

13: 𝑠𝑢𝑚 ← 0 ⊲ Initialize sum of intensities for bg pixels

14: for 𝑦 ← 1 to ℎ𝑒𝑖𝑔ℎ𝑡 do
15: 𝑥1 ← 𝑥 − 𝑟 − 1 ⊲ Local window boundaries

16: 𝑥2 ← 𝑥 + 𝑟
17: 𝑦1 ← 𝑦 − 𝑟 − 1
18: 𝑦2 ← 𝑦 + 𝑟
19: 𝑚𝑒𝑎𝑛𝑤 ← 𝑤𝑒𝑖𝑔ℎ𝑡 × (𝑖𝑖 [𝑥2, 𝑦2] − 𝑖𝑖 [𝑥2, 𝑦1] − 𝑖𝑖 [𝑥1, 𝑦2] + 𝑖𝑖 [𝑥1, 𝑦1])/𝑛𝑝 ⊲ Weighted mean intensity

20: if (𝑖𝑛𝑝𝑢𝑡 [𝑥,𝑦] ≥ 𝑚𝑒𝑎𝑛𝑤) then ⊲ Check if pixel is likely background

21: 𝑐𝑜𝑢𝑛𝑡𝑏𝑔 ← 𝑐𝑜𝑢𝑛𝑡𝑏𝑔 + 1 ⊲ Increment count of bg pixels

22: 𝑠𝑢𝑚𝑏𝑔 ← 𝑠𝑢𝑚𝑏𝑔 + 𝑖𝑛𝑝𝑢𝑡 [𝑥,𝑦] ⊲ Accumulate intensity of bg pixels

23: end if
24: 𝑎𝑟𝑒𝑎𝑏𝑔 [𝑥,𝑦] ← (𝑥 = 1 ? 𝑐𝑜𝑢𝑛𝑡𝑏𝑔 : 𝑎𝑟𝑒𝑎𝑏𝑔 [𝑥 − 1, 𝑦] + 𝑐𝑜𝑢𝑛𝑡𝑏𝑔) ⊲ Cumulative count of bg pixels

25: 𝑖𝑖𝑏𝑔 [𝑥,𝑦] ← (𝑥 = 1 ? 𝑠𝑢𝑚𝑏𝑔 : 𝑖𝑖𝑏𝑔 [𝑥 − 1, 𝑦] + 𝑠𝑢𝑚𝑏𝑔) ⊲ Cumulative sum of intensities for bg pixels

26: end for
27: end for
28: for 𝑥 ← 1 to𝑤𝑖𝑑𝑡ℎ do
29: for 𝑦 ← 1 to ℎ𝑒𝑖𝑔ℎ𝑡 do
30: 𝑥1 ← 𝑥 − 𝑟 − 1 ⊲ Local window boundaries

31: 𝑥2 ← 𝑥 + 𝑟
32: 𝑦1 ← 𝑦 − 𝑟 − 1
33: 𝑦2 ← 𝑦 + 𝑟
34: 𝑛𝑝𝑏𝑔 ← 𝑎𝑟𝑒𝑎𝑏𝑔 [𝑥2, 𝑦2] − 𝑎𝑟𝑒𝑎𝑏𝑔 [𝑥2, 𝑦1] − 𝑎𝑟𝑒𝑎𝑏𝑔 [𝑥1, 𝑦2] + 𝑎𝑟𝑒𝑎𝑏𝑔 [𝑥1, 𝑦1] ⊲ Number of bg pixels in local window

35: 𝑚𝑒𝑎𝑛𝑏𝑔 ← (𝑖𝑖𝑏𝑔 [𝑥2, 𝑦2] − 𝑖𝑖𝑏𝑔 [𝑥2, 𝑦1] − 𝑖𝑖𝑏𝑔 [𝑥1, 𝑦2] + 𝑖𝑖𝑏𝑔 [𝑥1 − 1, 𝑦1])/𝑛𝑝 ⊲ Mean intensity of bg pixels (i.e., BGE)

36: 𝑜𝑢𝑡𝑝𝑢𝑡 [𝑥,𝑦] ← (𝑖𝑛𝑝𝑢𝑡 [𝑥,𝑦] ≥ 𝑚𝑒𝑎𝑛𝑏𝑔 ? 255 : 𝑖𝑛𝑝𝑢𝑡 [𝑥,𝑦] × 256/𝑚𝑒𝑎𝑛𝑏𝑔) ⊲ Background removal

37: end for
38: end for
39: end procedure

datasets to their respective bounding boxes using Google Vision

OCR, followed by painstaking manual corrections to ensure accu-

racy and reliability.

Performancewasmeasured using sixmetrics: accuracy, precision,

recall, F-score, normalized Levenshtein distance [18], and mean

processing time. The Levenshtein distance was normalized by the

total number of characters:

𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛′ =
𝑛𝑏𝐶ℎ𝑎𝑟𝑠 − 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛

𝑛𝑏𝐶ℎ𝑎𝑟𝑠

The F-score, which is the harmonic mean of precision and recall and

is calculated as follows, serves as the primary measure of quality:

𝐹 -𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Precision is the ratio of true positives to the sum of all positives,

and recall is the ratio of true positives to the sum of true positives

and false negatives. Originally used to assess binarization quality

by comparing pixel-level accuracy on binary images, the F-score

also serves as an effective general classification metric, particularly

valuable for character-level text recognition evaluations.

Table 1 displays the results obtained from the WEZUT OCR and

DocEng’22 Smartphone datasets, showcasing a range of adaptive

non-machine learning algorithms ranked by their F-score (com-

puted at the character level). Fig. 4 illustrates the impact of win-

dow size on F-score performance using the WEZUT OCR dataset.

Typically, optimal window sizes range between 20 and 40 pix-

els for all adaptive algorithms. Remarkably, ZigZag demonstrates
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Table 1: Google Vision OCR evaluation onWEZUTOCR and DocEng’22 Smartphone datasets using various adaptive binarization
algorithms. Performance is ranked by F-scores, with ties broken by processing time. Quality values are percentages with
standard deviations in parentheses, and mean processing times are in milliseconds. Additional rows show the impact of mean
weight on F-score. The grayscale mode (GL) is not included in the ranking.

WEZUT OCR Dataset (176 images)
# Algorithm Acc. Prec. Recall F-score Levenshtein’ Time
1 ZigZag 99.85 99.94 99.91 99.93 (0.12) 99.74 (1.20) 194

2 YinYang 99.76 99.90 99.85 99.88 (0.22) 99.73 (0.73) 1044

3 Sauvola 99.71 99.86 99.85 99.86 (0.24) 99.62 (1.65) 3473

4 Nick 99.71 99.87 99.84 99.85 (0.25) 99.60 (1.38) 3012

5 Bradley 99.65 99.81 99.84 99.83 (0.31) 99.55 (2.23) 112

6 Michalak 99.43 99.78 99.64 99.71 (0.79) 99.47 (1.50) 73

7 Bernsen 95.56 95.90 99.63 97.67 (2.63) 94.63 (6.88) 1278

8 Niblack 87.70 88.27 99.31 92.91 (7.82) 82.57 (20.55) 3472

9 Otsu 60.59 99.01 60.84 73.48 (16.10) 59.74 (20.38) 24

ZigZag GL 99.96 99.98 99.98 99.98 (0.06)

ZigZag 100% 99.86 99.94 99.91 99.93 (0.12)

ZigZag 90% 99.85 99.94 99.91 99.93 (0.12)

ZigZag 80% 99.82 99.93 99.89 99.91 (0.17)

ZigZag 70% 99.77 99.91 99.87 99.89 (0.24)

ZigZag 60% 99.74 99.89 99.84 99.87 (0.28)

ZigZag 50% 99.73 99.89 99.83 99.86 (0.28)

DocEng’22 Smartphone Dataset (48 images)
# Algorithm Acc. Prec. Recall F-score Levenshtein’ Time
1 ZigZag 99.69 99.85 99.85 99.85 (0.06) 99.82 (0.17) 347

2 YinYang 99.70 99.85 99.85 99.85 (0.05) 99.82 (0.18) 1477

3 Nick 99.62 99.78 99.84 99.81 (0.20) 99.74 (0.54) 4564

4 Sauvola 99.61 99.77 99.84 99.80 (0.21) 99.74 (0.49) 5729

5 Bradley 99.59 99.74 99.85 99.79 (0.16) 99.57 (1.91) 198

6 Michalak 99.44 99.61 99.83 99.72 (0.15) 99.57 (0.33) 123

7 Niblack 95.92 96.15 99.75 97.86 (2.56) 94.54 (7.31) 5883

8 Bernsen 95.89 96.11 99.76 97.81 (3.15) 94.14 (8.70) 2192

9 Otsu 71.68 98.05 72.29 81.88 (13.93) 71.71 (20.32) 40

ZigZag GL 99.81 99.90 99.91 99.90 (0.07)

ZigZag 100% 99.70 99.85 99.85 99.85 (0.06)

ZigZag 90% 99.70 99.85 99.85 99.85 (0.06)

ZigZag 80% 99.68 99.84 99.84 99.84 (0.07)

ZigZag 70% 99.67 99.84 99.83 99.83 (0.10)

ZigZag 60% 99.63 99.82 99.81 99.81 (0.12)

ZigZag 50% 99.63 99.82 99.81 99.81 (0.09)

less sensitivity to window size variations compared to other algo-

rithms, allowing for favorable results even with suboptimal window

sizes. The evaluation results in Table 1 show the average outcomes

across three window sizes: 20, 30, and 40 pixels. Exceptions include

YinYang, which uses a default window size of 64 pixels for opti-

mization, Michalak with a default kernel size of 32, and Otsu, a

non-adaptive algorithm unaffected by window size altogether.

ZigZag is expected to perform optimally with a mean weight

close to 100% for OCR preprocessing of photographs captured under

uneven lighting conditions. This is based on the assumption that

despite significant luminosity variations in the background, these

images typically lack texture, resulting in a close alignment of the

local mean with the local background. Consequently, the estimated

background should closely approximate the ideal state, requiring

no weighting adjustments. This hypothesis was confirmed by com-

puting the F-score on theWEZUT OCR and DocEng’22 Smartphone

datasets using five incremental mean weights ranging from 50% to

100%. For the sake of computation time, additional ZigZag F-scores

were calculated using a representative window size of 30 pixels.

In our evaluations, ZigZag consistently outperformed all other

adaptive algorithms, showcasing remarkable performance even

compared to its predecessor. YinYang itself had previously been

recognized in the DocEng’2022 and DocEng’2023 binarization com-

petitions, competing against a broad range of classical and modern
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(a) Original image (b) Grayscale mode

Figure 3: ZigZag output mode showing (a) the original image
and (b) the grayscale foreground extraction.
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Figure 4: Impact of window size on the F-score performance
for optical character recognition using the WEZUT Dataset.

algorithms. A detailed evaluation and comparison of YinYang is

available in "A Quality, Size, and Time Assessment of the Binariza-

tion of Documents Photographed by Smartphones" by Bernardino

et al. (2023) [4].

Similar to its predecessor, ZigZag employs two-fold upsampling

for image binarization in OCR applications to minimize information

loss when converting grayscale images to black and white. This

approach is especially beneficial for images with low resolution or

small font sizes. Table 1 also includes additional rows for ZigZag

GL, representing the grayscale extracted image foreground just

before the Otsu thresholding process (see Fig. 3b). Notably, ZigZag

GL achieves the highest F-score results, consistent with Google

Vision OCR’s preference for grayscale inputs.

Google Vision OCR demonstrated impressive performance, even

with barely discernible characters. It operates in three stages: ana-

lyzing the image layout to locate text, performing text recognition,

and correcting errors during post-processingwith a languagemodel.

This robust post-processing significantly boosts its results, which

is particularly noteworthy given the use of Lorem Ipsum as dummy

text in the WEZUT dataset. Without this post-processing stage,

ZigZag would likely showcase a more pronounced performance

advantage over its competitors.

4.2 Evaluation on Historical Documents
ZigZag is primarily designed for processing non-uniformly illumi-

nated document images, such as those captured with mobile devices.

However, the algorithm also effectively removes backgrounds from

historical documents, which are often characterized by textured

surfaces, signs of degradation, and back-to-front interference.

Historical document images typically originate from controlled

environments without the complications of non-uniform lighting

but present their own unique challenges, such as aged and textured

paper. ZigZag includes an adjustable weight parameter specifically

designed for these historical documents. By fine-tuning this param-

eter, ZigZag can adapt more efficiently to background irregularities,

which is essential for accurately extracting the foreground, thereby

maintaining the integrity and readability of historical texts.

We evaluated ZigZag’s performance on the Nabuco dataset [19]

using the 35 images that had ground-truth annotations out of a total

of 1067 images. The results shown in Table 2 demonstrate ZigZag’s

effectiveness in processing historical documents, underscoring its

adaptability to various document types. The algorithm achieved a

Mean Squared Error (MSE) of 1.29 and a Peak Signal-to-Noise Ratio

(PSNR) of 20.34, reflecting its accuracy in background estimation

and its ability to minimize noise. These metrics confirm that ZigZag

effectively reduces artifacts during binarization, preserving critical

document details, which is crucial for the legibility and archival

quality of historical texts.

We determined the optimal mean weight for the Nabuco dataset

to be 60% after evaluating values from 0% to 100% in 10% increments.

Even with suboptimal weight settings (as shown in the additional

rows of Table 2), ZigZag consistently delivered robust performance,

demonstrated by its lowMSE and high PSNR values. This evaluation

underscores ZigZag’s capability to effectively tackle the challenges

posed by historical document imagery, ensuring that the binarized

output retains both clarity and fidelity to the original content.

Fig. 5 shows the ZigZag algorithm processing a historical docu-

ment image from the Nabuco dataset, producing a reliable binarized

output. These results are notable not only for their quality but also

for their potential to lay the groundwork for machine learning

approaches. By generating a large volume of good-quality initial

binarized samples, ZigZag could significantly accelerate machine

learning workflows. Machine learning models trained on these

samples can then be further refined using smaller, highly precise

ground-truth datasets, which, while offering superior accuracy,

are much more time-consuming to produce. This approach could

improve overall recognition accuracy and enhance model general-

ization.
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Table 2: Image binarization results on the Nabuco historical dataset. Quality values are presented as percentages, except MSE
and PSNR. Additional rows show the impact of mean weight on F-score and other metrics.

Nabuco Dataset (35 images)
# Algorithm Acc. Prec. Recall F-score MSE PSNR
1 ZigZag 60% 98.71 89.63 94.03 91.01 1.29 20.34

2 Nick 98.30 86.23 93.92 88.86 1.70 19.24

3 YinYang 97.99 80.98 97.13 86.96 2.01 18.78

4 Sauvola 97.69 79.18 97.75 86.34 2.31 18.34

5 Otsu 97.64 79.17 97.76 85.99 2.36 18.70

6 Bradley 97.60 78.44 97.48 85.80 2.40 18.05

7 Michalak 91.77 46.26 99.78 61.85 8.23 11.40

8 Bernsen 84.70 32.15 91.88 45.41 15.30 8.52

9 Niblack 76.05 22.75 98.75 35.72 23.95 6.33

ZigZag 50% 98.73 90.52 93.02 90.98 1.27 20.33

ZigZag 70% 98.66 88.58 94.87 90.79 1.34 20.28

ZigZag 80% 98.58 87.40 95.51 90.36 1.42 20.13

ZigZag 90% 98.48 86.27 96.01 89.85 1.52 19.94

ZigZag 100% 98.40 85.50 96.29 89.48 1.60 19.82

(a) Original image (b) Binarized image

Figure 5: ZigZag binarization with a 30-pixel window size
and 60% mean weight: (a) original, and (b) binarized images.

4.3 Limitations and Future Work
While the evaluations presented demonstrate the effectiveness of

ZigZag across various datasets, they primarily rely on OCR-based

metrics derived from Google Vision OCR. Given the advanced na-

ture of this OCR system, subtle differences between binarization

algorithms may be obscured, as evidenced by the consistently high

F-scores (i.e., in the 99.x% range) achieved by the leading algorithms.

This suggests that the forgiving nature of advanced OCR engines

might not fully capture the nuanced performance variations among

different binarization methods.

To address this, future studies could benefit from using less

sophisticated OCR systems, which may reveal more pronounced

differences between algorithms, resulting in lower and more repre-

sentative F-scores. Additionally, the creation of a dataset with pixel-

level ground-truth annotations for smartphone-captured document

images would allow for a more direct and robust evaluation of bi-

narization performance, offering deeper insights into the strengths

and weaknesses of each method.

One notable limitation of ZigZag is its handling of very large

text elements. When processing such large, thick text, the use of

a local window for background estimation can sometimes lead to

inaccuracies. Specifically, the algorithm may only extract the con-

tours of the text as the foreground (black), while misclassifying the

interior as the background (white), effectively erasing crucial parts

of the text. This issue arises when the local window fits entirely

within a text area, causing the local mean intensity to align with

the text intensity, which the algorithm then mistakenly classifies

as the background, leading to inaccurate binarization.

To overcome this limitation, future research could explore adap-

tive window sizing strategies or alternative approaches that more

effectively handle large text elements. These improvements would

enhance ZigZag’s effectiveness across a broader spectrum of docu-

ment types. Coupling these refinements with a more comprehen-

sive evaluation of binarization performance could further establish

ZigZag as a reliable and versatile tool in document image process-

ing.

5 Conclusion
ZigZag represents a significant advancement in the field of adap-

tive, non-machine learning image binarization, particularly for

handling non-uniformly illuminated document images. Our empiri-

cal evaluations on the WEZUT OCR and DocEng’22 Smartphone

datasets, comprising photographed documents under challenging

lighting conditions, demonstrate ZigZag’s superior performance.
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Furthermore, its effectiveness in processing historical documents,

as evidenced by the Nabuco dataset, underscores its versatility in

managing aged and textured backgrounds.

The success of ZigZag is primarily due to its two-pass back-

ground estimation process, which enhances the precision of fore-

ground extraction. By initially masking potential text pixels, the

algorithm achieves a more accurate background estimation, leading

to cleaner and more reliable outputs. The versatility of ZigZag is

further demonstrated through its multiple output modes, including

color and grayscale extraction, making it adaptable to diverse user

needs.

In addition to its technical strengths, ZigZag offers notable ad-

vantages over machine-learning-based methods, such as ease of

implementation, reduced computational complexity, lower power

consumption, and consistent, predictable outcomes. These ben-

efits make ZigZag a reliable choice for deployment in various

real-world applications, especially in resource-constrained environ-

ments where efficiency and reliability are paramount. Its efficient

processing and robustness make it particularly well-suited for mo-

bile document imaging, significantly enhancing real-time document

management systems.

In conclusion, ZigZag makes a valuable contribution to adap-

tive image binarization, providing a practical and effective solu-

tion to the challenges posed by uneven lighting in document im-

ages. Its combination of simplicity, efficiency, and versatility makes

it a reliable tool for both researchers and industry profession-

als. An open-source implementation is available on GitHub at

https://github.com/Bloechle/ZigZag to support ongoing studies and

real-world applications.

References
[1] ABBYY. 2023. ABBYY FineReader 2023. https://www.abbyy.com/en-us/finereader/

Accessed on September 8, 2023.

[2] Euthimios Badekas and Nikos Papamarkos. 2007. Optimal combination of doc-

ument binarization techniques using a self-organizing map neural network.

Engineering Applications of Artificial Intelligence 20, 1 (2007), 11–24.
[3] Francesco Bardozzo, Borja De La Osa, Lubomira Horanska, Javier Fumanal-

Idocin, Luigi Troiano, Roberto Tagliaferri, Javier Fernandez, Humberto Bustince,

et al. 2020. Adaptive binarization based on fuzzy integrals. arXiv preprint
arXiv:2003.08755 (2020).

[4] Rodrigo Bernardino, Rafael Dueire Lins, and Ricardo da Silva Barboza. 2023.

A Quality, Size and Time Assessment of the Binarization of Documents Pho-

tographed by Smartphones. Journal of Imaging 9, 2 (2023), 41.

[5] John Bernsen. 1986. Dynamic thresholding of gray-level images. In Proc. Eighth
Int’l conf. Pattern Recognition, Paris, 1986.

[6] Jean-Luc Bloechle, Jean Hennebert, and Christophe Gisler. 2023. YinYang, a

Fast and Robust Adaptive Document Image Binarization for Optical Character

Recognition. In Proceedings of the ACM Symposium on Document Engineering 2023
(Limerick, Ireland) (DocEng ’23). Association for Computing Machinery, New

York, NY, USA, Article 19, 4 pages. https://doi.org/10.1145/3573128.3609354

[7] Derek Bradley and Gerhard Roth. 2007. Adaptive thresholding using the integral

image. Journal of graphics tools 12, 2 (2007), 13–21.
[8] Jorge Calvo-Zaragoza and Antonio-Javier Gallego. 2019. A selectional auto-

encoder approach for document image binarization. Pattern Recognition 86 (2019),
37–47.

[9] Chien-Hsing Chou, Wen-Hsiung Lin, and Fu Chang. 2010. A binarization method

with learning-built rules for document images produced by cameras. Pattern
Recognition 43, 4 (2010), 1518–1530.

[10] Franklin C. Crow. 1984. Summed-Area Tables for Texture Mapping. SIGGRAPH
Comput. Graph. 18, 3 (jan 1984), 207–212. https://doi.org/10.1145/964965.808600

[11] Meng-Ling Feng and Yap-Peng Tan. 2004. Contrast adaptive binarization of low

quality document images. IEICE Electronics Express 1, 16 (2004), 501–506.
[12] Basilios Gatos, Ioannis Pratikakis, and Stavros J Perantonis. 2006. Adaptive

degraded document image binarization. Pattern recognition 39, 3 (2006), 317–327.
[13] Google. 2023. Google Cloud Vision OCR. https://cloud.google.com/vision Accessed

on September 8, 2023.

[14] Sheng He and Lambert Schomaker. 2019. DeepOtsu: Document enhancement and

binarization using iterative deep learning. Pattern recognition 91 (2019), 379–390.
[15] David Hebert, Stephane Nicolas, and Thierry Paquet. 2013. Discrete CRF based

combination framework for document image binarization. In 2013 12th Interna-
tional Conference on Document Analysis and Recognition. IEEE, 1165–1169.

[16] Khurram Khurshid, Imran Siddiqi, Claudie Faure, and Nicole Vincent. 2009. Com-

parison of Niblack inspired binarization methods for ancient documents. In

Document Recognition and Retrieval XVI, Vol. 7247. SPIE, 267–275.
[17] Ján Koloda and Jue Wang. 2023. Context Aware Document Binarization and Its

Application to Information Extraction from Structured Documents. In Interna-
tional Conference on Document Analysis and Recognition. Springer, 63–78.

[18] Vladimir I Levenshtein et al. 1966. Binary codes capable of correcting deletions,

insertions, and reversals. In Soviet physics doklady, Vol. 10. Soviet Union, 707–710.
[19] Rafael Dueire Lins. 2011. Two Decades of Document Processing in Latin America.

J. Univers. Comput. Sci 17, 1 (2011), 151–161.
[20] Rafael Dueire Lins, Rodrigo Barros Bernardino, Ricardo Barboza, and Raimundo

Oliveira. 2022. The Winner Takes It All: Choosing the “best” Binarization Al-

gorithm for Photographed Documents. In International Workshop on Document
Analysis Systems. Springer, 48–64.

[21] Hubert Michalak and Krzysztof Okarma. 2019. Fast Binarization of Unevenly

Illuminated Document Images Based on Background Estimation for Optical

Character Recognition Purposes. J. Univers. Comput. Sci. 25, 6 (2019), 627–646.
[22] Hubert Michalak and Krzysztof Okarma. 2020. Robust combined binarization

method of non-uniformly illuminated document images for alphanumerical

character recognition. Sensors 20, 10 (2020), 2914.
[23] Reza Farrahi Moghaddam and Mohamed Cheriet. 2012. AdOtsu: An adaptive and

parameterless generalization of Otsu’s method for document image binarization.

Pattern Recognition 45, 6 (2012), 2419–2431.

[24] Ajoy Mondal, Chetan Reddy, and CV Jawahar. 2023. Deep semantic binarization

for document images. Multimedia Tools and Applications 82, 5 (2023), 6531–6555.
[25] Sheshera Mysore, Manish Kumar Gupta, and Swapnil Belhe. 2016. Complex and

degraded color document image binarization. In 2016 3rd International Conference
on Signal Processing and Integrated Networks (SPIN). IEEE, 157–162.

[26] Nobuyuki Otsu. 1979. A Threshold SelectionMethod fromGray-Level Histograms.

IEEE Transactions on Systems, Man, and Cybernetics 9, 1 (1979), 62–66. https:

//doi.org/10.1109/TSMC.1979.4310076

[27] Xujun Peng, Huaigu Cao, and PremNatarajan. 2017. Using convolutional encoder-

decoder for document image binarization. In 2017 14th IAPR international confer-
ence on document analysis and recognition (ICDAR), Vol. 1. IEEE, 708–713.

[28] Ioannis Pratikakis, Konstantinos Zagoris, George Barlas, and Basilis Gatos. 2017.

ICDAR2017 competition on document image binarization (DIBCO 2017). In 2017
14th IAPR International Conference on Document Analysis and Recognition (ICDAR),
Vol. 1. IEEE, 1395–1403.

[29] Jaakko Sauvola and Matti Pietikäinen. 2000. Adaptive document image binariza-

tion. Pattern recognition 33, 2 (2000), 225–236.

[30] Faisal Shafait, Daniel Keysers, and Thomas M Breuel. 2008. Efficient implementa-

tion of local adaptive thresholding techniques using integral images. In Document
recognition and retrieval XV, Vol. 6815. SPIE, 317–322.

[31] Bolan Su, Shijian Lu, and Chew Lim Tan. 2011. Combination of document image

binarization techniques. In 2011 International Conference on Document Analysis
and Recognition. IEEE, 22–26.

[32] Salvatore Tabbone and Laurent Wendling. 2004. Binarization of color images

from an adaptation of possibilistic c-means algorithm. In Proceedings of the 17th
International Conference on Pattern Recognition, 2004. ICPR 2004., Vol. 1. IEEE,
704–707.

[33] Chris Tensmeyer and Tony Martinez. 2017. Document image binarization with

fully convolutional neural networks. In 2017 14th IAPR international conference
on document analysis and recognition (ICDAR), Vol. 1. IEEE, 99–104.

[34] Chun-Ming Tsai and Hsi-Jian Lee. 2002. Binarization of color document images

via luminance and saturation color features. IEEE Transactions on Image Processing
11, 4 (2002), 434–451.

[35] Quang Nhat Vo, Soo Hyung Kim, Hyung Jeong Yang, and Gueesang Lee. 2018.

Binarization of degraded document images based on hierarchical deep supervised

network. Pattern Recognition 74 (2018), 568–586.

[36] Christian Wolf and J-M Jolion. 2004. Extraction and recognition of artificial text

in multimedia documents. Formal Pattern Analysis & Applications 6, 4 (2004),
309–326.

[37] Wei Xiong, Xiuhong Jia, Dichun Yang, Meihui Ai, Lirong Li, and Song Wang.

2021. DP-LinkNet: A convolutional network for historical document image

binarization. KSII Transactions on Internet and Information Systems (TIIS) 15, 5
(2021), 1778–1797.

https://github.com/Bloechle/ZigZag
https://www.abbyy.com/en-us/finereader/
https://doi.org/10.1145/3573128.3609354
https://doi.org/10.1145/964965.808600
https://cloud.google.com/vision
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076

	Abstract
	1 Introduction
	2 Overview of Image Binarization Algorithms
	3 Proposed Method
	3.1 About Background Estimation
	3.2 ZigZag Algorithm
	3.3 ZigZag Output Modes

	4 Experimental Validation
	4.1 Evaluation on Photographed Documents
	4.2 Evaluation on Historical Documents
	4.3 Limitations and Future Work

	5 Conclusion
	References



