
Performance losses with virtualization: Comparing bare
metal to VMs and containers

Jonatan Baumgartner[0009-0003-1372-9693], Christophe Lillo and Sébastien Rumley[0000-0001-
5547-9483]

School of Engineering and Architecture of Fribourg,
HES-SO - University of Applied Sciences and Arts Western Switzerland

sebastien.rumley@hefr.ch

Abstract. The use of virtualization technologies has become widespread with the
advent of cloud computing. The purpose of this study is to quantify the perfor-
mance losses caused by all kind of virtualization/containerization configurations.

A benchmark suite consisting of tools that stress specific components and then
four real applications commonly used in computing centers has been designed.
A system to schedule the execution of these benchmarks and to collect the results
has been developed. Finally, a procedure calling all the benchmark in a consistent
and reproducible way either within a container or in a (virtual or not machine)
has been implemented. These developments permitted then to compare bare
metal with four hypervisors and two container runtimes as well as the mix of
containers in the virtual machines.

The results show that the performance differences vary greatly depending on
the workload and the virtualization software used. When using the right virtual-
ization software, the estimated the performance losses are around 5% for a con-
tainer and 10% for a virtual machine. The combination of the two entails the
addition of these losses to 15%. In the case of non-optimized software, a perfor-
mance loss of up to 72% can be observed. We also observed that containers and
virtual machines can over-perform bare-metal when it comes to file access.

Overall we conclude that virtualization has become very mature and perfor-
mance losses seems not to be a concern anymore.

Keywords: virtualization, benchmarking, overhead, measures, automation.

1 Introduction
During the last decade, containerized or virtualized applications have gradually re-
placed bare metal computers. These techniques have been popularized by the ground-
breaking arrival of cloud computing in companies and public institutions. Hence it is
now common for a company to rely exclusively on virtual machines (in addition to
personal computers), hosted in a private cloud, or rented to a cloud company. Compa-
nies and institutions also increasingly resort to higher-level virtualization solutions, be
it thru Containers as a Service (Caas) or Functions as a Service (FaaS). They can even

2

turn to Kubernetes as a Service (KaaS) solutions to manage container deployment them-
selves, but without having to manage any of the inferior levels (hardware, OS).

Stacking services has become so easy that it is common to find multiple layers of
virtualization coexisting. For instance, Switch, a swiss academic IT provider, offers a
KaaS solution that itself rely on virtual machines (Switch Engine) [16]. It has also be-
come a frequent practice to perform docker-in-docker operations or install docker in-
side virtual machines for convenience. Furthermore, there is a growing need for nested
virtualization [17], which involves running virtual machines inside another.

Virtualization - of the hardware machine (VM hereafter) or of the OS (container
hereafter) - makes a lot of sense when it comes to increasing utilization, guaranteeing
reproducibility, or easing the deployment. However, there is no free lunch and these
benefits come at a cost, namely in terms of performance overhead. We therefore posit
that it is legitimate to ask how important this overhead is.

Moreover, in light of the recent energy crisis and the broader objective of transition-
ing to carbon-neutral societies, the aspect of electrical consumption of IT is gaining
importance. Consequently, we inquire: in an energy sobriety context, can a debauchery
of virtualization significantly affect the energy consumption of our computing re-
sources? Stated in another way: how much longer will my virtualized application keep
my CPU busy? And in yet other terms: what is the performance overhead introduced
by virtualization, compared to running the same application directly on the hardware?
Addressing the latter question forms the focus of our research, which we explore and
discuss in this paper.

Much research in the past tried to answer this question. One of the main challenges
for virtualization is the storage input and output rate [1] but other comparisons can be
made between bare-metal and high- or low-level virtualization [2]. Some papers [3, 4,
5] are quite old and use obsolete technologies like OpenVZ, LXC or Linux-Vserver.
Other studies [6, 7] only concentrate on VMs or containers.

The applications used to benchmark the performances differ. While HPL, STREAM
and iPerf are almost always used to test the CPU [1, 6, 9], the memory and the network,
there is not one default choice when it comes to measuring storage performances. Sev-
eral articles focus on a specific real-world application: compiling a Linux kernel, testing
the capabilities of a web server with RUBiS [3], or accesssing Cassandra database [10].
Shirinbab et al. [11] found that when comparing VMware to XenServer and KVM, no
hypervisor has the best performance for all aspects.

Table 1 compiles the results found in literature [2, 3, 4, 9]. We see that if there is a
consensus on performance degradation for CPU demanding application, there is much

Table 1. Summarized performances loss found by previous studies.

 BARE METAL CONTAINER VM
CPU 100% 90-100% 90-100%
MEMORY 100% 95-100% 69-100%
DISK IO 100% 50-90% 45-100%
NETOWRK 100% 64-100% 47-100%

3

more debate about memory or disk intensive workloads. Some papers report discour-
aging performances in the range of 50% (meaning virtualization introduces a 50% over-
head), while others conclude that it is not so bad (at least 90% of the performance).

Interestingly, we note that if there has been a volley of papers published on virtual-
ization benchmarking in the years 2007-2015, the subject has somehow lost traction in
the recent years. In our opinion, this is unfortunate since the virtualization technologies
did evolve in the last years, notably on the storage performance side, for example with
the apparition of ZFS and its aggressive caching methods in Proxmox [12] or with the
implementation of virtiofs in Docker [13]. Another type of improvements is the appa-
rition of lighter Kubernetes distributions like k0s which leave more resources available
for the containerized workloads themselves. It is also interesting to check if the most
recent platforms still hardly affect performances in peculiar cases, as the one reported
by Morabito et al. [9] (UDP traffic).

In summary, we made the decision to carry out a new campaign of benchmarks, with
the goal of reconciling the diverse range of results found in the literature and defini-
tively addressing our research question. Our campaign consisted of comparing various
virtualization platforms and combination thereof on three different hardware, running
a suite of benchmarks. Altogether we totalized more than 1’000 hours of benchmarking,
yielding in more than 15’000 measurements. To automate the conduction of the exper-
iment, we have implemented a comprehensive test orchestration framework called
LSBS, which we made open source available.

Our benchmarking methodology and test orchestration framework LSBS that imple-
ments it is presented in Section 2. Section 3 presents the results obtained when con-
ducting the tests on the three different hardware targets. We discuss the collected results
in section 4. Section 5 concludes.

2 Methodology
We divided our methodology in three components: the benchmark suite itself, consist-
ing of different workloads whose performance are measured; the benchmark procedure,
responsible for (repetitively) calling the suite on every target available in every desired
virtualization configuration, and finally, a data collection system in which all measure-
ments are centralized.

2.1 Benchmark suite
We strived to assemble a comprehensive and representative collection of benchmarks.
The components of this suite are outlined in Table 2. The suite begins with benchmarks
that assess individual "hardware" components (IDs 1-16). The HPCC benchmark suite
(IDs 1-4) evaluates the CPU and RAM through the utilization of HPL, DGEMM, Ran-
domAccess, and Stream tests. FIO (IDs 5-12) has been chosen for storage testing, en-
compassing eight measurements that include random or sequential operations, reads or
writes, and recording either the operations per second or the speed. Lastly, for network
(IDs 13-16), ping is used to measure latency, and IPerf is employed for network assess-
ment, initially in normal mode, followed by reverse mode, and ultimately in UDP mode.

4

Table 2. The 20 components of the developed benchmark suite

ID COMPONENT BENCHMARK MEASUREMENT UNIT
1

CPU

HPL
Rate of operations performed by the
CPU while resolving a large double pre-
cision linear equation system

FLOPS

2
DGEMM

Rate of floating-point operations per-
formed by the CPU multiplicating large
matrixes

FLOPS

3
Memory RandomAccess Rate of random integer update in the

memory Up/s

4 Stream Sustainable memory bandwith GB/s
5

Storage FIO

Sequential write iops

Io/s
6 Random write iops
7 Sequential read iops
8 Random reand iops
9 Sequential write speed

Kb/s
10 Random write speed
11 Sequential read speed
12 Random reand speed
13

Network

Ping time between tested and control sys-
tem ms

14

Iperf

Network TCP speed from target to con-
trol system

Gb/s 15 Network TCP speed from control to tar-
get system

16 Network UDP speed from target to con-
trol system

17

Compound

Blender
Database
Deep Learning
REST server

Time used to perform the task seconds 18
19
20

In the second part of the suite (IDs 17-20), 4 real applications are used: the rendering
of a Blender scene with Blender 3.3.0 and the Classroom scene; operations on a 48MB
SQLite database containing phone calls with their source, destination, and cost; the
training of a generative adversarial neural network with 322 images; a REST server
which, upon requests, creates a 70 MB random file and then asks the client to download
it. We measure the execution times of these test applications.

Running the full suite requires multiple launch commands. Installing the suite also
requires multiple operations. To both simplify, expedite and, very importantly, stand-
ardize both the installation and conduction processes, we described them as Ansible
playbooks. Ansible [14] is a command-line software purposed for software installation
automation. These playbooks (install and run) can then be “played” over a freshly in-
stalled Ubuntu OS. This methodology applies for bare-metal and VM benchmarking.

For containers benchmarking, we wrote Dockerfiles and built images for each
benchmark, as well as Ansible playbooks that installs the container runtime and runs
the benchmark suite.

5

2.2 Benchmarking procedure
In order to run the benchmark suite not only on multiple hardware target, but also in
many different (virtualized or not) configurations, and this in an automated way, we
implemented Linux Servers Benchmarking System (LSBS). LSBS is an open-source
tool [18] specifically designed for orchestrating the benchmarking process. LSBS over-
sees the installation and execution of benchmarks on one or multiple target platforms
using the aforementioned Ansible playbooks. Once a benchmark has finished, the re-
sults are sent back to LSBS which collects them. LSBS takes one or more machines,
virtual or not, as targets, with a fresh OS installed on them. Installations and executions
of one or more benchmark batches on one or more targets can then be scheduled.

As we must ensure that the software environment is exactly the same each time and
can be reproduced, the installation procedure must be extremely precisely defined. The
installation of the container runtimes (Docker, k0s) is fully automated and handled by
LSBS thru the aforementioned Ansible playbooks. But for installing the base OS (for
bare-metal benchmarking), the type 1 hypervisors (hence hypervisors running directly
over the metal), and the Ubuntu 22.04 host OS (for VMs), we defined a detailed manual
installation procedure, also available in the LSBS repository. In the future, we plan to
automate this part as well, using Metal-as-a-Service approaches [15].

2.3 Results collection and visualization system
LSBS provides a webapp front-end, thru which 1) benchmarks runs can be scheduled
and monitored (Fig. 1a), 2) raw measurements can be verified (Fig. 2) and 3) compari-
sons between platforms for each hardware and benchmark can be displayed in the form
of graphs with built-in statistical tools (Fig 1b). These tools facilitate benchmarking
campaigns, for first order result validation notably.

 (a) (b)

Fig. 1. LSBS front-end webapp screenshots a) benchmarks scheduling interface. b) results com-
parison interface, displaying an example result comparing the REST server performance across

several platforms on the AMD based system (details will be presented below).

6

Fig. 2. Example of result checking graph for the bare metal deep learning benchmark on the In-

tel Core i7-4790k hardware, using LSBS visualization features.

3 Results
With our benchmark suite and benchmarking tool LSBS at hand, we conducted perfor-
mances comparisons on three different hardware systems, which are listed in Table 3.
These three systems show some diversity in the hardware (CPU, manufacturer) and
belong to different generations.

As for virtualization, to thoroughly compare bare metal with VMs and containers,
we thrived to use the most popular hypervisors and container runtimes. For hypervisors,
we selected: VMware vSphere Hypervisor 7.0 (ESXi), Microsoft Hyper-V server 2019,
Proxmox Virtual Environment 7.3 and XCP-ng 8.2. For containers, Docker 20.10
which uses the runC runtime and k0s, a Kubernetes orchestrator that uses the containerd
runtime, in version 1.22.

Table 4 lists the 15 combinations that have been tested on each hardware. Essen-
tially, we test 3 container environments (Docker, k0s, NONE) across 5 machines (bare-
metal machine, Proxmox VM, VMWare VM, XCP-ng VM, Hyper-v VM). Grey lines
in Table 4 denote combinations that couldn’t be tested on the AMD-B550 based system,
due to hardware drivers compatibility issues. For this hardware, we thus have only 9
platforms to test. Altogether, we ended up with 15 + 15 + 9 = 39 hardware/virtualiza-
tion/container combinations - that we call “platforms” throughout this document.

Table 3. Systems used for the benchmarks.

CPU MEMORY STORAGE NETWORK
Intel Core i7-4790k
4 cores

24 GB DDR3
1333MHz

1TB SanDisk SSD Plus HP NC523SFP
10Gb/s

2*Intel Xeon E5-2630 v3
8+8 = 16 cores

128GB DDR4
1866MHz

120 GB
Intel SSD DC S3500

Intel X540-AT2
10Gb/s

AMD Ryzen 7 3700X
8 cores

16GB DDR4
3000MHz

1TB SanDisk SSD Plus HP NC523SFP
10Gb/s

7

Table 4. Tested container/virtualization combinations. Grey lines have not been tested on the
AMD based system

 Bare metal
 Docker over Bare metal
 K0s over Bare metal
 Ubuntu Proxmox VM over Bare metal
Docker over Ubuntu Proxmox VM over Bare metal
K0s over Ubuntu Proxmox VM over Bare metal
 Ubuntu Hyper-v VM over Bare metal
Docker over Ubuntu Hyper-v VM over Bare metal
K0s over Ubuntu Hyper-v VM over Bare metal
 Ubuntu XCP-ng VM over Bare metal
Docker over Ubuntu XCP-ng VM over Bare metal
K0s over Ubuntu XCP-ng VM over Bare metal
 Ubuntu VMWare VM over Bare metal
Docker over Ubuntu VMWare VM over Bare metal
K0s over Ubuntu VMWare VM over Bare metal

As we have 39 platforms across the three hardware and given that the benchmarking

suite contains 20 benchmarks, we have scheduled 780 batches. Knowing that we asked
LSBS to repeat each execution 20 times within a batch, we thus should have collected
39 x 20 benchmarks x 20 repetitions = 15’600 measurements. In practice, a few batches
have failed, resulting in a slightly lower number of measurements.

The first phase of result analysis consisted of verifying the consistency of the out-
comes across the 20 tests that comprise a single run. This has been done by manually
inspecting each of the 39 X 20 = 780 runs on a graph provided by the webapp, as the
one visible in Figure 2. We checked for anomalies, for example an overheating of the
CPU with scores that decrease after a while or worse scores at the beginning of the run
because other operations could still be running in the background. Upon thorough ex-
amination, no evident aberrations have been detected in the gathered data (to the ex-
ception of the few missing batches).

Next, we computed, for each benchmark, a reference mark by calculating the mean
performance of the workload on the “bare-metal” platform, using no virtualization nor
containers. Then we normalized our results by this mark. Figure 3 show the result for
3 benchmarks: HPL, database experiment and deep-learning experiment. For HPL (Fig.
3a – higher is better), on the Intel Core i7 computer, performance is rather homogenous,
but we see hypervisors outperforming bare-metal (best: XCP-ng with 113% perfor-
mance of bare-metal), to the exception of Hyper-V. Introducing OS virtualization in-
duces a 10-20% overhead, except on Hyper-V. On the dual Xeon hardware, virtualiza-
tion induces a massive performance drop. Further investigation of these results are re-
quired, but this could be due to the fact that Hypervisors are agnostic to NUMA effects
of multi-socket systems.

For database results (Fig 3b – lower is better), we note that the results are even more
homogeneous, except some outlier platforms using Docker. On the AMD system, con-
tainerized workloads systematically outperform the bare-metal case.

8

For deep-learning results (Fig 3c – lower is better), we note again better perfor-
mances for containerized workloads. We also note a severe performance drop when
using Hyper-V on the Intel Core i7 hardware.

In general, we observe that the performance of hypervisor or container runtimes can
significantly vary depending on the hardware.

(a) HPL – higher is better

(b) Database – lower is better

(b) Deep learning – lower is better

Fig. 3. Normalized performance measurement for three benchmarks (a,b,c) across the three
hardwares (columns). For HPL (a), higher performance is better, while for database (b) and
deep-learning (c), lower execution time is better. Circles denote individual measurements.

bare-metal

Proxmox VM

VMWare VM

XCP-ng VM

Hyper-V VM

0.6

0.7

0.8

0.9

1

1.1

1.2

N
or

m
al

iz
ed

 H
PL

 p
er

fo
rm

an
ce

Intel Core i7-4790k - 4 cores

bare-metal

Proxmox VM

VMWare VM

XCP-ng VM

Hyper-V VM
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2*Intel Xeon E5-2630 v3 - 8+8 = 16 cores

No containers
Docker
k8s

bare-metal

Proxmox VM

VMWare VM

XCP-ng VM

Hyper-V VM

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

AMD Ryzen 7 3700X- 8 cores

bare-metal

Proxmox VM

VMWare VM

XCP-ng VM

Hyper-V VM
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

N
or

m
al

iz
ed

 D
B

ex
ec

ut
io

n
tim

e

Intel Core i7-4790k - 4 cores

No containers
Docker
k8s

bare-metal

Proxmox VM

VMWare VM

XCP-ng VM

Hyper-V VM
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
2*Intel Xeon E5-2630 v3 - 8+8 = 16 cores

bare-metal

Proxmox VM

VMWare VM

XCP-ng VM

Hyper-V VM

0.85

0.9

0.95

1

1.05

AMD Ryzen 7 3700X- 8 cores

bare-metal

Proxmox VM

VMWare VM

XCP-ng VM

Hyper-V VM

1

1.5

2

2.5

3

3.5

4

N
or

m
al

iz
ed

 D
L

ex
ec

ut
io

n
tim

e

Intel Core i7-4790k - 4 cores

No containers
Docker
k8s

bare-metal

Proxmox VM

VMWare VM

XCP-ng VM

Hyper-V VM
0.9

1

1.1

1.2

1.3

1.4

1.5

2*Intel Xeon E5-2630 v3 - 8+8 = 16 cores

bare-metal

Proxmox VM

VMWare VM

XCP-ng VM

Hyper-V VM

0.6

0.8

1

1.2

1.4

1.6

1.8
AMD Ryzen 7 3700X- 8 cores

9

Table 5. Hypervisor comparison.

Benchmark Proxmox VMWare* Hyper-V XCP-ng* Best
CPU 0.0119 0.0112 0.0107 0.0063 Proxmox
Memory 9.62 9.87 10.82 6.71 Hyper-V
Storage 35332 26894 29827 36454 XCP-ng
Network 167.43 150.31 159.83 163.42 Proxmox
Blender 36.33 42.25 44.33 41.50 Proxmox
Deep learning 203.19 200.75 394.69 189.00 XCP-ng
Database 609 645 587 605 Hyper-V
REST server 16.5 15.5 13.5 13.0 XCP-ng

Table 6. Container runtimes comparison.

Benchmark Docker Containerd Best
CPU 0.0097 0.0098 Containerd
Memory 7.67 7.66 Docker
Storage 38096 34592 Docker
Network 149.11 152.84 Containerd
Blender 39.33 39.00 Containerd
Deep learning 158.83 162.00 Docker
Database 773.33 584.33 Containerd
REST server 11.33 11.33 --

Table 7. Performance availability with and without virtualization

Benchmark Bare metal Container Vm
CPU 100% 28-86% 28-108%

Memory 100% 61-91% 51-139%
Storage 100% 64-118% 93-197%

Network 100% 95-112% 90-103%
Blender 100% 96-105% 105-112%

Deep learning 100% 96-110% 93-100%
Database 100% 101-117% 69-96%

Rest server 100% 107-130% 90-93%

Next, we looked if an hypervisor clearly dominates the others. For that, we aggre-

gated the performance along each benchmark category (except for applications, which
we kept individually) and across the different hardwares, without the use of containers.
Results are presented in Table 5. We note that no hypervisor seems to clearly emerge
once results are averaged over the different hardwares. Each hypervisor is trailing in at
least one category (italic figures) and only VMWare never achieve a best score (bold
figures). We performed the same analysis for container runtimes, whose results are vis-
ible in Table 6. Here as well, there is no clear winner.

We further aggregated our results to allow a comparison with our initial data ex-
tracted from literature (Table 1). Since we concluded that there is no obvious choice in
terms of hypervisor or container runtime for comparing performance with bare-metal,
we cherry-picked the best hypervisor and the best container runtime of each category

10

according to Tables 5 and 6, and finally we extracted the performances using the worst
and best hardware. Results are visible on Table 7.

As we noted before, pure CPU performances seems to suffer a lot from NUMA ef-
fects, potentially explaining the poor worst performances. We note, however, that as
we move toward higher level workloads, these penalties tend to disappear. The storage
heavily depends on the hypervisor caching methods. For example, Hyper-V offers im-
pressive random performances but has a massive loss on sequential accesses. Proxmox,
with the default caching, offers a less impressive random performance boost but has
only a maximum 7% loss on sequential operations. On the network side, while contain-
ers and VMs both suffer a 0.1ms ping time increase, the speeds heavily depend on the
network card drivers. On intel hardwares, the Hyper-V driver has a big performance
loss. The strange UDP behavior observed in [9] was not present in our results. Finally,
when running “typical” applications, there is not much difference between bare metal,
containers, and virtual machines.

Our final analysis consisted of checking whether virtualization overheads are cumu-
lative: if running a workload in a VM reveals a normalized performance of, say, 90%,
and running the same workload in a container returns a normalized performance of
85%, can we expect the performance of a container running in a VM to be 85% * 90%
= 76.5%? Figure 4 exhibits this analysis for a couple of platform-benchmark pairs. We
see that for HPL on the intel Core i7 hardware (top-left – higher is better), the best
combination is XCP-ng + k8s. The predictions are also rather accurate, except may be
for Hyper-V & Docker.

For deep learning, again on the Intel Core i7 hardware (top-right – less is better),
Hyper-V performance is several degraded, and also more degraded than what one could
predict. Finally, for database benchmarks on the two Intel based hardwares (bottom –
less is better), we see that the predictor works rather well for k8s but doesn’t for Docker.
This could indicate that with Docker we are not facing a linear overhead, but rather a
sort of impedance mismatch, possibly stemming from a misconfiguration of the engine.

4 Discussion
Within the review process, this paper has received many comments and constructive

criticism from the reviewers. Here we discuss some of these points.
One criticism was that our benchmark results, which considered platforms as “black-

boxes” with default and non-optimized settings, do not provide very useful insights on
these products and underlying virtualization technologies. We agree that our results are
not insightful if one looks for the intrinsic performance of a platform for executing a
particular task. Yet, one of the biggest advantages of virtualization being to reduce the
number of physical servers needed in an IT system, in practice one can hardly optimize
a platform for a specific type of task. In addition, many SMEs operating a private cloud
can hardly afford an expert dedicating his time to fine-tune the hypervisor settings de-
pending on the current workloads. Therefore, we do see value in sticking to default,
generic hypervisor configuration as tuned by the vendor.

11

Fig. 4. Comparison of mean performances normalized to the bare-metal case of dif-
ferent VM and container combinations (bar labels), for 4 different platform-bench-
mark pairs. Red bars denote actual performance. Blue bars show a “prediction” ob-
tained by multiplying individual virtualized and containerized performances. Boxes

indicate the error of the prediction.

Intel Core i7-4790k - HPL

0 0.2 0.4 0.6 0.8 1

Hyper-V & k8s

Hyper-V & Docker

XCP-ng & k8s

XCP-ng & DOcker

VMWare & k8s

VMWare & Docker

Proxmox & k8s

Proxmox & Docker

Measurement of containerized benchmark within the VM
Predictor (overhead VM)*(overhead container)

-3.4%

3.4%

-8.2%

-7.5%

-3.4%

-0.8%

-12.7%

-3.3%

Intel Core i7-4790k - Deep learning

0 1 2 3 4

Hyper-V & k8s

Hyper-V & Docker

XCP-ng & k8s

XCP-ng & DOcker

VMWare & k8s

VMWare & Docker

Proxmox & k8s

Proxmox & Docker

Measurement of containerized benchmark within the VM
Predictor (overhead VM)*(overhead container)

-4.2%

4.8%

-5.2%

3.9%

-5.9%

-1.6%

-21.8%

-49.4%

Intel Core i7-4790k - database

0 0.5 1 1.5

Hyper-V & k8s

Hyper-V & Docker

XCP-ng & k8s

XCP-ng & DOcker

VMWare & k8s

VMWare & Docker

Proxmox & k8s

Proxmox & Docker

Measurement of containerized benchmark within the VM
Predictor (overhead VM)*(overhead container)

54.1%

1.4%

39.9%

-4.9%

39.7%

1.6%

51.5%

-8.8%

2*Intel Xeon E5-2630 - database

0 0.5 1 1.5

Hyper-V & k8s

Hyper-V & Docker

XCP-ng & k8s

XCP-ng & DOcker

VMWare & k8s

VMWare & Docker

Proxmox & k8s

Proxmox & Docker

Measurement of containerized benchmark within the VM
Predictor (overhead VM)*(overhead container)

53.3%

3.9%

39%

-0.9%

37.2%

6.1%

-2.8%

-1.9%

12

Other remarks mentioned that we should have disclosed many more settings as the
BIOS configuration flags, hypervisors settings, and offered a more in-depth description
of the test setups. We can clarify as follows: no particular configurations have been
applied to the target BIOSs except disabling the power save modes, which means we
sticked to default settings. All the hypervisors have been installed with the default set-
tings as described in the GitHub project [18]. For sure there are many parameters to
describe, and to play with, but we believe it is also interesting to report results taken
“in the wild”. And, again, most users are unaware of all these parameters.

Specifically, we’ve been asked if direct assignment or paravirtualized I/O were used.
While direct assignment or passthrough works great in a specialized cluster, it is diffi-
cult to use in a typical general purpose virtualization cluster, so all our VMs are con-
figured with paravirtualized I/O devices. In each case, the maximum available vCPUs
and memory is allocated to the VM. The installation and configuration are described in
the Github project [18].

We been rightfully told that both Docker and k0s use containerd and runC. However,
there is an added layer, the container runtime interface between k0s and containerd [19].

Finally, a reviewer has been extremely surprised to see notably high overheads from
running HPL in a container (Fig 3a) and hinted a misconfiguration of the container
engine. Yet the default configuration has been used. It is possible that the container
engine is, by default, optimized not for the performance but to work as good as possible
in a maximum of different environment. It could be interesting to conduct a study on
how to automatically optimize this configuration or at least notify and expose the prob-
lem to the user.

Generally, our study opens the door to many further explorations.

5 Conclusions and Perspectives
The focus of this research was to quantify the performance losses introduced by virtu-
alization to provide valuable information that can help IT departments choose the most
efficient technology for their needs: keep using bare-metal machine to guarantee per-
formances, or shift to VMs, containers, or a mix thereof.

A large benchmarking system was created and tested on hardware from different
eras and manufacturers, yielding over 15,000 results to compare the performances of
bare metal mixed with 4 hypervisors and 2 different container runtimes.

The results showed that by choosing the right virtualization technologies, it is pos-
sible to minimize losses to 5% for a container and 10% for a VM. Users should never-
theless be careful to NUMA effects for CPU intensive tasks. Depending on the task, an
hypervisor can make a better usage of the available resources. In many cases, VMs
outperformed the bare-metal case, even in terms of CPU. This interesting fact deserves
further investigation. Both container runtimes and hypervisors offer caching mecha-
nisms that can be interesting to use on storage intensive tasks. Since the performances
vary across hypervisors and container runtimes, it might thus be interesting to conduct
in-situ lab benchmarking to make the right virtualization choices.

Generally we thus conclude that virtualization (VM or OS) does not kills perfor-
mance, at least when the hardware is not shared among multiple VMs and/or containers.

13

However, our results show that there can be adversarial situations where performance
is highly degraded. These situations can potentially be alleviated by changing configu-
ration flags, yet it might be hard to detect these situations. And changing the configu-
ration to solve one situation might affect other situations.

It is also important to note that we only considered single workload performance
measurements. The performance evaluation when multiple virtualized workloads com-
pete for the resources is kept for future work.

In the future, we also plan to regularly replicate these benchmarks on newer hard-
ware and software systems as it was found that the figures, especially for storage IO,
have changed significantly over the years. It would also be interesting to see if and
where software developers choose to make improvements and if all the features added
each year do not result in increased overhead.

Eventually, we plan to investigate if, when nesting multiple levels of VMs, the losses
increase according to the number of added layer or if only the lowest level one matters.

References

1. A. Gavrilovska, et al.: High-Performance Hypervisor Architectures: Virtualization in HPC
Systems, HPCVirt 07, (2007).

2. J. White, et al.: A Survey of Virtualization Technologies With Performance Testing, CoRR,
vol. abs/1010.3233. Available: http://arxiv.org/abs/1010.3233 (2010).

3. P. Padala, et al.: Performance Evaluation of Virtualization for Server Consolidation, HP
Laboratories Report NO. HPL-2007–59R1 (2007).

4. M. G. Xavier, et al.: Performance Evaluation of Container-Based Virtualization for High
Performance Computing Environments, Conf. on Par., Distr., and Network-Based Proc.,
doi: 10.1109/PDP.2013.41 (2013)

5. S. A. Babu, et al. System Performance Evaluation of Para Virtualization, Container Virtual-
ization, and Full Virtualization Using Xen, OpenVZ, and XenServer, Int. Conference on
Advances in Computing and Communications, doi: 10.1109/ICACC.2014.66 (2014)

6. C. Arango, et al.: Performance Evaluation of Container-based Virtualization for High Per-
formance Computing Environments, https://doi.org/10.48550/arXiv.1709.10140 (2017)

7. R. McDougall et al.: Virtualization performance: perspectives and challenges ahead.
SIGOPS Oper. Syst. Rev. 44, 4 (2010)

8. Z. Li, et al.: Performance Overhead Comparison between Hypervisor and Container Based
Virtualization, IEEE Int. Conf. on Adv. Inf. Net. and Appl. (AINA), doi:
10.1109/AINA.2017.79 (2017)

9. R. Morabito, et al.: Hypervisors vs. Lightweight Virtualization: A Performance Comparison,
IEEE Int. Conf. on Cloud Eng., doi: 10.1109/IC2E.2015.74 (2015)

10. S. Shirinbab, et al.: Performance evaluation of container and virtual machine running cas-
sandra workload, Int. Conf. of Cloud Comp. Tech. and Appl. (CloudTech), doi:
10.1109/CloudTech.2017.8284700 (2017).

11. S. Shirinbab, et al.: Performance Comparison of KVM, VMware and XenServer using a
Large Telecommunication Application, CCGrid (2014).

12. https://www.proxmox.com/en/news/press-releases/proxmox-ve-3-4-released
13. https://www.docker.com/blog/speed-boost-achievement-unlocked-on-docker-desktop-4-6-

for-mac/
14. https://www.ansible.com
15. http://mass.io

14

16. D. Tres, Switchkaas factsheet, https://www.switch.ch/export/sites/default/kubernetes-as-a-
service/.galleries/files/SWITCHkaas-Factsheet-EN.pdf

17. J. T. Lim, et al.. NEVE: Nested Virtualization Extensions for ARM. Symposium on Operat-
ing Systems Principles (2017).

18. Github.com/jojoc4/LSBS
19. https://www.techtarget.com/searchitoperations/tip/A-breakdown-of-container-runtimes-

for-Kubernetes-and-Docker#:~:text=The%20con-
tainer%20runtime%20is%20the,OCI%2Dcompliant%20runtime%20should%20work.

