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Gaussian Mixture Models aggregation procedure

This new approach is able to generate

, , Gaussian Mixture Models:
Gaussian Mixture Models (GMMs) for the ;
classification of aggregated time series p(x|8) = 3 k- hxm) B o)
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We focus on time series that are aggregated

together by adding their features Merging:
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Output: new models A\(u, 2, w)
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Simplification:

e Optimal solution. It consists in computing
all the combinations of all the Gaussians
and merging the two Gaussians with the
minimum distance if below the threshold

e Suboptimal solution. This approach
consists in analyzing all the combinations
but greedily selecting the first occurrence
that is below the threshold
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Figure 1. Synthetic example of the model merging for the classification of additive time series

Case of study: electrical appliance recognition

Electrical appliance recognition We used the ACS-F2 Database: Results:
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We show a benefit in terms of accuracy rate and
computational time
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