
sensors

Article

A Machine Learning Multi-Class Approach for Fall Detection
Systems Based on Wearable Sensors with a Study on Sampling
Rates Selection †

Nicolas Zurbuchen 1,* , Adriana Wilde 2,3,* and Pascal Bruegger 1

����������
�������

Citation: Zurbuchen, N.; Wilde, A.;

Bruegger, P. A Machine Learning

Multi-Class Approach for Fall

Detection Systems Based on Wearable

Sensors with a Study on Sampling

Rates Selection. Sensors 2021, 21, 938.

https://doi.org/10.3390/s21030938

Academic Editor: Klaus Moessner

Received: 22 December 2020

Accepted: 26 January 2021

Published: 30 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Complex Systems (iCoSys), School of Engineering and Architecture of Fribourg Switzerland,
HES-SO University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland;
pascal.bruegger@hes-so.ch

2 Centre for Health Technologies (CHT), School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, UK

3 Department of Digital Technologies, Faculty of Business, Law and Digital Technologies,
University of Winchester, Winchester SO22 4NR, UK

* Correspondence: nicolas.zurbuchen@hes-so.ch (N.Z.); agw106@ecs.soton.ac.uk or
adriana.wilde@winchester.ac.uk (A.W.)

† This paper is an extended version of the conference paper: Zurbuchen, N.; Bruegger, P. and Wilde, A. A
Comparison of Machine Learning Algorithms for Fall Detection using Wearable Sensors. In Proceedings of
the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC),
Fukuoka, Japan, 19–21 February 2020; pp. 427–431, doi: 10.1109/ICAIIC48513.2020.9065205.

Abstract: Falls are dangerous for the elderly, often causing serious injuries especially when the fallen
person stays on the ground for a long time without assistance. This paper extends our previous work
on the development of a Fall Detection System (FDS) using an inertial measurement unit worn at
the waist. Data come from SisFall, a publicly available dataset containing records of Activities of
Daily Living and falls. We first applied a preprocessing and a feature extraction stage before using
five Machine Learning algorithms, allowing us to compare them. Ensemble learning algorithms
such as Random Forest and Gradient Boosting have the best performance, with a Sensitivity and
Specificity both close to 99%. Our contribution is: a multi-class classification approach for fall
detection combined with a study of the effect of the sensors’ sampling rate on the performance of
the FDS. Our multi-class classification approach splits the fall into three phases: pre-fall, impact,
post-fall. The extension to a multi-class problem is not trivial and we present a well-performing
solution. We experimented sampling rates between 1 and 200 Hz. The results show that, while high
sampling rates tend to improve performance, a sampling rate of 50 Hz is generally sufficient for an
accurate detection.

Keywords: fall detection; wearable sensors; sampling rate; data preprocessing; feature extraction;
Machine Learning

1. Introduction

Falls are one of the leading causes of death among the elderly [1]. Every year, 28% to
35% of the elderly fall at least once and this rate increases with age [2]. Falls can have
severe physical, psychological and even social consequences. They can also heavily affect
the independent quality of living. They can result in bruises and swellings, as well as
fractures and traumas [3]. A significant risk is the long-lie. This happens when an elderly
person remains on the ground for a long duration without being able to call for help. It is
associated with death within the next few months following the accident [4]. It also affects
the elderly’s self-confidence who may develop the fear of falling’ syndrome. It leads to
anxiety when performing Activities of Daily Living (ADLs) and can lead to subsequent
falls [1].

Sensors 2021, 21, 938. https://doi.org/10.3390/s21030938 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6704-9031
https://orcid.org/0000-0002-1684-1539
https://orcid.org/0000-0002-6238-3225
https://doi.org/10.3390/s21030938
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030938
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/3/938?type=check_update&version=1

Sensors 2021, 21, 938 2 of 23

Therefore, the elderly must continuously be monitored to ensure their safety. Families
organize visits but these can be inconvenient and even insufficient. Hiring caregivers or
moving into nursing homes are sometimes not affordable options. Recent progresses in
technology have enabled the development of Assisted-Living Systems (ALSs) [5]. They can
assist the elderly and provide a safer environment through constant monitoring while
relieving caregivers’ workload. However, ALSs create other challenges such as privacy
concerns and acceptability issues that need to be addressed [6].

Fall Detection Systems (FDSs) are part of ALSs. Their goals are to identify falls and
notify caregivers so that they can intervene as fast as possible. However, fall recognition is
challenging from a computational perspective. Falls can be defined as “the rapid changes
from the upright/sitting position to the reclining or almost lengthened position, but it is not
a controlled movement” [7]. There is a higher acceleration during falls. Another challenge
is that falls can happen in innumerable scenarios. They may occur anywhere at any time [3].
Their starting and ending body posture as well as their direction (e.g., forward, backward)
may vary [1]. Hence, FDSs must cover the whole living area. Their reliability must be high
while minimizing false alarms, all the while respecting the elderly’s privacy.

This paper is an extension of our work accepted at the ICAIIC 2020 [8]. This paper has
three research questions:

RQ1:What is the difference in performance across various types of Machine Learning (ML) algo-
rithms in a FDS?
To answer this, we developed a reliable FDS by the mean of wearable sensors (ac-
celerometer and gyroscope) and ML algorithms. The goal is to compare lazy, eager
and ensemble learning algorithms and assess their results. We implemented five
algorithms and tested them in the same setup.

RQ2:What is the effect of the sensors’ sampling rate on the fall detection?
To study this, we analyzed the influence of the sensors’ sampling rate on the detection.
We filtered the data in order to reduce the number of samples measured per second.
We then experimented on the filtered data with five ML algorithms. This research
question extends our previous work [8].

RQ3:What is the difference in performance across various types of ML algorithms by adopting a
multi-class approach for identifying phases of a fall?
We experimented a different fall detection approach where falls are split into three
phases. These are: the period before the fall happens (pre-fall), the fall itself (impact)
and after the fall happened (post-fall). This research question extends our previous
work [8].

The rest of this paper is organized as follows. In Section 2, we discuss existing FDSs
and highlight their distinctive features. Section 3 covers the employed methodology.
Section 4 presents and discusses the obtained results. Finally, we conclude with a comment
on future work in Section 5.

2. Related Work

Scientists have employed various approaches to implement FDSs over the past years.
They have been classified as presented in Figure 1. Each of them has its strengths and
weaknesses. We focus on wearable technologies since we use this approach. Nevertheless,
several survey studies [9,10] reported the other methods in more depth.

Sensors 2021, 21, 938 3 of 23

Figure 1. Classification of Fall Detection System approaches.

2.1. Choice of Sensors and Sampling Rate

Several types of sensors including accelerometers, gyroscopes, magnetometers and tilt
sensors have been used to detect falls. Based on the fall characteristics, most studies,
such as [11–15], employed only acceleration measurements. From our literature review,
very few studies use a single gyroscope. For example, Bourke and Lyons [16] used a
single biaxial gyroscope and measured changes in angular velocity, angular acceleration
and body angle. Tang and Ou [17] also reported promising results, using a single six-axis
gyroscope. The separate use of these sensors already produced promising results but
their combination is even better [18]. Wang et al. [19] employed a heart rate monitor and
discovered that the heart rate increases by 22% after a fall in people over 40 years old.
This demonstrates that physiological data can be used in such a system. Across the papers
reviewed (summarized in Table 1), the sensors’ sampling rate varied within a range from 10
to 1000 Hz. This variation is not small, one having 100 times more samples than the other,
seemingly arbitrarily. Fudickar et al. [20] compared the detection results when varying
the sampling rates from 50 to 800 Hz. The results obtained with a sampling rate of 50 Hz
were as good as the ones with 800 Hz. Other studies show that low sampling rates can
offer reasonable results, for example Medrano et al. [21] used data sampled up to 52 Hz.
We further investigate this issue in this paper with similarly low sampling rates.

Table 1. Reviewed studies that used wearable sensors for fall detection (including acronyms at the end of the table).

Research Authors (Year) Sensors Freq. Algorithm Reported
Outcomes

Hwang et al. [22] (2004) Accelerometer, gyroscope and tilt
sensor placed at the chest.

Not
reported

Threshold on each sensor
compared sequentially.

Accuracy
96.7%

Bourke et al. [12] (2007) Accelerometer placed at the thigh
and chest. 1 kHz Double acceleration thresholds

applied on both sensors. SP 100%

Bourke et al. [16] (2008) Bi-axial gyroscope placed at the
chest. 1 kHz Treble angular thresholds. SE 100%

SP 100%

Kangas et al. [14] (2008) Accelerometer placed at the waist,
head and wrist. 400 Hz

Several simple algorithms
including thresholds and
posture recognition.

SE 97.5%
SP 100%

Dinh et al. [18] (2009) Accelerometer and gyroscope
placed at the chest. 40 Hz

Supervised ML algorithms
(SVM, Naïve Bayes, C4.5,
Ripple-down rules and RBF.

Accuracy
97%

Choi et al. [23] (2011) Accelerometer and gyroscope
placed at the belt. 10–18 Hz

Naive Bayesian Algorithm to
identify specific falls and
ADLs.

Accuracy
99.4%

Gjoreski et al. [24] (2011) Four accelerometers placed at the
chest, waist, thigh and ankle 6 Hz

Several simple algorithms
including thresholds and
posture recognition.

Accuracy
99%

Sensors 2021, 21, 938 4 of 23

Table 1. Cont.

Research Authors (Year) Sensors Freq. Algorithm Reported
Outcomes

Aziz et al. [25] (2011) Three accelerometers placed at the
sternum, right ankle and left ankle 120 Hz Linear discriminant analysis

to identify three causes of fall.
SE 96%
SP 98%

Yuwono et al. [15] (2012) Accelerometer placed at the waist. 20 Hz

Unsupervised ML algorithms
(clustering, MLP and
augmented RBF neural
network) with WT.

SE 100%
SP 99.33%

Bagalà et al. [26] (2012) Accelerometer placed at the lower
back. 100 Hz

Comparison of several
threshold-based algorithms
with posture recognition.

SE 83%
SP 94%

Abbate et al. [11] (2012) Accelerometer from a belt worn
smartphone. 50 Hz

Neural network with 8
features extracted as input
and a 4 classes classification.

SE 100%
SP 100%

Chan et al. [13] (2013) Three accelerometers placed at the
chest. 62.5 Hz

Combination of thresholds,
posture measurements and
posture recognition.

SE 95.2%
SP 100%

Fudickar et al. [20] (2014) Accelerometer from a smartphone
worn at the hip. 50–800 Hz

Threshold-based with
sequential posture
recognition.

SE 99%

Wang et al. [19] (2014)
Accelerometer and
cardiotachometer placed at the
chest.

Not
reported

Treble thresholds including
impact magnitude, trunk
angle and heart rate.

SE 96.8%
SP 97.5%

Medrano et al. [21] (2014)

Smartphone accelerometer in a
pocket (for 95% of ADL data), a
hand bag (5%), or two
smartphones in separate hand
bags (for falls).

unstable,
16.7–52 Hz

One-class SVM, kNN (k = 1),
kNN-sum (k = 2) and
K-means + 1 NN (k = 800)

SE > 89%
SP > 88%

Özdemir et al. [27] (2014)
Accelerometer, gyroscope and
magnetometer placed at the head,
chest, back, wrist, ankle and thigh.

25 Hz

Features extraction at the total
peak acceleration and use of
ML algorithms (KNN, LSM,
SVM, BDM, DTW and ANN).

SE 100%
SP > 99%

Vilarinho et al. [28] (2015)

Accelerometer and gyroscope from
the smartphone and smartwatch
respectively placed at the thigh
and wrist.

Not
reported

Acceleration threshold and
pattern recognition from both
devices

SE 63%
SP 78%

Casilari et al. [29] (2015)

Accelerometer and gyroscope from
the smartphone and smartwatch
respectively placed at the thigh
and wrist.

Not
reported

Several thresholds compared
to each other with every
combination of sensors.

SE 96.7%
SP 100%

Gibson et al. [30] (2016) Accelerometer placed at the chest. 50 Hz
Combination of several
algorithms (ANN, KNN, RBF,
PPCA, LDA)

SE > 90%
SP > 90%

Sucerquia et al. [31] (2017) Accelerometer placed at the waist. 200 Hz Threshold-based classifier
with feature extraction.

Accuracy
96%

Hsieh et al. [32] (2017) Accelerometer placed at the waist. 128 Hz Threshold-based Classifier
followed by SVM.

Accuracy >
98.74%

Krupitzer et al. [33,34] (2018, 2019) Accelerometers placed at the chest,
waist and thigh. 20–200 Hz

Self-adaptive pervasive fall
detection system combining
multiple datasets.

SE 75%

Sensors 2021, 21, 938 5 of 23

Table 1. Cont.

Research Authors (Year) Sensors Freq. Algorithm Reported
Outcomes

Tang et al. [17] (2018) Six-axis gyroscope inside a
bracelet worn at the wrist.

Not
reported

Three-feature vector fed into
SVM.

Accuracy
100%

Casilari et al. [35] (2020)
Accelerometry signals from
several datasets mainly placed at
the waist.

10–200 Hz
Deep Learning with
Convolutional Neural
Networks

SE > 98%
SP > 98%

BDM: Bayesian Decision Making; DTW: Dynamic Time Warping; LDA: Linear Discriminant Analysis; LSM: Least Squares Method; PPCA:
Probabilistic Principal Component Analysis; WT: Wavelet Transform; ANN: Artificial Neural Network; MLP: Multilayer Perceptron; RBF:
Radial Basis Function.

2.2. Sensing Position

The sensor placement highly affects the detection performance. Previous
studies [14,33,34] demonstrated that better results are achieved when sensors are placed
along the longitudinal axis of the body (e.g. head, chest, waist) when compared to other
placements (e.g. thigh, wrist). The movement of this axis during a fall is more consistent
and steady. However, this requires to wear a dedicated device on uncommon body parts
which consequently creates inconveniences. For this reason, other studies [11,28,29] used
commodities (e.g. smartphones carried by the thigh, smartwatches worn on the wrist).
These usually do not disturb the users since they already wear them. However, people tend
to take these devices off when they are at home which makes the FDS useless. Another
method is to combine various sensing positions. Özdemir et al. [27] developed a system
consisting of six wearable devices that are all used together. The problem is that the elderly
already have acceptability issues with one device, let alone six.

2.3. Algorithms

There are two categories of algorithms: threshold-based and ML-based. Threshold
algorithms simply define limit values, outside of which, a fall is detected. They have often
been sufficient but they tend to produce false alarms especially with fall-like activities such
as sitting abruptly [16]. To compensate, these studies [13,22] added simple posture and
pattern recognition algorithms that detect changes in body posture and level of activity.
This improves the detection’s robustness while keeping a low computational complexity.
However, it may still fail during specific falls and ADLs. For example, Sucerquia et al. [31]
used a manual threshold-based classification over their dataset SisFall, achieving 96%
accuracy.

ML algorithms automatically learn patterns based on data, and very commonly in-
clude feature extraction. They require more computational power and are complex to
optimize but produce improved results. Most of the studies such as [11,13] employed a
supervised learning technique. Common algorithms are k-Nearest Neighbor [27], Sup-
port Vector Machine [18,27] and Artificial Neural Network [11,27]. Yuwono et al. [15]
used unsupervised learning which works with clusters. This is a compelling solution
because it does not require labeled data. The state-of-the-art Deep Learning algorithms
are increasing in popularity, achieving promising results in various fields. Musci et al.
[36] employed Recurrent Neural Networks to detect falls. They used a publicly available
dataset (SisFall) [37] and reported outperforming the results of the original paper [31].
Casilari et al. [35] employed a Convolutional Neural Networks on several datasets, in-
cluding SisFall [31]. They reported promising results with a Sensitivity and Specificity
over 98%.

2.4. Classification Strategies

The objective of FDSs is to identify whether a fall happened or not, hence a binary
decision. FDSs previously reported in the literature typically follow a binary classification
approach, following the intuition that the event of interest is whether the participant has

Sensors 2021, 21, 938 6 of 23

fallen or not. A notable exception to this trend [25] extends this common approach by
aiming to differentiate amongst various causes of falls. The study differentiates three causes
of falls which are trips, slips and others. Another study [23] used a different approach
where the type of fall is identified (amongst the types forward, backward, lateral) as well
as various ADLs. In a different context, which is Fall Prevention System [38], the goal is to
detect if a fall will definitively happen in order to deploy a protection mechanism such as
airbags. In such systems, it is not the fall that needs to be detected but what we could call
the pre-fall, meaning what happens before the actual fall. More recent approaches combine
these two ideas, for example [32] used a multi-phase model. They differentiate phases of a
fall and then classify them into three classes: free fall, impact and rest phases. We further
investigate this, using several ML algorithms as detailed in Section 3.4.

2.5. Strengths and Weaknesses

Wearable technologies have several advantages. They are relatively inexpensive and
can operate anywhere all of it with minimal intrusion compared to other approaches,
such as environmental monitoring [33,34]. In addition, their somewhat limited computa-
tional power can be easily overcome with the use of their telecommunication capabilities,
which allow the transfer of data for processing outside the device. Wearables can also
identify the wearer and get precise measurements. However, they may create discomfort
due to their size and intrusiveness. The main disadvantage is their human dependency.
These sensors must have enough battery and be worn to work properly. Furthermore,
the elderly may have a cognitive impairment and thus, may forget to wear the sensor.

3. Materials and Methods

Our FDS is based on a common pipeline (Figure 2) which has been seen in the
literature [27]. This pipeline is a common practice when working with ML algorithms.
We first acquire raw data using various sensors and convert them into discrete values.
We then preprocess the raw data to remove measuring errors which can badly affect the
performance. Afterwards, we construct and extract meaningful information in a vector.
Finally, we train and evaluate our ML algorithm to distinguish falls from ADLs.

Figure 2. General architecture of Fall Detection Systems.

The steps presented above for our FDS pipeline are common to most of our research
questions. However, in order to address research question 3, we have a few changes
that will be highlighted. Thus, this section is organised as follows: Subsections 3.1 to 3.5
details each step of the pipeline which are common to all research questions. These five
subsections answers entirely the first two research questions. However, the third research
question requires additional data preparation which is described in Subsection 3.6.

3.1. Dataset

We decided to use a publicly available dataset rather than creating our own experiment
with diverse subjects, for reproducibilty purposes. Therefore, in order to select such
dataset, we considered those evaluated in a recent meta-review [39]. From those, we
pre-selected those who were freely available, as listed in Table 2 which describes each
dataset characteristics. We decided to use acceleration measures because studies have
shown that interesting performances can be achieved with it. Ultimately, we selected the
dataset named SisFall [31] over others [40,41] because of its high quality. We assessed this
quality with various criteria, namely the size of the dataset and the diversity of subjects in
terms of age, gender, weight and height, as detailed in Table 2.

Sensors 2021, 21, 938 7 of 23

Table 2. Main characteristics of the considered datasets. Adapted from [39].

Characteristics Casilari et al. [40]
(2016)

Sucerquia et al. [31]
(2017)

Micucci et al. [41]
(2017)

Dataset name UMAFall SisFall UniMiB SHAR
No. of sensing points 5 1 1
No. of sensors per point 3 3 1
Type of sensors A|G|M A|A|G A
Positions of the points Ch|Wa|Wr|Th|An Wa Th
Sampling rates per sensor [Hz] 20|20|20|100|20 200|200|200 50
No. of types of ADL/Falls 12/3 19/15 9/8
No. of samples ADL/Falls) 746 (538/208) 4505 (2707/1798) 7013 (5314/1699)
No. of subjects (Female/Male) (8/11) 38 (19/19) 30 (24/6)
Subjects’ age range 18–68 19–75 18–60
Subjects’ weight range [kg] 50–93 41.5–102 50–82
Subjects’ height range [cm] 155–195 149–183 160–190

A: Accelerometer; G: Gyroscope; M: Magnetometer; An: Ankle; Ch: Chest; Th: Thigh; Wa: Waist; Wr: Wrist.

We also took into account the number of falls and ADLs performed by each subject.
An additional factor was the sensors’ sampling rate which needed to be high in order to
experiment using various sampling rates. In the SisFall dataset, two tri-axial accelerometers
(ADXL345 and MMA8451Q) and a tri-axial gyroscope (ITG3200) were used at a sampling
rate of 200 Hz. These sensors were attached to the waist, following the longitudinal axis,
of the subjects in the data collection phase [31]. This location has been proven to be a
reliable one from the literature, as discussed in Section 2.2.

We decided not to use the data of the second accelerometer (MMA8451Q) because
usual setups only have a single accelerometer. Having decided to use only data from
one accelerometer, we chose that with the highest sensing range and the lowest power
consumption which seems adequate for the application. Future work could explore whether
there is a significant difference between these sensors.

Twenty-three young people (19 to 30 years old) performed 15 types of falls and 19
types of ADLs including fall-like activities. Fifteen elderly people (60 to 75 years old)
also performed the same ADLs for more authenticity. There were five trials per activity
except for the walking and jogging activities, each of which had only one trial (See Table 3).
Hence, SisFall contains a total of 4505 records including 2707 ADLs and 1798 falls, making
it unbalanced. A total of 38 people including 19 women and 19 men participated. Table 3
lists the falls and ADLs and their duration.

Table 3. Details of the Activities of Daily Living and falls contained in the SisFall dataset [31].

Activity Duration [s]

Walking slowly 100
Walking quickly 100
Jogging slowly 100
Jogging quickly 100
Walking upstairs and downstairs slowly 25
Walking upstairs and downstairs quickly 25
Slowly sit and get up in a half-height chair 12
Quickly sit and get up in a half-height chair 12
Slowly sit and get up in a low-height chair 12
Quickly sit and get up in a low-height chair 12
Sitting, trying to get up, and collapse into a chair 12
Sitting, lying slowly, wait a moment, and sit again 12

Sensors 2021, 21, 938 8 of 23

Table 3. Cont.

Activity Duration [s]

Sitting, lying quickly, wait a moment, and sit again 12
Changing position while lying (back-lateral-back) 12
Standing, slowly bending at knees, and getting up 12
Standing, slowly bending w/o knees, and getting up 12
Standing, get into and get out of a car 25
Stumble while walking 12
Gently jump without falling (to reach a high object) 12

Fall forward while walking, caused by a slip 15
Fall backward while walking, caused by a slip 15
Lateral fall while walking, caused by a slip 15
Fall forward while walking, caused by a trip 15
Fall forward while jogging, caused by a trip 15
Vertical fall while walking, caused by fainting 15
Fall while walking with damping, caused by fainting 15
Fall forward when trying to get up 15
Lateral fall when trying to get up 15
Fall forward when trying to sit down 15
Fall backward when trying to sit down 15
Lateral fall when trying to sit down 15
Fall forward while sitting, caused by fainting 15
Fall backward while sitting, caused by fainting 15
Lateral fall while sitting, caused by fainting 15

3.2. Data Preprocessing

The SisFall dataset required minimal preprocessing. We started by equalizing the
duration of each record, by equally cutting (top and tail in equal measure) reducing the
length to 10 s. We chose 10 s to remove any outliers induced by the fall experiment,
whilst preserving the fall within each record. To generate various sensors’ sampling rates,
we reduced the number of samples in each record. Thus, for a sampling rate of 100 Hz,
we removed 50% of the sample along the record.

Regarding the two walking and two jogging activities, which only have one trial
(Table 3), we extracted 5 times 10 s for each record. We did this to have the same number of
trials per activity. We selected 5 windows with no overlap along each record as follows:

1. From 5 to 15 s.
2. From 25 to 35 s.
3. From 45 to 55 s.
4. From 65 to 75 s.
5. From 85 to 95 s.

The additional data preprocessing required for research question 3 is described sepa-
rately, in Subsection 3.6.

3.3. Feature Extraction

We then extracted meaningful information from the preprocessed data. This process
helps extracting information that better characterize each activity. A common
practice, when working with time series, is to extract time and frequency domain fea-
tures [11,27,28]. In addition to the axes’ features, we calculated the magnitude of acceler-
ation and rotation measures, to improve the robustness of the fall detection (e.g., in case
of fall-like activities involving fast movements). Thus, we also extracted time-domain
features such as the variance, standard deviation, mean, median, maximum, minimum, delta,
25th centile and 75th centile. Additionally, we extracted frequency-domain features, using a

Sensors 2021, 21, 938 9 of 23

Fast Fourier Transform and we extracted two features: the power spectral density and the
power spectral entropy.

The feature extraction process is as follows. Firstly, various formulae are applied to
each record. In our case, each record has a length of 10 s with a number of samples varying
from 10 to 2000 depending on the sampling rate. We then selected a sensor axis and used
all samples to extract the wanted feature class.

This process was repeated for each of the other sensor axes (3 axes, 2 sensors). We ap-
pended each calculation to a vector to characterize the record (Table 4). We applied this
process also for each sensor magnitude, resulting in a feature vector of 88 features per
record (11 feature classes × 8 axes). The resulting vector uniquely defines each activity.
The algorithm compares and tries to find patterns using these features in order to correctly
classify each activity. For example, a fall would most likely have a large delta on its vertical
sensing axis, since a fall is usually defined by a high vertical acceleration.

Finally, we normalized the extracted features to rescale the data to a common scale.
This gives more influence to data with small values which can be neglected depending on
the employed algorithm. In this work, we used the common min-max normalization which
scales the values between 0 and 1 included.

Table 4. List of extracted time and frequency domain features.

Feature Classes Domain

Variance Time
Standard deviation Time
Mean Time
Median Time
Maximum Time
Minimum Time
Delta (peak-to-peak) Time
25th Centile Time
75th Centile Time

Power Spectral Density Frequency
Power Spectral Entropy Frequency

3.4. Classification Algorithms

We selected 5 different ML algorithms: k-Nearest Neighbor (KNN), Support Vector
Machine (SVM), Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB).
These are described in Subsections 3.4.1–3.4.5, and implemented in Python using Scikit-
Learn. We used the default parameters value of the different classifiers from the version
0.23.2 of Scikit-Learn. It is a tool with a simple interface, built on scientific libraries such as
NumPy, SciPy, and matplotlib. The library code is open source and is under the BSD license.
Moreover, its documentation is very complete and includes many sample codes. We used
the default parameters of each classifier of the version

Pedregosa et al. [42] introduced Scikit-Learn and presented its features, comparing
the efficiency of its algorithms to other similar libraries. The results show that it is often
faster and has the advantage of supporting many available algorithms. This led to its wide
adoption in the ML community. In particular, Scikit-Learn provides several classification and
regression algorithms for supervised learning. Moreover, it implements model selection
and evaluation functions that allow to perform cross-validations, searches and comparisons
with various metrics.

3.4.1. k-Nearest Neighbor (KNN)

KNN is a well-known algorithm with a very simple operating principle. Data are
classified, by a majority vote, with the class most represented among its k-closest neighbors.
This algorithm belongs to the lazy learning class because it defers the work as long as

Sensors 2021, 21, 938 10 of 23

possible. During the training, it simply organizes data. However, during a prediction,
it browses the recorded data to count the classes of its k-nearest neighbors. Therefore,
all calculation costs are during a prediction [43].

This algorithm has two main parameters. The first one is the number of neighbors to
consider. A big value allows to have a probabilistic information but the estimation locality
may be destroyed. Therefore, compromises have to be made and the value of 5 is used
typically in the literature. The optimal number of neighbors depends strongly on the type
of data. The second parameter is the method to calculate the distance between two data
and defines their closeness. The choice of this metric is complicated and the notion of
distance depends on the data characteristics [43]. There are several distance formulae but
the most commonly used ones are Euclidean, Manhattan and Minkowski.

Throughout our experiments, we confirmed the following characteristics. The ad-
vantages of this algorithm are simplicity, efficacy and ease of tuning to find the best
hyper-parameters. In addition, the greater the number of training data, the better the
performance, which is however still sensitive to noise. Data normalization can then solve
this problem. As a disadvantage, this algorithm is sensitive to the curse of dimensional-
ity. The increase in the number of features tends to improve the results but only up to a
certain threshold. When this one is reached, the addition of new features degrades the
results. This is because irrelevant features influence negatively in the calculation of the
distance. Finally, KNN is expensive in memory and in computation in comparison to other
algorithms, as corroborated by the literature [27,30].

3.4.2. Support Vector Machines (SVM)

SVM is also a well-known algorithm. It can be employed in supervised and unsuper-
vised learning. It tries to find the best hyperplane which maximizes the margins between
each class. When a linear classification is not feasible, SVM can use a technique named
kernel trick that maps inputs into a higher dimension [43]. It is an eager learning algorithm
because it creates a classification model based on the data during the training. When a
prediction is asked, it uses the model to determine the class.

SVM has several hyper-parameters affecting the classification results. The most
relevant ones are:

• C makes a compromise between the number of misclassified instances and the margins
width of the hyperplane. The lower the value, the larger the margins but potentially in-
creasing the number of errors. When the margins are thin, the number of misclassified
samples is low, but this can lead to overfitting.

• Kernel changes the employed mathematical function which creates the hyperplane.
A typically used kernel is the Radial Basis Function.

• Gamma defines the influence that one data has compared to the other ones. The higher
the value, the bigger its influence range, but this can lead to overfitting. With a low
value, the model is at risk of underfitting.

SVM has the advantage of being able to find a unique and global solution which
comes from the fact that the optimization problem is convex [43]. Thanks to the kernel
trick, it can produce good results even with a high features space. However, SVM requires
greater processing power during the training to find the best hyperplane and also during
the predictions to calculate the support vector for each new data, as corroborated by the
literature [18,24,27,30].

3.4.3. Decision Tree (DT)

Trees are well known data structures which are used in many different problems.
They are applicable in ML and their objective is to create a DT based on the features of each
data. Every node of the tree is divided to satisfy the most data until there are only leaves at
the end. Therefore, it is an eager learning algorithm because it tries to build the best DT
during the training phase [43].

Sensors 2021, 21, 938 11 of 23

Most of the hyper-parameters are useful to decide when a node must be divided and
when the DT must stop. The most relevant ones are:

• Criterion is the function allowing to measure the quality of the split of a node. A com-
monly used criterion is Gini impurity.

• Splitter is the split selection method of each node because there may be several split
solutions. A commonly used splitter is the best split.

• Max depth defines the maximum depth that a tree can reach during its creation. A big
depth complicates the structure and tends to create overfitting on the data. But on the
contrary, a low depth tends to create underfitting.

• Min samples split is the minimum number of data required to enable the split of a node.
This value is usually low because the higher it is, the more constrained the model
becomes, which creates underfitting.

• Min samples leaf is the minimum number of data required to consider a node as a
leaf. Its effect is similar to the previous parameter because a high value would create
underfitting.

• Max features corresponds to the maximum number of features to take into account
when the algorithm searches for the best split. This hyper-parameter depends on the
employed data but also tends to produce overfitting when its value is high.

Advantages of DTs are their ease of understanding and interpretation for humans,
as it can be visualized [43]. It also requires few data preparations and has a low cost
during a prediction because its complexity is logarithmic. However, a tree can become very
complex and not generalize enough the data which then produces overfitting. In the same
way, an unbalanced dataset will create biased trees. Despite this shortcoming, DTs (J48 in
particular) are commonly used in the literature [24].

3.4.4. Random Forest (RF)

RF is an improvement to DTs because it includes many of them as its name forest
suggests. Its principle is to create multiple trees and train them on random subsets of
data. During a prediction, every tree processes the data and the obtained results are then
merged to determine the most likely class by a vote [43]. This method is called bagging.
This algorithm allows to remove the overfitting problem created by DTs. It is part of
ensemble learning algorithms whose concept is to combine several ML algorithms to
achieve better performance.

The available hyper-parameters are the same as the ones in DTs in addition to one
which allows to define the number of trees to use in the forest. A value of 1 is equivalent to
the DT algorithm. A high value will usually give better results. However, this creates a
high cost in computational power and memory because each tree has to be stored.

One of the strongest advantages of RF is that it can automatically create a list with the
most discriminative features. It has also the ability to create confidence intervals which
indicate the certainty rate of a predicted class for each data. Its disadvantage is that the
ease of interpretation of DTs is lost. This algorithm has also been used in the fall detection
literature [24].

3.4.5. Gradient Boosting (GB)

GB is very similar to RF because it also employs multiple trees but in a different
manner. The trees do not work in parallel as in RF but sequentially. The output of each tree
is used as input of the following one. The idea is that each tree learns iteratively on the
errors made by its predecessor. This is called boosting [43]. Because GB is composed of DTs,
most of the parameters are the same. However, it has additional ones which are:

• Loss defines the loss function which must be optimized.
• Learning rate slows the learning speed of the algorithm by reducing the contribution

that each tree produces. This avoids to rapidly create overfitting.
• Estimator corresponds to the number of sequential DTs. A high number would produce

good results but a number too high may create an overfitting issue and use more

Sensors 2021, 21, 938 12 of 23

computational power and memory. The idea is to make a compromise between the
number of estimators and the learning rate.

• Subsample defines the data fraction used to train each tree. When the fraction is smaller
than 1, the model becomes a Stochastic GB algorithm which reduces the variance but
increases the bias.

An advantage of this algorithm is that it can produce better results than RF but
it potentially has overfitting issues. It also allows to reduce the variance and the bias.
However, the model is more complex to create and as a result the training phase is much
longer than in other algorithms. Despite this shortcoming, GB is commonly used in the
literature [33,34].

3.5. Evaluation

The performance evaluation of our FDS under the selected classifiers was done using
k-fold cross-validation. This required splitting the dataset into k sets. k− 1 sets are used as
training and 1 as testing. The process is repeated k times with a different set as the test one.
Given that FDSs must be able to detect falls for new people (e.g. unseen data), the test set
should not contain people data that the algorithm has been trained on.

We chose a value of k = 5. This creates a training set of 80% and a test set of 20%.
We filtered the SisFall to only keep subjects that performed all activities. Thus, despite being
our motivation to develop a FDS for the elderly, we found it necessary to remove the data
related to the elderly subjects, as these had not performed simulated falls. Similarly, we
removed three young people’s data due to missing records. This leaves us with data from
20 subjects. This number turned out to be ideal as it allowed us to guarantee that no data
from a given subject is used for both training and testing (in an 80/20 split). In other words,
the trained models would always be tested with data from new subjects. Consequently,
we have 1900 ADLs (19 ADLs × 5 trials × 20 subjects) and 1500 falls (15 falls × 5 trials ×
20 subjects), resulting in a more balanced dataset of 3400 records.

During the evaluation of ML algorithms, each prediction falls in one of the follow-
ing categories:

• True negative (TN): Correct classification of a negative condition, meaning a reject.
• False positive (FP): Incorrect classification of a negative condition, meaning a false

alarm.
• False negative (FN): Incorrect classification of a positive condition, meaning a missed.
• True positive (TP): Correct classification of a positive condition, meaning a hit.

Each prediction is added to the count of its category which allows then to calculate
various metrics such as the accuracy. A usual representation of these categories is a confu-
sion matrix.

In fall detection, two metrics are especially important: Sensitivity (SE)
(Equation (1)) and the Specificity (SP) (Equation (2)) [7]. The SE (or recall) corresponds to
how many relevant elements are actually selected. This is basically the detection probability
meaning how many falls have actually been detected. The SP corresponds to how many
non-relevant elements are selected, i.e., how many events classified as non-falls are actually
non-falls.

Sensitivity =
TP

TP + FN
(1)

Speci f icity =
TN

TN + FP
(2)

We also calculated the accuracy (Equation (3)) and the F1-score (Equation (4)). Ad-
ditionally, we calculated the Area Under the Receiver Operating Characteristics Curve
(AUROC) as provided in scikit-learn. The AUROC is used to evaluate classifiers’ perfor-
mance which is used in pattern recognition and ML [44]. In simple terms, an AUROC close

Sensors 2021, 21, 938 13 of 23

to the value of one is indicative of a well-performing algorithm, with high true-positive
and true-negative rates consistently.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1-score =
2× TP

2× TP + FP + FN
(4)

3.6. Multi-Class Approach Considerations

To answer our third research question, i.e., “What is the difference in performance
across various types of ML algorithms by adopting a multi-class approach for identifying
phases of a fall?”, we needed to do one more step to prepare the data for the ML algorithms.
The goal of this additional step was to divide the fall sample into three parts which are:
pre-fall, impact and post-fall. In doing so, two related questions arise: Where should we
split the fall sample and what duration should each part have. Given that a fall has been
defined as an uncontrolled, high acceleration [7], especially around the impact point, we
defined that the latter would be our reference point to split the fall data sample. Based on
this definition, we calculated the magnitude of each accelerometer axis along the sample
and selected the highest magnitude as the impact point for each sample. The average time
between the moment of loss of balance and the impact point is 0.715 s with a standard
deviation of 0.1 s [25]. Consequently, we defined the impact part of the fall as a 2 s interval
in the sample which includes the impact point, with 1.5 s leading to it, and the remaining
0.5 s after it. This interval is labeled as impact. The remaining part of the sample before the
impact interval is labeled as pre-fall and the remaining, final part is labeled as post-fall (note
that based on the result of RQ2, we selected a sample frequency of 50 Hz.). Thus, each 10
s fall sample creates three features vector, one for each phase. The impact phase always
represents a 2 s window. The remaining 8 s represents the pre- and post-fall phases. Since
the magnitude of the fall is not always at the same timestamp, the pre- and post-fall phase
duration varies. If the fall happens early in the sample, the pre-fall phase will be much
shorter than the post-fall phase. The opposite if the fall happens late in the sample.

To illustrate the above process, we present Figure 3a, a fall sample of the SisFall
dataset [31]. Each line represents one of the accelerometer’s axis. In it, a peak in the middle
is highlighted which is the impact point (shown as a dotted line) (Figure 3b). The dashed
lines limit the three parts of the fall, including the 2 s window of the impact interval.
The left-hand part is the pre-fall and the right-hand part is the post-fall. The feature
extraction step is applied to each phase of the fall as well as the ADLs.

By identifying the three different phases of the fall in the manner described above,
the FDS becomes a multi-class problem. More specifically, when ADLs are taken into
consideration, it becomes a four-class classification problem. The motivation behind it lies
on the importance in differentiating between ADLs and any phases of a fall, as labeled in
the SisFall dataset. In order to do that, we apply the same ML algorithms as in Section 3.4.
As the SVM classifier is a binary classifier, we extended it by choosing a one-vs.-one scheme.

In order to evaluate the performance of such classification, it is possible to use metrics
such as SE, SP F1-score and AUROC, presented in Section 3.5. However, these are typically
defined for two-class classification and it is important to show how we have extended them
for multi-class problems. We evaluated the performance with the same metrics, using the
calculation of the macro score for SE, SP, F1-score and AUROC. This is the average metric
per class which gives the same importance for each class. The other solution is the micro
score which average the metric by giving more importance to the amount of data per class.
As falls happen rarely, it creates unbalanced dataset but it is crucial to detect them correctly,
thus the need to give importance to this class. In our multi-class problem, we calculated the
SE for a specific class against all the others together as if they were one class. Matches for
this specific class represent the positive cases and matches for the combined class represent
the negative cases. Applying this step for each class offers four different Sensitivities,

Sensors 2021, 21, 938 14 of 23

which then are averaged using the previously explained macro score, as per Equation (5).
A similar process is applied for SP and F1-score, as shown in Equations (6) and (7).

SEmacro =
1

|Class| ×
|Class|

∑
i=1

TPi
TPi + FNi

(5)

SPmacro =
1

|Class| ×
|Class|

∑
i=1

TNi
TNi + FPi

(6)

F1-scoremacro =
1

|Class| ×
|Class|

∑
i=1

2× TPi
2× TPi + FPi + FNi

(7)

(a) Complete fall sample.

(b) Zoom on the impact phase.

Figure 3. Division of a fall sample into pre-fall, impact and post-fall phases.

Sensors 2021, 21, 938 15 of 23

4. Results and Discussion

This section presents and discusses the results for each of the research questions listed
in Section 1, namely: Subsection 4.1 presents the comparison of various Machine Learning
(ML) algorithms; Subsection 4.2 talks about the effect of the sensors’ sampling rates on the
detection performance, and Subsection 4.3 presents the results by splitting each fall into
its phases.

4.1. Fall Detection System (FDS) Performance

Tables 5–9 present the results of the evaluation of our FDS under the selected five
ML algorithms, showing that we successfully developed a reliable FDS. The Sensitivity
(SE) reached 98.4% and the Specificity (SP), 99.68%, respectively with Gradient Boost-
ing (GB) and k-Nearest Neighbor (KNN). These results outperformed those reported by
Sucerquia et al. [31]. From our review of classification algorithms (Subsection 3.4), we
expected ensemble learning algorithms to achieve better performance than the others.
In practice, this trend has been confirmed even though there are some exceptions (see
Table 6). This is because they use multiple ML algorithms, though the improvement in
performance is at the expense of more resources. Support Vector Machine (SVM) had more
difficulties to distinguish the activities. However, by tuning some hyper-parameters, its
results may improve.

Table 5. Comparison of the Sensitivity across the ML algorithms, with the highest values in bold.

Frequency
[Hz]

KNN
[%]

SVM
[%]

DT
[%]

RF
[%]

GB
[%]

1 85.66 74.13 91.26 93.60 95.33
2 91.46 77.93 91.33 95.53 96.86
5 95.33 84.86 94.73 95.66 98.06

10 96.53 88.80 94.73 97.26 98.40
20 97.20 91.80 95.80 97.66 98.26
50 97.40 91.80 96.26 98.20 98.13

100 97.40 93.89 96.40 97.73 98.20
200 97.26 93.78 96.60 98.00 98.06

Table 6. Comparison of the Specificity across the ML algorithms, with the highest values in bold.

Frequency
[Hz]

KNN
[%]

SVM
[%]

DT
[%]

RF
[%]

GB
[%]

1 94.68 80.21 93.00 96.21 96.21
2 97.05 83.73 94.26 97.42 97.57
5 98.78 88.68 96.32 98.68 98.47

10 99.57 90.89 96.73 99.42 98.47
20 99.68 92.15 97.52 99.21 99.10
50 99.42 93.26 96.63 99.15 98.73

100 99.42 93.89 97.26 99.15 98.94
200 99.31 93.78 97.26 98.94 99.21

The high quality of these results was unexpected especially without any optimization
such as hyper-parameters tuning. We infer that Activities of Daily Living and falls in
the SisFall dataset are discriminating by default, similar to [16]. Thus, any algorithm can
perform very well. However, in real-life conditions, the SE and SP would very likely drop
because of the falls heterogeneity as highlighted by Krupitzer et al. [33,34]. The difficulty
of obtaining real falls data is the main shortcoming in FDS studies, given that it is chal-
lenging to capture them in realistic settings with the elderly, as noted by Bagalà et al. [26],
who compiled a database of only 29 real-world falls.

Sensors 2021, 21, 938 16 of 23

Table 7. Comparison of the accuracy across the ML algorithms, with the highest values in bold.

Frequency
[Hz]

KNN
[%]

SVM
[%]

DT
[%]

RF
[%]

GB
[%]

1 90.70 77.52 92.23 95.05 95.82
2 94.58 81.17 92.97 96.58 97.26
5 97.26 87.00 95.61 97.35 98.29

10 98.23 89.97 95.85 98.47 98.44
20 98.58 92.00 96.76 98.52 98.73
50 98.52 92.61 96.47 98.73 98.47

100 98.52 92.05 96.88 98.52 98.61
200 98.41 91.20 96.97 98.52 98.70

Table 8. Comparison of the F1-score across the ML algorithms, with the highest values in bold.

Frequency
[Hz]

KNN
[%]

SVM
[%]

DT
[%]

RF
[%]

GB
[%]

1 88.98 74.35 91.18 94.28 95.24
2 93.68 78.47 91.97 96.08 96.88
5 96.81 85.17 94.99 96.94 98.06

10 97.93 88.56 95.25 98.23 98.23
20 98.36 90.93 96.29 98.30 98.55
50 98.30 91.55 95.99 98.55 98.25

100 98.30 90.76 96.45 98.31 98.42
200 98.17 89.70 96.55 98.31 98.52

Table 9. Comparison of the AUROC across the ML algorithms, with the highest values in bold.

Frequency
[Hz]

KNN
[%]

SVM
[%]

DT
[%]

RF
[%]

GB
[%]

1 95.97 86.02 92.13 98.72 99.12
2 97.73 90.17 92.79 99.26 99.61
5 99.03 93.83 95.52 99.60 99.87

10 99.49 96.14 95.73 99.85 99.93
20 99.50 97.35 96.66 99.85 99.92
50 99.44 97.66 96.44 99.87 99.93

100 99.36 97.13 96.83 99.86 99.93
200 99.45 96.43 96.93 99.90 99.93

4.2. Sensors’ Sampling Rate Effect

Regarding the sensors’ sampling rate, the trend is that the higher the rate the better
the results, which is intuitive since more data are considered when creating the feature
vector. However, SVM has a different behavior than the other three, as shown in Figure 4.
This shows the variation of the different metrics of each algorithm over the sensors’ sam-
pling rate. It peaks with a sensors’ sampling rate of 20 Hz, indicating that the higher
sampling rate does not necessarily improve performance. Especially since a high sam-
pling rate comes with disadvantages such as more computational costs and higher battery
consumption. Moreover, the results do not suggest that increasing the sampling rate any
further would make a meaningful improvement. In our case, the performance no longer
increases significantly after reaching 50 Hz. This sampling rate is in fact the typical one
used in the reviewed literature, offering the best reported results (Table 1).

Sensors 2021, 21, 938 17 of 23

(a) Sensitivity variation. (b) Specificity variation.

(c) Accuracy variation. (d) F1-score variation.

(e) AUROC variation.

Figure 4. Metrics variation over the sampling rates of five algorithms. The highest average metrics
across all algorithms is obtained with a sampling of 50 Hz.

4.3. Multi-Class Approach Performance

The multi-class approach to identify different phases of falls achieved promising
results with an accuracy close to 99% as shown by Figure 5 for two algorithms. The figure
presents also the variability of the results over each fold of the cross-validation for each
algorithm. The RF and GB algorithms consistently produced good results over the different
metrics except for a single fold, which is seen as an outlier in Figure 5a–d. One explanation
might be that it is related to data of a subject who performed the ADLs and falls differently
to other subjects. The DT algorithm has a the biggest variability across the algorithms
followed by KNN. The variability is low, close to 5% from which a high confidence on

Sensors 2021, 21, 938 18 of 23

the algorithms can be inferred. This is the desired behavior for the type of application,
where consistency in minimizing both SE and SP is important to facilitate adoption and
usefulness of the FDS. Furthermore, the results of this experiment also confirm the expecta-
tion about ensemble learning algorithms performance, which had been observed in the
results presented in Subsection 4.1.

(a) Sensitivity score. (b) Specificity score.

(c) Accuracy score. (d) F1 score.

(e) AUROC score.

Figure 5. Comparison of various metrics including Sensitivity, Specificity, accuracy, F1 and AUROC
of each k-fold split across the ML algorithms.

Figure 6 presents a deeper insight of the classification results with the confusion
matrices of each split of the k-fold cross-validation for the KNN algorithm. The accuracy
of this algorithm is the median amongst all algorithms’ accuracies, therefore it is useful
to discuss in depth. We can see that the pre-fall and post-fall phases were consistently
correctly classified. The main source of misclassifications comes from the other two classes,
i.e., ADL and impact. This negative tendency is stronger in the SVM and DT algorithms

Sensors 2021, 21, 938 19 of 23

but lessened in the RF and GB ones. These confusion matrices are interesting because the
patterns of misclassifications are consistent to that expected in a binary detection (i.e., ADL
vs fall). Therefore, an approach could involve removing data associated to the correctly-
identified phases of pre-fall and post-fall and treat the problem as a binary classification.
However, having correctly isolated and identified these phases, these could be used as a
supplementary input to confirm the prediction. Suppose for a given sample, a pre-fall and
a post-fall are correctly identified, but the impact is predicted as an ADL. Then, by the
mean of a threshold on a confidence interval, the misclassified impact could be overridden
and corrected. Another solution could simply consider the fact of identifying a pre-fall and
a post-fall phase to always raise an alarm for an impact, given the high confidence of the
prediction of both phases.

(a) K-split 1 (b) K-split 2

(c) K-split 3 (d) K-split 4

(e) K-split 5

Figure 6. Confusion matrices of the k-Nearest Neighbor Machine Learning algorithm whose accuracy
is the median amongst all other algorithms’ accuracies.

This novel approach usefulness lies on its provision of an added guarantee that the
fall is correctly detected, by offering a mechanism to “fix” a potential misclassification.

Sensors 2021, 21, 938 20 of 23

For a given fall sample, the algorithm should identify once each part of a fall, otherwise,
it is identified that one or several classifications are incorrect. Additionally, the ability
to recognize the pre-fall stage has many useful applications for fall prevention systems,
including airbags for example. This could reduce the likelihood of injuries caused by falls.

The obtained results are of high quality in terms of their accuracy, SE, SP, F-1 and
AUROC. This may not be the case when applying the system on data collected on the wild,
as we identified during the first experiment. As many other datasets in the FDS community,
the SisFall dataset is highly discriminating between ADLs and falls. Because their samples
lack realism, the studies under laboratory conditions will always outperform those in the
real world. In particular, from inspecting SisFall data, subjects remained still after a fall,
but it is unclear if an older person would act in this way during a real fall, particularly if
there was no loss of consciousness.

In our experiment, the pre-fall part was very often correctly classified. However,
under real conditions, misclassifications may have arisen (for example, as an ADL). This is
due to the fact that, in reality, falls are unexpected events occurring perhaps in the middle
of an ADL. Therefore, the pre-fall phase may be very short, following immediately from
the ADL part of the sample. Whereas in the SisFall dataset (as shown in Figure 3) the
pre-fall part is not an ADL, instead, the subject is “preparing” to fall (i.e. the fall is not
unexpected). In addition, the setup of the experiment in the wild will not be the same as in
the lab. It would lack the annotation, and therefore the behavior of the algorithm may not
be the same (in particular, with regards to dividing samples). With real-life non-annotated
data, it is unknown whether the received data is a fall, and hence a sample associated to an
ADL would also be divided into various parts. This would require further investigation.

5. Conclusions and Future work

In this paper, we present our development of a Fall Detection System (FDS) using
wearable technologies, to investigate and answer the following three research questions:

RQ1 What is the difference in performance across various types of Machine Learning (ML) algo-
rithms in a FDS?
Our FDS implemented several ML algorithms for comparison: k-Nearest Neighbors,
Support Vector Machine, Decision Trees, Random Forest and Gradient Boosting. Our
results are an improvement over those reported by Musci et al. [36] and Sucerquia et al.
[31], with a final Sensitivity and Specificity over 98%. The system is reliable as we
were able to test it on a large dataset containing several thousands of Activities of
Daily Living (ADLs) and falls. We obtained these results using various ML algorithms
which we were able to compare. We observed that ensemble learning algorithms
perform better than lazy or eager learning ones. We also further investigated the effect
of the sensors’ sampling rate on the detection rate.

RQ2 What is the effect of the sensors’ sampling rate on the fall detection?
We discovered a tendency that a high sampling rate usually produces better results
than a lower one. However, it is not necessary to have an extremely high sampling
rate (i.e. in the several hundreds). We recommend using a sampling rate of 50 Hz
because it produces improved results with any algorithm while keeping a rather low
computational cost.

RQ3 What is the difference in performance across various types of ML algorithms by adopting a
multi-class approach for identifying phases of a fall?
We found that the multi-class approach to identify the phases of a fall showed promis-
ing results with an accuracy close to 99%. In addition, it includes key features which
are the possibility for improved performance by adding subsequent logic to the ML
algorithm to address possible misclassifications. Given this performance, we would
advocate this multi-class approach as being useful in a different contexts such as fall
prevention systems.

There is scope for future work. With the high computation resources available nowa-
days, it would be interesting to explore Deep Learning (DL) algorithms. In our case

Sensors 2021, 21, 938 21 of 23

however, the size of the cleaned dataset is insufficient for this method to be appropriate
given the requirements of DL. The much larger OPPORTUNITY dataset [45] for ADLs has
been shown as appropriate for the use of the DL methods [46]. There is a study [36] using
Recurrent Neural Networks but there are other algorithms available such as Convolutional
Neural Networks with the advantage of automatic feature extraction from time series [46].
This reduces the number of steps to implement and removes the question of how many
and which features are needed to be extracted. Additionally, it would be very interesting
to reproduce the experiment on the sensors’ sampling rate but with DL algorithms. The re-
sults may be different from traditional ML algorithms. The SisFall dataset allows plenty of
experiments. However, the lack of falls data availability in realistic settings is a common
challenge in FDS studies, which also affected our study. In particular currently available
datasets with falls in realistic settings (such as in [26]) are far too small for ML approaches
to be successful, most particularly, for the state-of-the-art DLs.

Further work would benefit from exploring the use of a multi-class approach for FDS
using realistic datasets in order to compare against the performance in the lab and further
address any misclassification issues arising in that context. The results presented in this
work suggest this is worthwhile doing, and the use of such a system shows promise to
make a difference in assisting people sustaining falls.

Author Contributions: Conception, design, experimentation, N.Z.; supervision, review, edition, A.W.
and P.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by HES-SO University of Applied Sciences and Arts West-
ern Switzerland.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to express their gratitude to Juan Ye from the School of
Computer Science at the University of St Andrews; Adam Prugel-Bennett and Jonathon Hare from the
University of Southampton for their insightful comments on early stages of this work; the anonymous
reviewers for their interesting and constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ADL Activity of Daily Living
ALS Assisted-Living System
AUROC Area Under the Receiver Operating Characteristics Curve
BDM Bayesian Decision Making
DL Deep Learning
DT Decision Tree
FDS Fall Detection System
FN False Negative
FP False Positive
GB Gradient Boosting
KNN K-Nearest Neighbor
ML Machine Learning
RF Random Forest
SE Sensitivity
SP Specificity
SVM Support Vector Machine
TN True Negative
TP True Positive

Sensors 2021, 21, 938 22 of 23

References
1. Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006, 35, ii37–ii41,

doi:10.1093/ageing/afl084.
2. World Health Organization. WHO Global Report on Falls Prevention in Older Age; OCLC: Ocn226291980; World Health Organization:

Geneva, Switzerland, 2008.
3. Sadigh, S.; Reimers, A.; Andersson, R.; Laflamme, L. Falls and Fall-Related Injuries Among the Elderly: A Survey of Residential-

Care Facilities in a Swedish Municipality. J. Community Health 2004, 29, 129–140, doi:10.1023/B:JOHE.0000016717.22032.03.
4. Wild, D.; Nayak, U.S.; Isaacs, B. How dangerous are falls in old people at home? Br. Med. J. (Clin. Res. Ed.) 1981, 282, 266–268,

doi:10.1136/bmj.282.6260.266.
5. Rashidi, P.; Mihailidis, A. A Survey on Ambient-Assisted Living Tools for Older Adults. IEEE J. Biomed. Health Inform. 2013,

17, 579–590, doi:10.1109/JBHI.2012.2234129.
6. Hawley-Hague, H.; Boulton, E.; Hall, A.; Pfeiffer, K.; Todd, C. Older adults’ perceptions of technologies aimed at falls prevention,

detection or monitoring: A systematic review. Int. J. Med Inform. 2014, 83, 416–426, doi:10.1016/j.ijmedinf.2014.03.002.
7. Noury, N.; Fleury, A.; Rumeau, P.; Bourke, A.K.; Laighin, G.O.; Rialle, V.; Lundy, J.E. Fall detection—Principles and Methods.

In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
Lyon, France, 22–26 August 2007; pp. 1663–1666, doi:10.1109/IEMBS.2007.4352627.

8. Zurbuchen, N.; Wilde, A.; Bruegger, P. A Comparison of Machine Learning Algorithms for Fall Detection using Wearable
Sensors. In Proceedings of the The 2nd International Conference on Artifical Intelligence in Information and Communication,
Fukuoka, Japan, 19–21 February 2020.

9. Mubashir, M.; Shao, L.; Seed, L. A survey on fall detection: Principles and approaches. Neurocomputing 2013, 100, 144–152,
doi:10.1016/j.neucom.2011.09.037.

10. Yu, X. Approaches and principles of fall detection for elderly and patient. In Proceedings of the HealthCom 2008—
10th International Conference on e-health Networking, Applications and Services, Singapore, 7–9 July 2008; pp. 42–47,
doi:10.1109/HEALTH.2008.4600107.

11. Abbate, S.; Avvenuti, M.; Bonatesta, F.; Cola, G.; Corsini, P.; Vecchio, A. A smartphone-based fall detection system.
Pervasive Mob. Comput. 2012, 8, 883–899, doi:10.1016/j.pmcj.2012.08.003.

12. Bourke, A.K.; O’Brien, J.V.; Lyons, G.M. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm.
Gait Posture 2007, 26, 194–199, doi:10.1016/j.gaitpost.2006.09.012.

13. Chan, A.M.; Selvaraj, N.; Ferdosi, N.; Narasimhan, R. Wireless patch sensor for remote monitoring of heart rate, respiration,
activity, and falls. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 6115–6118, doi:10.1109/EMBC.2013.6610948.

14. Kangas, M.; Konttila, A.; Lindgren, P.; Winblad, I.; Jämsä, T. Comparison of low-complexity fall detection algorithms for body
attached accelerometers. Gait Posture 2008, 28, 285–291, doi:10.1016/j.gaitpost.2008.01.003.

15. Yuwono, M.; Moulton, B.D.; Su, S.W.; Celler, B.G.; Nguyen, H.T. Unsupervised machine-learning method for improving the
performance of ambulatory fall-detection systems. BioMed. Eng. OnLine 2012, 11, 9, doi:10.1186/1475-925X-11-9.

16. Bourke, A.K.; Lyons, G.M. A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Med Eng. Phys. 2008,
30, 84–90, doi:10.1016/j.medengphy.2006.12.001.

17. Tang, M.; Ou, D. Fall Detection System for Monitoring an Elderly Person Based on Six-Axis Gyroscopes; In Proceedings of the
2018 3rd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2018), Xi’an, China, June 24–25
2018; doi:10.2991/eame-18.2018.51.

18. Dinh, A.; Teng, D.; Chen, L.; Shi, Y.; McCrosky, C.; Basran, J.; Bello-Hass, V.D. Implementation of a Physical Activity Monitoring
System for the Elderly People with Built-in Vital Sign and Fall Detection. In Proceedings of the 2009 Sixth International Conference
on Information Technology: New Generations, Las Vegas, NV, USA, 27–29 April 2009; pp. 1226–1231, doi:10.1109/ITNG.2009.60.

19. Wang, J.; Zhang, Z.; Li, B.; Lee, S.; Sherratt, R.S. An enhanced fall detection system for elderly person monitoring using consumer
home networks. IEEE Trans. Consum. Electron. 2014, 60, 23–29, doi:10.1109/TCE.2014.6780921.

20. Fudickar, S.J.; Lindemann, A.; Schnor, B. Threshold-based Fall Detection on Smart Phones. In Proceedings of the HEALTHINF,
Angers, France, 3–6 March 2014; pp. 303–309, doi:10.5220/0004795803030309.

21. Medrano, C.; Igual, R.; Plaza, I.; Castro, M. Detecting Falls as Novelties in Acceleration Patterns Acquired with Smartphones.
PLoS ONE 2014, 9, e94811, doi:10.1371/journal.pone.0094811.

22. Hwang, J.Y.; Kang, J.M.; Jang, Y.W.; Kim, H.C. Development of novel algorithm and real-time monitoring ambulatory system
using Bluetooth module for fall detection in the elderly. In Proceedings of the The 26th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; Volume 1, pp. 2204–2207,
doi:10.1109/IEMBS.2004.1403643.

23. Choi, Y.; Ralhan, A.S.; Ko, S. A Study on Machine Learning Algorithms for Fall Detection and Movement Classification.
In Proceedings of the 2011 International Conference on Information Science and Applications, Jeju Island, Korea, 26–29 April 2011;
pp. 1–8, doi:10.1109/ICISA.2011.5772404.

24. Gjoreski, H.; Lustrek, M.; Gams, M. Accelerometer Placement for Posture Recognition and Fall Detection. In Proceedings
of the 2011 Seventh International Conference on Intelligent Environments, Nottingham, UK, 25–28 July 2011; pp. 47–54,
doi:10.1109/IE.2011.11.

https://doi.org/10.1371/journal.pone.0094811
https://doi.org/10.1109/ICISA.2011.5772404
https://doi.org/10.1109/IE.2011.11

Sensors 2021, 21, 938 23 of 23

25. Aziz, O.; Robinovitch, S.N. An Analysis of the Accuracy of Wearable Sensors for Classifying the Causes of Falls in Humans.
IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 670–676, doi:10.1109/TNSRE.2011.2162250.

26. Bagalà, F.; Becker, C.; Cappello, A.; Chiari, L.; Aminian, K.; Hausdorff, J.M.; Zijlstra, W.; Klenk, J. Evaluation of Accelerometer-
Based Fall Detection Algorithms on Real-World Falls. PLoS ONE 2012, 7, e37062, doi:10.1371/journal.pone.0037062.

27. Özdemir, A.T.; Barshan, B. Detecting Falls with Wearable Sensors Using Machine Learning Techniques. Sensors 2014, 14, 10691–
10708, doi:10.3390/s140610691.

28. Vilarinho, T.; Farshchian, B.; Bajer, D.G.; Dahl, O.H.; Egge, I.; Hegdal, S.S.; Lønes, A.; Slettevold, J.N.; Weggersen, S.M.
A Combined Smartphone and Smartwatch Fall Detection System. In Proceedings of the 2015 IEEE International Confer-
ence on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic
and Secure Computing; Pervasive Intelligence and Computing, Liverpool, UK, 26–28 October 2015; pp. 1443–1448,
doi:10.1109/CIT/IUCC/DASC/PICOM.2015.216.

29. Casilari, E.; Oviedo-Jiménez, M.A. Automatic Fall Detection System Based on the Combined Use of a Smartphone and a
Smartwatch. PLoS ONE 2015, 10, e0140929, doi:10.1371/journal.pone.0140929.

30. Gibson, R.M.; Amira, A.; Ramzan, N.; Casaseca-de-la Higuera, P.; Pervez, Z. Multiple comparator classifier framework for
accelerometer-based fall detection and diagnostic. Appl. Soft Comput. 2016, 39, 94–103, doi:10.1016/j.asoc.2015.10.062.

31. Sucerquia, A.; López, J.D.; Vargas-Bonilla, J.F. SisFall: A Fall and Movement Dataset. Sensors 2017, 17, 198, doi:10.3390/s17010198.
32. Hsieh, C.Y.; Liu, K.C.; Huang, C.N.; Chu, W.C.; Chan, C.T. Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall

Model. Sensors 2017, 17, 307, doi:10.3390/s17020307.
33. Krupitzer, C.; Sztyler, T.; Edinger, J.; Breitbach, M.; Stuckenschmidt, H.; Becker, C. Hips Do Lie! A Position-Aware Mobile Fall

Detection System. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications
(PerCom), Athens, Greece, 19–23 March 2018; pp. 1–10, doi:10.1109/PERCOM.2018.8444583.

34. Krupitzer, C.; Sztyler, T.; Edinger, J.; Breitbach, M.; Stuckenschmidt, H.; Becker, C. Beyond position-awareness—Extending a
self-adaptive fall detection system. Pervasive Mob. Comput. 2019, 58, 101026, doi:10.1016/j.pmcj.2019.05.007.

35. Casilari, E.; Lora-Rivera, R.; García-Lagos, F. A Study on the Application of Convolutional Neural Networks to Fall Detection
Evaluated with Multiple Public Datasets. Sensors 2020, 20, 1466, doi:10.3390/s20051466.

36. Musci, M.; De Martini, D.; Blago, N.; Facchinetti, T.; Piastra, M. Online Fall Detection using Recurrent Neural Networks. arXiv
2018, arXiv:1804.04976.

37. SISTEMIC: SisFall Dataset. 2017. Available online: http://sistemic.udea.edu.co/en/investigacion/proyectos/english-falls/
(accessed on 16 December 2020).

38. Nyan, M.N.; Tay, F.E.H.; Murugasu, E. A wearable system for pre-impact fall detection. J. Biomech. 2008, 41, 3475–3481,
doi:10.1016/j.jbiomech.2008.08.009.

39. Casilari, E.; Santoyo-Ramón, J.A.; Cano-García, J.M. Analysis of Public Datasets for Wearable Fall Detection Systems. Sensors
2017, 17, 1513, doi:10.3390/s17071513.

40. Casilari, E.; Santoyo-Ramón, J.A.; Cano-García, J.M. UMAFall: A Multisensor Dataset for the Research on Automatic Fall
Detection. Procedia Comput. Sci. 2017, 110, 32–39, doi:10.1016/j.procs.2017.06.110.

41. Micucci, D.; Mobilio, M.; Napoletano, P.; Micucci, D.; Mobilio, M.; Napoletano, P. UniMiB SHAR: A Dataset for Human Activity
Recognition Using Acceleration Data from Smartphones. Appl. Sci. 2017, 7, 1101, doi:10.3390/app7101101.

42. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

43. Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques; ISBN:978-0-12-804291-5;
Morgan Kaufmann: Burlington, MA, USA, 2017.

44. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874, doi:10.1016/j.patrec.2005.10.010.
45. Chavarriaga, R.; Sagha, H.; Calatroni, A.; Digumarti, S.T.; Tröster, G.; Millán, J.d.R.; Roggen, D. The Opportunity chal-

lenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognit. Lett. 2013, 34, 2033–2042,
doi:10.1016/j.patrec.2012.12.014.

46. Ordóñez, F.J.; Roggen, D. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity
Recognition. Sensors 2016, 16, 115, doi:10.3390/s16010115.

https://doi.org/10.1371/journal.pone.0037062
https://doi.org/10.3390/s17020307
https://doi.org/10.3390/s20051466
http://sistemic.udea.edu.co/en/investigacion/proyectos/english-falls/

	Introduction
	Related Work
	Choice of Sensors and Sampling Rate
	Sensing Position
	Algorithms
	Classification Strategies
	Strengths and Weaknesses

	Materials and Methods
	Dataset
	Data Preprocessing
	Feature Extraction
	Classification Algorithms
	k-Nearest Neighbor (KNN)
	Support Vector Machines (SVM)
	Decision Tree (DT)
	Random Forest (RF)
	Gradient Boosting (GB)

	Evaluation
	Multi-Class Approach Considerations

	Results and Discussion
	Fall Detection System (FDS) Performance
	Sensors' Sampling Rate Effect
	Multi-Class Approach Performance

	Conclusions and Future work
	References

