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Abstract. Graphs are an intuitive and natural way of representing
handwriting. Due to their high representational power, they have shown
high performances in different learning-free document analysis tasks.
While machine learning is rather unexplored for graph representations,
geometric deep learning offers a novel framework that allows for con-
volutional neural networks similar to the image domain. In this work,
we show that the concept of attribute prediction can be adapted to the
graph domain. We propose a graph neural network to map handwrit-
ten word graphs to a symbolic attribute space. This mapping allows to
perform query-by-example word spotting as it was also tackled by other
learning-free approaches in the graph domain. Furthermore, our model
is capable of query-by-string , which is out of scope for other graph-based
methods in the literature. We investigate two variants of graph convolu-
tional layers and show that learning improves performances considerably
on two popular graph-based word spotting benchmarks.

Keywords: Graph Neural Networks · Geometric Deep Learning · Word
Spotting

1 Introduction

The field of pattern recognition distinguishes the two principles of statistical and
structural approaches [4]. For any application both approaches need to solve
the problem of how to measure the similarity of different objects. Statistical
approaches usually rely on numerically representing an object in the form of a
high-dimensional feature vector. Measuring similarity is then feasible by common
vector distances. Statistical approaches offer a mature framework of algorithms
for clustering, retrieval or classification and have strongly benefited from the
uprise of deep neural networks. However, the representational power of a vector is
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limited, which motivates the structural approach. In this case, data is represented
based on symbolic structures such as graphs. While graphs offer a more powerful
data representation, they often lack the mathematical simplicity of Euclidean
data. Already basic operations such as computing a distance between two graphs
constitute a complex problem with high computational demand.

If data can be represented in a Euclidean manner, statistical approaches
often dominate the field as in the case of computer vision [9, 22]. Structural
approaches are more common in areas, where relational data is essential and a
non-Euclidean data structure is the obvious choice. Popular areas in this regard
are the analysis of chemical molecules and social or citation networks [3,11,34].
Looking at application areas of statistical and structural pattern recognition,
handwriting analysis holds a special position. Document analysis methods are
highly focused on the image domain as image acquisition is easy and a huge
amount of well researched statistical approaches exist. Nonetheless, a structural
representation is inherent to any image of handwriting. The underlying structure
of a handwritten word can naturally be captured in the form of a graph. This
makes it an open question whether handwriting analysis can benefit from a
structural approach based on graph representations.

Word spotting is a task that attracted a lot of attention in the document
analysis community and also represents an area where structural and statisti-
cal approaches coexist [9]. In general, the problem of word spotting is a well
researched field in document image analysis and many mature methods exit.
However, word spotting has also been a topic of interest with respect to graph
representations [2, 18, 26]. As word spotting essentially requires to measure the
similarity of a word to a query, many graph-based methods explored how to
efficiently compute a distance between graphs [2,25]. In terms of performance, a
significant gap between image and graph-based approaches exists. This gap can
be explained by the fact that most methods in the image domain heavily rely on
learning and on training powerful models on labelled data. Additionally, hand-
writing graphs are usually extracted from images relying on binarization and
skeletonization methods [24, 26]. This step might limit performances compared
to models of the image domain working with unprocessed images.

Learning in the graph domain recently gained a lot of attraction with the
generalization of the convolution operation to graph structures. Geometric deep
learning [3] provides a framework similar to deep convolutional neural networks
that led to significant performance gains for different benchmarks [11]. In [18], the
authors propose a learning-based model for word spotting in the graph domain
to estimate a graph distance with graph neural networks.

In this work, we propose a graph convolutional neural network to predict
an attribute representation from handwritten word graphs. This approach has
been proven to show high performances on word spotting benchmarks in the
image domain [28]. Compared to other methods considering the graph domain,
our learning-based approach exploits character level instead of only word class
information. Furthermore, mapping graphs to an attribute space allows to query
by string, which is not the case for other methods in the literature.
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The remainder of the paper is organized as follows. Sec. 2 presents related
works on the topic of word spotting in the image and graph domain. The pro-
posed graph convolutional neural network is discussed in Sec. 3. In our experi-
mental evaluation in Sec. 4, we investigate the influence of key components of our
model on four different benchmarks. Finally, we compare the proposed model to
other graph and image-based word spotting methods known from the literature.

2 Related Work

Word Spotting describes the task of retrieving regions from a document col-
lection that are similar to a query [9]. In contrast to handwriting recognition,
the result of a word spotting system is not an explicit transcription result, but a
ranked list of possible word occurrences. This retrieval approach allows for inter-
pretation by the user, making word spotting an attractive alternative especially
for information retrieval from historic document collections. For an extensive
overview on word spotting methodology and taxonomy, see [9].

2.1 Document Image Analysis

Traditionally, word spotting methods have been highly focused on the image
domain. Different methods either work on entire document images [14,20,32] or
segmented regions such as word images [13,16,28]. Several works on word spot-
ting exploit the sequential structure of handwriting. Models such as recurrent
neural networks [14] and Hidden Markov Models (HMM) [5, 20] were applied
successfully and are still popular.

Traditional feature based approaches also attracted attention and were usu-
ally combined with models such as spatial pyramids [21] or HMMs to encode
spatial information [16, 20]. As these methods measure visual similarity based
on a designed representation, they usually are not capable to generalize well
across high variations in writing styles. To overcome this drawback, Almazan et
al. proposed to predict certain image properties so called attributes from word
images in [1]. In this influential work, the authors proposed the Pyramidal His-
togram of Characters (PHOC) that encodes the occurrence and spatial position
of characters in a pyramidal fashion. By mapping word images to an attribute
vector space, query-by-example word spotting boils down to the computation
of simple vector distances. Since it is straightforward to derive a PHOC vector
from a string, query-by-string is easily possible.

In [27], the attribute-based approach of [1] was adopted using a convolu-
tional neural network that replaced the formerly used combination of Fisher
Vectors and SVMs. Training a neural network to predict an attribute represen-
tations from word images, resulted in high performances on almost all popular
benchmarks [15,28]. Recently, image-based word spotting got increasingly more
focused on methods that either do not rely on annotated training data [16,29,33]
or are capable to jointly solve the segmentation problem [14,32].
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2.2 Graph Representations

While word spotting in the image domain is a highly researched topic that re-
sulted in well performing methods, significantly less works considered the task
from a structural perspective. Here, we focus on methods that first extract a
graph representation, in order to tackle the word spotting problem in the graph
domain. In [30], the authors propose a graph representation that extracts vertices
and edges from skeletonised word images to represent the structural properties of
a handwritten word. This representation is enriched by using the Shape Context
Descriptor as an additional node feature vector. In order to measure similar-
ity, an approach based on dynamic time warping (DTW) and an approximated
Graph Edit Distance (GED) is proposed. Most graph-based methods follow a
similar approach. First, a graph representation is extracted from a word image,
for example by computing keypoints [6] or projection profiles [24, 25]. Then,
the similarity of a query graph to all word graphs is estimated by a graph dis-
tance. As common graph distances such as the GED are highly computational
demanding, most graph-based word spotting methods rely on an approximation.
Popular examples in this regard are bipartite matching (BP) [19], also known
as assignment edit distance (AED) [24], or Hausdorff edit distance (HED) [7].
As deep learning and neural networks have drastically increased word spotting
performances in the image domain, this approach was just recently investigated
for graph representations. The Geometric Deep Learning [3] framework allows
to build neural networks similar to CNNs that operate on graphs. In [17], the
authors propose a graph neural network that learns an enriched graph represen-
tation with a siamese approach. Based on the enriched representation, a graph
distance similar to the HED is defined, resulting in a fast and efficient similar-
ity measure. This method is extended in [18] to a triplet approach achieving
competitive results on multiple graph-based word spotting benchmarks.

2.3 Geometric Deep Learning

Neural networks for graph representations were first proposed in [23]. Motivated
by the success in the image domain, generalizing the convolutional operation has
been of significant interest [34]. As a general taxonomy, spectral and non-spectral
methods are distinguished. In contrast to spectral approaches, which are moti-
vated by the formulation of a graph signal, non-spectral approaches are defined
for the entire graph representation and usually work on spatially close neighbour-
hoods [34]. Most graph neural networks share a common structure that can be
summarized in the general framework of a Message Passing Neural Network [8].
Each layer is defined by a message and an update function. The message func-
tion aggregates information from neighbouring nodes, while the update function
computes a node embedding based on the aggregated representations. Finally, a
readout function is defined, which computes a feature vector for the entire graph.
If all three functions are differentiable, the resulting model may be trained in a
supervised manner. For an extensive review of graph neural networks, see [3,34].
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Fig. 1: (Left) Examples of keypoint (Keyp.) and projection (Proj.) graphs for
George Washington (GW), Parzival (PAR), Alvermann Konzillsprotokolle (AK)
and Botany (Bot) [26]. (Right) Representation enriched with virtual node.

3 Method

In the following section, we discuss the proposed graph convolutional network
for graph-based word spotting. Following the approach of [28], we aim at pre-
dicting an attribute representation from a handwritten word graph. Predicting
attributes from a graph is similar to the problem of graph property prediction,
which is a popular task tackled with graph convolutional networks [11].

3.1 Graph Representations

In this work, a handwritten word is represented as a set of nodes V and undi-
rected edges that are expressed by a binary adjacency matrix A. Each node has
a feature vector xv, which represents its spatial position. Multiple extraction
methods exist that extract such graph representations from word images [26].
Here, we focus on graphs extracted by means of identifying keypoints or by a seg-
mentation resulting from projection profiles. See Fig. 1, for examples of keypoint
and projection graphs for four different datasets from [26].

Several works in the literature introduce virtual nodes [8, 11] to allow each
node to receive context information from the entire graph. We investigate the
use of this enriched graph representation, by introducing an additional node to
each word graph. The virtual node is introduced with a zero vector as a feature
vector and is connected to every node of the graph. Fig. 1 visualizes this enriched
graph representation.

3.2 Convolutional Layers

In order to map the node features to a hidden state hv, we use convolutional lay-
ers that can be formulated in the message passing neural network framework [8]
as follows. A message passing network performs a message passing phase for T
time steps that is defined by its message passing function Mt aggregating infor-
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mation from the node neighbourhood N (v). The update function Ut computes
a hidden state of the node based on the received message mt+1

v :

mt+1
v =

∑
w∈N (v)

Mt(h
t
v, h

t
w) ht+1

v = Ut(h
t
v,m

t+1
v ) (1)

Graph Convolutional Networks (GCN)

In [12], Kipf and Welling propose a convolutional layer for graphs that is based
on an approximation of spectral graph convolutions. Despite its spectral nature,
the GCN layer can be interpreted as a spatial method. Due to the simplifications
introduced in [12], the resulting convolutional layer aggregates information of a
node neighbourhood that is transformed using a layer-specific weight matrix W .
The resulting message and update functions can be expressed as

mt+1
v =

∑
w∈N (v)

1√
deg(v) · deg(w)

·Avw · ht
w (2)

ht+1
v = W tmt+1

v , (3)

with deg(·) denoting the degree of a note. As in [12], we limit the mes-
sage passing time steps to T = 1 and only consider a binary adjacency matrix.
Therefore, a multi layer graph convolutional network can be mathematically
formulated by the computation of a hidden state hk

v at layer k:

h(k+1)
v =

∑
w∈N (v)∪{v}

1√
deg(v) · deg(w)

· (W (k) · h(k)
v ) (4)

Sample and Aggregate (SAGE)

The spatial approach to generalize the convolution operation to graphs proposed
in [10] relies on a sampling and aggregation strategy. First, the neighbourhood of
a node is sampled followed by the generation of a neighbourhood embedding by
means of an aggregation function. Hereby, the model learns a function on how
to aggregate neighbourhood information. In this work, we consider the direct
neighbourhood at each layer, resulting in T = 1 with respect to the message
passing framework. As a simple aggregation function, we use the mean over the
neighbourhood node embeddings. This results in a formulation of a convolutional
layer that is similar to the GCN approach with the following message and update
functions:

mk+1
v = meanw∈N (v)(h

(k)
w ) (5)

h(k+1)
v = W

(k)
1 h(k)

v + W
(k)
2 ·mk+1

v (6)
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Fig. 2: Overview of the proposed graph neural network. Each graph is propa-
gated through K convolutional layers, followed by a readout function to generate
a graph embedding. A multilayer perceptron predicts respective PHOC vectors.

3.3 Architecture

Fig. 2 presents an overview of the overall architecture. The extracted word graphs
are propagated through the network to predict a PHOC representation similar
to [28]. The backbone of the architecture is a number of K convolutional layers,
as described in section Sec. 3.2. Following the message passing neural network
framework, a readout function R generates an embedding ŷ for the entire graph.
We use the mean over all node embeddings as a readout function:

ŷ = R({hK
v |v ∈ V }) =

1

|V |
∑
v∈V

hK
v (7)

In analogy to the attribute CNN approach in the image domain [28], we use a
multilayer perceptron with sigmoid activations to predict a PHOC representation
from the learned graph embedding. The model is then optimized fully supervised
in an end-to-end manner.

4 Experiments

In our experiments, we investigate the proposed model on datasets for graph-
based word spotting (Sec. 4.1). We focus on the influence of increasing number
of layers for GCN and SAGE convolutions and the introduction of a virtual
node. Finally, we compare our model to other graph-based methods, as well as
methods for segmentation-based word spotting in the image domain (Sec. 4.3).

In all experiments, we use a PHOC vector with splits [2, 3, 4, 5] and the cosine
similarity to measure similarity between the representations in the attribute
space. The size of the node embedding is set to 256 and both fully connected
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Table 1: Number of samples for different dataset splits.

Split GW PAR AK BOT

Train 2447 11468 1849 1684
Validation 1224 4621 3734 3380
Test 1224 6869 - -
Keywords 105 1217 200 150

layers consist of 1024 neurons. All models are trained with ADAM optimization,
binary cross entropy loss, a learning rate of 0.001 and a batch size of 64. We
train our model for 500 epochs on the designated training splits of the datasets.
Performance is measured with mean average precision (mAP) [9].

Due to the large number of different works that have been published on the
topic of word spotting, several evaluation protocols exist, despite most works
focus on the same datasets. We follow the nomenclature proposed in [18], distin-
guishing the two ways of an individual and combined query representation. In
this regard, individual means that a query is represented by a single graph. This
representation is used in most image-based protocols where queries are usually
represented by a single exemplar image. As most graph-based methods measure
the structural similarity between graphs, retrieval performance is quite sensitive
with respect to writing style variations. In the combined query protocol, this
problem is mitigated by combining multiple graphs of the same keyword to rep-
resent a single query. The resulting similarity measure is then based on the most
similar keyword graph. For our attribute model, this corresponds to the mini-
mum over all distances between the estimated PHOC vector of a word graph and
all query graphs corresponding to a single keyword. In case of query-by-string ,
each keyword is used as query once.

4.1 Datasets

In our experimental evaluation, we rely on the Histograph database [24,26]. The
database provides graph representations for four popular manuscripts known
from segmentation-based word spotting in the image domain. The authors pro-
vide multiple datasets that result from different graph extraction strategies,
with keypoint and projection graphs being the most popular. See Tab. 1 for
an overview of the datasets and corresponding numbers of samples.

The George Washington (GW) dataset has traditionally been a key bench-
mark dataset in the word spotting community. The historic dataset shows almost
no degradation and variations in handwriting style are limited.

The Parzival (PAR) dataset is a historic dataset written in German. 45 pages
are available and show degradations. Despite the fact that is was written by three
authors, variations in writing style are comparable low.

The Alvermann Konzilsprotokolle (AK) dataset emerged from the keyword
spotting competition at the International Conference of Frontiers in Handwriting
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Fig. 3: Query-by-example performances for different numbers of convolutional
layers K. Results reported as mAP [%].
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Recognition 2016 [15]. The corresponding competition had a focus on evaluating
the influence of different amounts of training data. The histograph database
provides graph representation for period I of the competition which contains
only the smallest number of training samples.

Botany (BOT) stems from the same competition as the AK dataset [15]. The
manuscript shows significant marks of degradation such as fading. Furthermore,
the rather artistic style of the botanical records lead to significant variations in
writing style and also in scale.

4.2 Results

In order to investigate the depth of the model and the introduction of a vir-
tual node, we evaluate performances in terms of mean average precision in the
query-by-example scenario on the keypoint graph representations. We follow the
combined query protocol in all experiments. As training data is highly limited
in all cases except PAR, we include also validation data for GW during training.
This is similar to the evaluation protocol in the image domain, where usually
no designated validation split is used for GW [1]. Note that all evaluated mod-
els are also capable to perform query-by-string as the model estimates PHOC
representations. Quantitative results for query-by-string are provided in Sec. 4.3.

Depth

In the application of convolutional neural networks, we observe a trend towards
increasingly deep architectures. While it seems that depth often leads to superior
performances in the image domain, most graph neural networks are quite shallow
[12,18,34]. In this set of experiments, we vary the number of layers from one to
ten for GCN and SAGE convolutions, as introduced in Sec. 3.
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Table 2: Evaluation of Virtual Node (VN). Results reported as mAP [%].

Convolution Layer VN
GW PAR AK BOT

QbE QbE QbE QbE

SAGE 3 No 75.60 81.81 65.17 45.01
SAGE 3 Yes 75.84 86.59 63.62 44.69

SAGE 6 No 72.49 85.05 58.24 42.28
SAGE 6 Yes 73.63 88.93 60.43 41.78

GCN 10 No 73.00 79.87 67.82 44.07
GCN 10 Yes 71.18 81.55 63.52 41.79

Fig. 3a shows performances for GCN layer. We are able to observe perfor-
mance improvements for increasing depth for all datasets. This is especially
interesting as often no performance gains are reported in the literature for mod-
els with more than three layers [12, 18]. While we observe minor performance
gains for increasing numbers of GCN layers, this is not the case for SAGE layers,
see Fig. 3b. Only for PAR, using more than three convolutional layers improves
performances and we do not observe any further gains beyond six layers. For all
other datasets where considerably less training data is available, performances
degrade after three layers. These results indicate that the availability of training
data determines in how far the model can benefit from the increased complexity.
In general, the models based on SAGE convolutions yield higher performances
for GW and PAR despite using fewer layers. For AK and BOT the deep GCN
models with ten layers, show slightly higher performances.

Virtual Node

Introducing a virtual node to a graph, allows message flow between all nodes.
Motivated by the previously discussed analysis on increasing depth, we inves-
tigate the influence on a GCN model with ten layers and two SAGE models
with three and six convolutional layers. Tab. 2 presents query-by-example per-
formances on all datasets. For GW, we observe only a limited influence on the
SAGE models of different depth, while performances decrease in case of the GCN
model. In contrast to GW, we observe some clear performance gains for all mod-
els in case of PAR. For AK and Botany the results are not conclusive. It seems
that the GCN models do not benefit from the introduction of a virtual node.
However, when it is feasible to train an accurate SAGE model, a virtual node
fosters performances. As in the case of GW and PAR, the highest performances
are reported for SAGE models including virtual nodes.

4.3 Comparison to the literature

In this section, we compare our model to other graph and image-based word
spotting methods. To allow for a fair comparison, we only train our model on
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Table 3: Query-by-example performances based on keypoint (Keyp.) and pro-
jection (Proj.) graphs of the Histograph DB. All method follow the indiviual
query protocol. Results reported as mAP [%].

Method
GW PAR AK BOT

QbE QbE QbE QbE
K

ey
p
.

Ours 77.99 93.98 55.37 34.21
Riba et al. [18] 76.92 73.14 62.90 41.52

P
ro

j. Ours 77.82 95.48 59.92 33.31
Riba et al. [18] 70.25 75.19 65.04 42.83

the designated training splits, if not further noted. In this work, we focus on
segmentation-based methods, as the graph extraction methods that underly the
Histograph database requires an independent segmentation step.

Graph Domain

A first comparison can be drawn between the proposed model and [18]. Tab. 3
presents query-by-example performances for keypoint and projection graphs fol-
lowing the individual query protocol. Our proposed attribute-based approach
compares well on GW and PAR and improves performances in all cases. Per-
formance gains are especially striking in case of PAR where a large training set
is available. In [18], the authors propose a graph convolutional network trained
with triplets in order to learn a graph distance. This approach only considers
word class information during training, as opposed to attribute learning that
relies on transcriptions. Exploiting the richer annotation offers an explanation
for the observed performance gains in cases where a sufficiently large training
set is available. For the smaller datasets of AK and BOT, the metric learning
approach presented in [18] seems to be beneficial.

Tab. 4 compares our model to other graph-based methods from the liter-
ature under the combined query protocol. Except for [18], all other method
are learning-free. Additionally, we report numbers for an extended training set,
where we included the validation data during training for GW and PAR. The pro-
posed attribute approach outperforms all learning-free methods, given enough
training data as in case of PAR or the extended GW dataset. This emphasizes
that the proposed method scales fairly well with the availability of labeled data.
Furthermore, we see that end-to-end learning is feasible in the graph domain and
considerable performance gains can be achieved. When data is highly limited as
in the case of AK or BOT similarity-based approaches seem to be advantageous.

Another interesting observation can be made, comparing the results of the
individual (Tab. 3) and combined (Tab. 4) protocol. While [18] reports higher
performances under the combined protocol, this is not the case for our model on
GW and PAR. As the PHOC vector is independent from the structural charac-
teristics of the query graphs, our model does not benefit from combining multiple
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Table 4: Query-by-example and string performances based on keypoint and
projection graphs of the Histograph DB. All methods from the literature follow
the combined query protocol. Results reported as mAP [%].

Method
GW PAR AK BOT

QbE QbS QbE QbS QbE QbS QbE QbS

K
ey

p
o
in

t

Ours 66.73 66.57 89.03 88.80 67.82 38.68 45.01 8.48

Ours† 66.71 66.57 88.93 88.80 59.14 38.68 36.61 8.48
Ours∗ 75.84 75.74 90.61 90.66 - - - -
Riba et al. [18] 78.48 - 79.29 - 78.64 - 51.90 -
AED [2] 68.42 - 55.03 - 77.24 - 50.94 -
HED [2] 69.28 - 69.23 - 79.72 - 51.74 -

P
ro

je
ct

io
n

Ours 68.28 68.20 90.55 90.51 71.98 39.98 44.43 7.77

Ours† 68.17 68.20 90.59 90.51 63.25 39.98 37.15 7.77
Ours∗ 73.61 73.21 92.77 92.80 - - - -
Riba et al. [18] 73.03 - 79.95 - 79.55 - 52.83 -
AED [2] 60.83 - 63.35 - 76.02 - 50.49 -
HED [2] 66.71 - 72.82 - 81.06 - 51.69 -

Ensemble [26] 70.56 - 79.38 - 84.77 - 68.88 -

(∗) extended training data (†) no query combination

query graphs, if an accurate PHOC estimation is possible. In order to show this
characteristics, we report results under a changed combined protocol in row two
of Tab. 4. Instead of taking the minimal distance to all query instances, we do
not combine queries, but average over the average precisions for each keyword.
This accounts for the different query counts per keyword under the individual
protocol. It can be concluded that the performance loss of our model is a result of
the change of query distributions. On the other hand, our model does not benefit
from combing query instances in case of GW and PAR. This result underlines the
potential power of the proposed model, as performances are expected to strongly
decrease for the learning-free methods without query combination. As gathering
multiple instances of a keyword is a high demand, we advocate to report results
under an individual protocol.

While query-by-string is out of scope for all other graph-based methods, it
is easily possible with the proposed attribute approach. Our model is capable of
mapping graphs to an attribute space. This representation is more powerful than
a simple numeric vector embedding, as it encodes symbolic information. In case
of AK and BOT query-by-string performance is comparable poor, illustrating
that the model is not capable to learn the desired character models.

Image Domain

Tab. 5 compares our method to image-based word spotting systems from the
literature and illustrates the existing performance gap between structural and
statistical approaches. An interesting observation can be made with respect to
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Table 5: Image and graph-based query-by-example performances. All method
follow an individual query protocol. Results reported as mAP [%].

Method
GW PAR AK BOT

I II III I II III

G
ra

p
h Ours 77.99 95.48 59.92 - - 34.21 - -

Riba et al. [18] 76.92 79.95 64.42 - - 41.52 - -

Im
a
g
e

TPP-PHOCNet [28] 97.98 - 86.01 97.05 98.11 47.75 83.51 96.05
CNN & HMM [31] 85.06 94.57 - - - - - -
CVCDAG [15] - - 77.91 - - 75.77 - -
TAU [15] - - 71.11 - - 50.64 - -
QTOB [15] - - 82.15 - - 54.95 - -

the TPP-PHOCNet, which follows an attribute learning approach. While the
PHOCNet clearly outperforms the other models that reported results in the
competition based on the highest number of training samples, the performance
gain is smaller in case of the smallest training set. Especially in case of BOT, the
performance of the attribute-based approach degrades strongly, indicating the
high complexity of the attribute prediction task and its sensitivity to training
data. A similar observation can be made with respect to to the proposed graph
convolutional neural network, which performs comparable poor in these cases.

Overall, the attribute-based approach improves performances given enough
training data in the graph domain and contributes to closing the performance
gap between the graph and image domain. In case of PAR, we achieve compa-
rable performances to the image domain motivating the further exploration of
learning-based approaches for structural pattern recognition.

5 Conclusions

In this work, we propose a graph convolutional neural network for predicting
attribute representations from handwritten word graphs. By mapping a graph
to an attribute vector space, the word spotting problem can be solved with the
help of a simple vector distance. We are able to show that a fully supervised
learning approach is feasible in the graph domain and achieves considerable
performance gains when sufficient training data is available. As performance
depends on the availability of labeled samples, the exploration of techniques
such as synthetic data, semi-supervised or transfer learning is a future line of
research. In these limited data cases, methods potentially increasingly benefit
from the high representational power of graphs. Our work constitutes a step
towards bridging the performance gap between structural and statistical pattern
recognition approaches for word spotting. A learning-based unification of both
paradigms offers the potential to combine the representational power of graphs
with the benefits from statistical approaches.
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21. Rusiñol, M., Aldavert, D., Toledo, R., Lladós, J.: Efficient segmentation-free key-
word spotting in historical document collections. Pattern Recognition 48(2), 545
– 555 (2015)

22. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Li, F.: ImageNet large scale
visual recognition challenge. Int. J. of Computer Vision 115(3), 211–252 (2015)

23. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2009)

24. Stauffer, M., Fischer, A., Riesen, K.: A novel graph database for handwritten word
images. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R.C.
(eds.) Proc. of the Int. Workshop on Structural, Syntactic, and Statistical Pattern
Recognition. pp. 553–563. Mérida, Mexico (2016)

25. Stauffer, M., Fischer, A., Riesen, K.: Graph-based keyword spotting in histori-
cal documents using context-aware hausdorff edit distance. In: Proc. of the Int.
Workshop on Document Analysis Systems. pp. 49–54. Vienna, Austria (2018)

26. Stauffer, M., Fischer, A., Riesen, K.: Keyword spotting in historical handwritten
documents based on graph matching. Pattern Recognition 81, 240–253 (2018)

27. Sudholt, S., Fink, G.A.: PHOCNet: A deep convolutional neural network for word
spotting in handwritten documents. In: Proc. of the Int. Conf. on Frontiers in
Handwriting Recognition. pp. 277–282. Shenzhen, China (2016)

28. Sudholt, S., Fink, G.A.: Attribute CNNs for word spotting in handwritten docu-
ments. Int. Journal on Document Analysis and Recognition 21(3), 199–218 (2018)

29. Vats, E., Hast, A., Fornés, A.: Training-free and segmentation-free word spotting
using feature matching and query expansion. In: Proc. of the Int. Conf. on Docu-
ment Analysis and Recognition. pp. 1294–1299. Sydney, NSW, Australia (2019)

30. Wang, P., Eglin, V., Garcia, C., Largeron, C., Lladós, J., Fornés, A.: A novel
learning-free word spotting approach based on graph representation. In: Proc. of
the Int. Workshop on Document Analysis Systems. pp. 207–211. Tours, France
(2014)

31. Wicht, B., Fischer, A., Hennebert, J.: Deep learning features for handwritten key-
word spotting. In: Proc. of the Int. Conf. on Pattern Recognition. pp. 3434–3439.
Cancún, Mexico (2016)

32. Wilkinson, T., Lindström, J., Brun, A.: Neural Ctrl-F: Segmentation-free query-
by-string word spotting in handwritten manuscript collections. In: Proc. of the Int.
Conf. on Computer Vision. pp. 4443–4452. Venice, Italy (2017)

33. Wolf, F., Fink, G.A.: Annotation-free learning of deep representations for word
spotting using synthetic data and self labeling. In: Proc. of the Int. Workshop on
Document Analysis Systems. pp. 293–308. Wuhan, China (2020)

34. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey
on graph neural networks. IEEE Trans. Neural Networks Learning Systems 32(1),
4–24 (2021)


