
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329066859

Seamless GPU Evaluation of Smart Expression Templates

Conference Paper · July 2018

DOI: 10.1109/HPCS.2018.00045

CITATIONS

0
READS

15

3 authors, including:

Some of the authors of this publication are also working on these related projects:

High Performance Matrix Library (ETL) View project

Institute of Complex Systems View project

Baptiste Wicht

Université de Fribourg

15 PUBLICATIONS 34 CITATIONS

SEE PROFILE

Jean Hennebert

University of Applied Sciences and Arts Western Switzerland

139 PUBLICATIONS 1,427 CITATIONS

SEE PROFILE

All content following this page was uploaded by Baptiste Wicht on 27 November 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/329066859_Seamless_GPU_Evaluation_of_Smart_Expression_Templates?enrichId=rgreq-7f63459ac3d258c9cc70f50c78914317-XXX&enrichSource=Y292ZXJQYWdlOzMyOTA2Njg1OTtBUzo2OTc1MjI1NzQwNjk3NjNAMTU0MzMxMzc0OTY4NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/329066859_Seamless_GPU_Evaluation_of_Smart_Expression_Templates?enrichId=rgreq-7f63459ac3d258c9cc70f50c78914317-XXX&enrichSource=Y292ZXJQYWdlOzMyOTA2Njg1OTtBUzo2OTc1MjI1NzQwNjk3NjNAMTU0MzMxMzc0OTY4NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/High-Performance-Matrix-Library-ETL?enrichId=rgreq-7f63459ac3d258c9cc70f50c78914317-XXX&enrichSource=Y292ZXJQYWdlOzMyOTA2Njg1OTtBUzo2OTc1MjI1NzQwNjk3NjNAMTU0MzMxMzc0OTY4NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Institute-of-Complex-Systems?enrichId=rgreq-7f63459ac3d258c9cc70f50c78914317-XXX&enrichSource=Y292ZXJQYWdlOzMyOTA2Njg1OTtBUzo2OTc1MjI1NzQwNjk3NjNAMTU0MzMxMzc0OTY4NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7f63459ac3d258c9cc70f50c78914317-XXX&enrichSource=Y292ZXJQYWdlOzMyOTA2Njg1OTtBUzo2OTc1MjI1NzQwNjk3NjNAMTU0MzMxMzc0OTY4NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Baptiste_Wicht?enrichId=rgreq-7f63459ac3d258c9cc70f50c78914317-XXX&enrichSource=Y292ZXJQYWdlOzMyOTA2Njg1OTtBUzo2OTc1MjI1NzQwNjk3NjNAMTU0MzMxMzc0OTY4NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Baptiste_Wicht?enrichId=rgreq-7f63459ac3d258c9cc70f50c78914317-XXX&enrichSource=Y292ZXJQYWdlOzMyOTA2Njg1OTtBUzo2OTc1MjI1NzQwNjk3NjNAMTU0MzMxMzc0OTY4NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_de_Fribourg?enrichId=rgreq-7f63459ac3d258c9cc70f50c78914317-XXX&enrichSource=Y292ZXJQYWdlOzMyOTA2Njg1OTtBUzo2OTc1MjI1NzQwNjk3NjNAMTU0MzMxMzc0OTY4NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Baptiste_Wicht?enrichId=rgreq-7f63459ac3d258c9cc70f50c78914317-XXX&enrichSource=Y292ZXJQYWdlOzMyOTA2Njg1OTtBUzo2OTc1MjI1NzQwNjk3NjNAMTU0MzMxMzc0OTY4NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean_Hennebert?enrichId=rgreq-7f63459ac3d258c9cc70f50c78914317-XXX&enrichSource=Y292ZXJQYWdlOzMyOTA2Njg1OTtBUzo2OTc1MjI1NzQwNjk3NjNAMTU0MzMxMzc0OTY4NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean_Hennebert?enrichId=rgreq-7f63459ac3d258c9cc70f50c78914317-XXX&enrichSource=Y292ZXJQYWdlOzMyOTA2Njg1OTtBUzo2OTc1MjI1NzQwNjk3NjNAMTU0MzMxMzc0OTY4NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Applied_Sciences_and_Arts_Western_Switzerland?enrichId=rgreq-7f63459ac3d258c9cc70f50c78914317-XXX&enrichSource=Y292ZXJQYWdlOzMyOTA2Njg1OTtBUzo2OTc1MjI1NzQwNjk3NjNAMTU0MzMxMzc0OTY4NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean_Hennebert?enrichId=rgreq-7f63459ac3d258c9cc70f50c78914317-XXX&enrichSource=Y292ZXJQYWdlOzMyOTA2Njg1OTtBUzo2OTc1MjI1NzQwNjk3NjNAMTU0MzMxMzc0OTY4NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Baptiste_Wicht?enrichId=rgreq-7f63459ac3d258c9cc70f50c78914317-XXX&enrichSource=Y292ZXJQYWdlOzMyOTA2Njg1OTtBUzo2OTc1MjI1NzQwNjk3NjNAMTU0MzMxMzc0OTY4NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Seamless GPU Evaluation of Smart Expression
Templates

Baptiste Wicht∗, Andreas Fischer†, Jean Hennebert‡
University of Fribourg, Switzerland

HES-SO, University of Applied Science of Western Switzerland

Email: ∗baptiste.wicht@unifr.ch, †andreas.fischer@unifr.ch, ‡jean.hennebert@unifr.ch

Abstract—Expression Templates is a technique allowing to
write linear algebra code in C++ the same way it would be written
on paper. It is also used extensively as a performance optimization
technique, especially as the Smart Expression Templates form
which allows for even higher performance. It has proved to
be very efficient for computation on a Central Processing Unit
(CPU). However, due to its design, it is not easily implemented
on a Graphics Processing Unit (GPU). In this paper, we devise
a set of techniques to allow the seamless evaluation of Smart
Expression Templates on the GPU. The execution is transparent
for the user of the library which still uses the matrices and vector
as if it was on the CPU and profits from the performance and
higher multi-processing capabilities of the GPU. We also show
that the GPU version is significantly faster than the CPU version,
without any change to the code of the user.

Index Terms—General-Purpose computation on Graphics Pro-
cessing Units (GPGPU); High Performance Computing; Pro-
gramming Languages;

I. INTRODUCTION

Smart Expression Templates is a technique allowing to
write matrix computation code in a very short and very clear
syntax. Moreover, this technique also allows for very efficient
evaluation of these complex expressions and is able to perform
complex optimization of expressions without changing the
user code. There exists many expression templates imple-
mentations [1]. However, most of these implementations are
mainly focusing on CPU. These days, GPUs are used more
and more and are beginning to be the de facto standard for fast
computation, especially in machine learning [2]. It has been
shown that due to their higher multi-processing capabilities,
GPUs are able to significantly outperform CPUs for many
tasks [3]–[6]. However, rewriting an existing application to
profit from this extra performance is not free [7] and the
learning curve may be high [8]. Therefore, it is very important
to provide libraries that are able to take advantages of this
advanced capabilities without adding the extra complexity to
the user, for instance with Smart Expression Templates.

In an ideal GPU Smart Expression Templates implementa-
tion, the code written by the user should not change if the code
is executed on CPU or GPU. The code should remain exactly
the same and the implementation itself should decide where to
execute the code, a property we call seamless GPU evaluation.
In order to be as convenient as possible, the user code should
also be built with the same compiler regardless of the target

machine. On the other hand, this simplicity should still allow
the compiled code to take maximum advantage of the available
capabilities of the target machine. Therefore, the code should
perform close to the maximum throughput of either the CPU
or the GPU. Finally, the framework should also be designed to
be able to take advantage of future hardware implementations.

In this paper, we propose an approach to build a simple, yet
powerful, C++ GPU Smart Expression Templates library. Our
approach is completely seamless, the code remains exactly the
same whether it runs on CPU or GPU. The availability of GPU
libraries and the framework options are set through regular
compiler options (or macros in an header file). Moreover, it
is also possible to compile for both sets of platforms at the
same time and choose, at runtime, to disable the GPU for some
operations or to force it. The proposed framework was heavily
optimized for both CPU and GPU execution. Our approach
is made available on the form of a fully-fledged header-only
Smart Expression Templates C++ library.

The rest of this paper is organized as follows. Section II
provides a detailed explanation of the Expression Templates
technique. Next, the related work on GPU Smart Expression
Templates is listed in Section III. Section IV defines the
architecture of the proposed approach, while its performance
is evaluated and discussed in Section V. Finally, conclusions
are drawn and possible future work is outlined in Section VI.

II. EXPRESSION TEMPLATES

In High Performance Computing applications, not only the
speed of the program is important but several factors are
of equivalent importance [9]. It is necessary to maintain the
intent of the code and the extensibility of the code to new
technologies. Using a Domain Specific Embedded Language
(DSEL) helps improving these factors. In C++, Expression
Templates is a very powerful technique that is able to provide
a DSEL and that is able to provide a good solution to these
factors and execute very efficiently.

Generally, when one wants to write mathematical
expressions in C++ close to its mathematical form, one
relies on operator overloading. Operators are defined
for matrices and vectors and they return a new temporary
representing the result of the operation. The first problem with
this approach is the creation of a large number of temporaries.

Fig. 1: Expression tree for y = 0.5 ∗ x + 1.02 ∗ y + z / 2.0

For instance, the expression

y = 0 . 5 ∗ x + 1 . 0 2 ∗ y + z / 2 . 0

would result in the creation of five temporaries. The second
problem is that complete execution of the entire expression
will need several pass through each matrix or vector. This is
highly inefficient on the CPU. To solve these two problems,
Expression Templates have been originally introduced for
C++ [10], [11]. The user code remains the same as with
the naive operator overloading technique, as can be seen
in the previous expression example. Instead of relying on
temporaries, an expression type is created to represent the
complete expression. The expression type is constructed at
compilation time following the same concept as the Abstract
Syntax Tree of the programming language. Figure 1 shows the
expression tree for the code from the previous expression. The
type of the expression is outlined in Figure 2. This complex
expression can be evaluated in a single loop rather than using
several sub computations. It could be evaluated as follows

f o r (s i z e t i = 0 ; i < s i z e (y) ; ++ i){
y [i] = 0 . 5 ∗ x [i] + 1 . 0 2 ∗ y [i] + z [i] / 2 . 0

}

The complete evaluation is done without using a single tem-
porary. With this technique, expressions can be executed as
efficiently as the equivalent loop in plain C++ code, yet offer
significantly better code. Moreover, advanced optimizations
such as vectorization and parallelization can also be performed
in order to improve the evaluation time. Finally, they can
also be used to implement other features such as automatic
differentiation [12] or solving differential equations [13].

Nevertheless, there are issues with Expression Templates.
Indeed, although they are highly efficient at the computation
of element-wise expressions, they are not nearly as efficient
for higher-level operations. For example, they are far from
optimal at computing matrix-matrix multiplication operations.
Although this operation is easy to write in element-wise form,
it is well-known to be very complicated to optimize [14], [15].

b i n a r y<p lus ,
b i n a r y<mul ,

s c a l a r ,
m a t r i x&

>,
b i n a r y<p lus ,

b i n a r y<mul ,
s c a l a r ,
m a t r i x&

>,
b i n a r y<div ,

m a t r i x &,
s c a l a r >

>
>

>

Fig. 2: Deducted type for y = 0.5 ∗ x + 1.02 ∗ y + z / 2.0

While Expression Templates are made to avoid the creation
of temporaries, Smart Expression Templates are introducing
temporaries when this can improve the efficiency of the ex-
pression [16]. For instance, a matrix-matrix multiplication will
be computed into a temporary and both of its operand will be
evaluated into a temporary if they are expressions. This intro-
duction of temporaries allows the use of advanced kernels for
the complex operations such as the matrix-matrix operations.
Basic Linear Algebra Subprograms (BLAS) libraries [17] are
generally used for this purpose [18]. This was shown to per-
form significantly faster than standard Expression Templates
library [1]. Another advantage is that the expressions can be
restructured, to be executed in a more optimized way if there
is any. Another problem with the classic Expression Templates
way is the poor handling of aliasing [19], [20], that is solved
by the analysis of the complete expression types. Complete
analysis of the expression type may also fix some of the other
problems of the Expression Templates [21]. The code for the
user of the library remains the same, but the execution can
be significantly faster when using these concepts than when
using the classic Expression Templates way.

III. RELATED WORK

Although extensively used for high-performance computing
on CPU, execution of Smart Expression Templates on GPUs
has only seen few applications.

Wiemann et al. used a technique in which each part of the
expression tree is executing a CUDA kernel [22]. However,
their proposition is not seamless for the user which must
indicates in its code where the data resides. Moreover, CUDA
kernels are executed for each sub part of the expression tree,
which may not be as efficient as possible.

Chen et al. proposed a technique for offloading the execu-
tion of C++ Expression templates to GPU [23]. The CUDA
kernels are generated at runtime using Expression Templates
and are compiled using Just-In-Time (JIT) compilation tech-
nique. Their technique has the advantage of generating full
CUDA kernels for each expression. Nevertheless, it needs

access to a JIT compiler which may not be available on each
production machine. It also incurs an overhead for compiling
the kernels. And it needs access to the hard disk to write
the temporary CUDA kernels. A similar approach was taken
into the design of the VexCL library [24] and the ViennaCL
library [25]. The kernels are also generated at runtime and
compiled before being executed to execute the Expression
Templates. However, the developer has to choose between
CPU and GPU vectors and combination between them is
not possible. Finally, this also incurs some overhead for the
generation and compilation of the kernels.

Breglia et al. proposed an approach in which the ker-
nel is generated at compile-time using template meta-
programming [26]. This technique has the advantage of gener-
ating full kernels within the compiler. However, their approach
still requires the user to choose between CPU and GPU for
each matrix and vector. Moreover, it also requires a CUDA
compiler to be available.

In this paper, we propose a seamless approach for Smart
Expression Templates in which matrices can be held both in
GPU memory and CPU memory. This duality is completely
transparent for the user. The framework is responsible for
transitions between the two memory spaces. Operations on
them can be executed either on CPU or on GPU, depending
on the operation and the availability of compute kernels.
Moreover, our approach does not require any recompilation
or runtime compilation of CUDA kernels.

IV. ARCHITECTURE

The proposed architecture is very similar to other CPU
Smart Expression Templates implementations, except that ex-
ecution can also be done on GPU, when the necessary support
is available. All the code from the user is executed on the host
and each expression can be evaluated either on the host or on
the GPU device, if possible. The form of execution is decided
by the framework, either at compilation time or at runtime
depending on the configuration of the library. Currently, the
decision to choose the CPU or GPU implementation is simply
based upon the availability of a GPU. If a GPU is available, all
supported operations are evaluated on the GPU. The decision
from the framework can be overridden by the user. While the
CPU implementation is parallelized, the GPU implementation
does not yet take advantage of CUDA threads (or streams).

The proposed library has been designed for CUDA [27],
[28]. CUDA is the compute platform for NVIDIA graphics
cards. This platform allows developers to use a CUDA GPU
to perform general purpose processing, or General-Purpose
Computing on GPU (GPGPU). CUDA makes it easy to
execute some parts of the code on the GPU in the form of
CUDA kernels. The compilation of CUDA kernels require
access to a CUDA compiler.

In order to have a seamless experience between CPU and
GPU, each matrix or vector from the library has two memory
spaces. The first is the regular CPU data to hold the memory of
the container. The second is the GPU data, only allocated when
a matrix is used on the GPU. Some specific GPU temporaries

do not allocate any CPU memory. The algorithms inside the
library are responsible for synchronizing the two data spaces
when necessary. For this, each data space is tagged with a
boolean indicating if it is up-to-date or not. At every point
in time, there must be at least one data space that is up-to-
date. When it is required, the system performs a full copy in
one direction and updates the state of the boolean flags. These
copies are synchronous and require a device synchronization
(See Section IV-C). When all the operations are executed on
GPU, memory copies are only performed before the operations
and at the end to gather the result on CPU.

Another, simpler, solution would have been to use the
CUDA Unified Memory Access (UMA) feature [29]. This
relatively new feature of CUDA allows to use a single virtual
memory space for both the CPU and the GPU. The CUDA
runtime is responsible for synchronization between the un-
derlying CPU memory and the GPU memory. However, it
was shown that this was not as efficient as it could be if all
the transfers were done manually correctly [30]. Therefore,
the basic technique of using two memory pointers for each
matrix and manual synchronization was used for maximum
performance.

A. Complex Kernels

Our library supports a wide range of complex operations.
For instance, it has support for convolutions, matrix-matrix
multiplications and Fast-Fourrier Transforms (FFTs). It also
has support for other various machine learning operations.
These operations are relatively complex to optimize and they
need optimized kernels to be fast enough. For all these kinds of
high-level kernels, the Smart Expression Templates technique
is followed. The inputs to the operation are evaluated into a
temporary if necessary, i.e. if it is an expression. Then, the
operation is entirely computed at once into a temporary. It
is then treated as a temporary matrix that can be used in
expressions like any other matrix. If it is directly assigned to a
container (such as C = A ∗B), the temporary is avoided and
the result is directly computed into the left-hand-side matrix.
This works as if the operation was done on the CPU, except
that it is ensuring that the GPU data is up-to-date and then
invalidating the CPU data after the operation.

There exists highly-optimized libraries implementing these
operations. The proposed approach directly use the NVIDIA
libraries that are available with CUDA:

• NVIDIA CUBLAS for matrix-matrix multiplication and
other linear algebra problems [31]

• NVIDIA CUDNN for convolutions and machine learning
operations [32]

• NVIDIA CUFFT for FFT computations
• NVIDIA CURAND for random number generation
These libraries are already optimized for many types of

NVIDIA graphics card and often provide state of the art
performance for the necessary operations. Using these libraries
also has the advantage of not requiring a CUDA compiler.
One thing proved very important when using these libraries.
They all need to perform some initialization steps, the result

of which is stored in a so-called handle. It was shown that the
cost of the initialization is significant. Therefore, the handle
is created only once and shared for each call to a routine of
the library and only released at the very end of the application
life. If necessary, this optimization can be disabled by the user.

B. Serial expressions
For a CPU Expression Templates library, serial expressions

are executed element by element and the entire expression
is evaluated at each step, as shown in Section II. Moreover,
the expression will probably be vectorized and computed
using several threads. The important concept remains that the
expression is evaluated at once.

When implementing a GPU Expression Templates library, a
different approach need to be taken. Indeed, since the NVIDIA
CUDA compiler only supports a subset of template program-
ming on which Expression Templates heavily relies, it is not
possible to realize this in the same way. Therefore, it is not
possible to generate CUDA kernels by metaprogramming. This
would also require access to a CUDA compiler which may not
be ideal. One solution is to generate the code of the kernel in
a character string using template metaprogramming and then
compile this code at runtime using the NVIDIA JIT compiler,
something already done in some other approaches [23]–[25].
However, this requires access to the compiler and to the
hard disk for compilation. Since our approach focus on being
as seamless as possible, this is not a satisfying solution.
Therefore, the proposed approach is based on the classic way
of writing expressions, using temporaries. Each sub expression
of the expression tree is able to compute its GPU result in a
temporary (or directly inside the final result). This makes each
sub expression works as if it was a complex expression. This
is the similar to the idea proposed in [22]. Therefore, the ex-
pression y = 0.5 ∗ x + 1.02 ∗ y + z / 2.0 will be executed
using several sub expressions:
t 1 = 0 . 5 ∗ x
t 2 = 1 . 0 2 ∗ y
t 3 = t 1 + t 2
t 4 = z / 2 . 0
y = t 3 + t 4

This will result in a single kernel call for each sub expres-
sion (each line). Since not all of these kernels are available
in NVIDIA libraries, they have been implemented in CUDA
in a complementary GPU library. While this kind of approach
would have poor performance when working on a CPU, this is
performing very well on GPU. Indeed, this still executes with
a good occupancy on the large number of cores of the GPU
and since the memory is significantly faster than on the CPU,
it has less impact on the overall performance. Moreover, with
the optimizations proposed in Section IV-C and Section IV-D,
this approach is able to reach excellent performance. When the
library is running in CPU mode, complex serial expression are
still executed in one pass.

C. Advanced patterns
Unfortunately, the approach outlined in the previous section

is not always optimal in practice. Although it is fairly easy and

allows to compute all expressions solely on GPU, it requires
the launch of many CUDA kernels. In general, it takes around
10 to 100 microseconds to launch a kernel [33]. For expensive
computations such as the matrix-matrix multiplication, this
overhead is negligible. However, for computations on small
vectors and matrices, the launch of a kernel represents a
very large overhead. Therefore, it is important to reduce the
number of kernel invocations for serial expressions. This cost
can be reduced when kernels are launched asynchronously
since one kernel can be launched while the previous one
is still executing, amortizing the cost of kernel invocation.
Nevertheless, it is not always possible to queue many kernels
without synchronization. As soon as some data is necessary
on the CPU, synchronization will be necessary, waiting for
the complete queue of kernels to finish executing. Moreover,
allocations also results in synchronization of the device.

Since it is not possible to create a kernel for each possible
expressions, the proposed approach defines a few higher-
level CUDA operations for some often used mathematical
expressions. For instance, the following expressions are all
evaluated with a single GPU kernel call:

• z = α ∗ x ∗ y
• z = α ∗ x+ β ∗ y
• z = (α ∗ x)/(β + y)
• z = (α+ x)/(β + y)
• z = (x+ α)/(y + β)

All the selected advanced patterns are detected at compi-
lation time and their evaluation is directly optimized. These
patterns are also detected in sub expressions, thus reducing the
overall number of kernel calls by a significant factor. This op-
timization has no runtime overhead. However, it does increase
the compilation time of complex expressions. Nevertheless,
this can greatly reduce the number of kernels that are being run
in the application and improve the GPU occupancy. Another
advantage of this approach is that this will reduce the number
of temporaries necessary for the computations of complex
expressions (see Section IV-D to see why it is important).

The library can easily be extended by adding more complex
patterns. If one expression is detected to be executed in a sub-
optimal fashion, writing the new kernel in CUDA is fairly
easy. It then needs to be detected using meta-programming.
Once this is done, the new pattern will always be executed
using the new optimized kernel.

D. Temporaries

Since expressions are sometimes evaluated in several parts,
temporaries will be necessary to hold the results. These
temporaries need to be allocated from GPU memory. It is very
important to reduce the number of temporaries that are being
created. The first reason is that allocation and deallocation will
take some time. And, more importantly, they will result in a
full device synchronization, waiting for all the current kernels
in the queue to complete. This means that the next kernel
call after the synchronization will have a high overhead since
it will be loaded while no kernel is running. Therefore, the
number of allocations must be reduced to a minimum.

In our approach, the numbers of temporaries is reduced
in several ways. First, temporaries are never created for
matrices and vectors which have their own GPU memory.
Then, the GPU memory of the result (the left-hand-side of the
expression) is propagated through the complete expression to
be used whenever possible. Moreover, temporaries are often
reused as the result of the next expression during evaluation.
Finally, since it is not possible to compute all expression
without temporaries, a GPU memory pool is used to avoid
allocations and deallocations when possible. The GPU pool
has a finite number of entries and a maximum size. While
reasonable default values are provided, these two parameters
can be configured by the user of the library in order to optimize
for specific workload and hardware resources. Due to its finite
size, the pool can be implemented in an efficient manner and
therefore has a very low overhead. Experiments have shown
that in the case of most workloads, a small pool was enough
to hold all temporaries necessary for the complete program.
Indeed, most workloads are working on matrices and vectors
of similar sizes and the same expressions are executed many
times, making a simple pool ideal.

V. PERFORMANCE

The efficiency of the proposed approach has been evalu-
ated by comparing the GPU performance against the CPU
performance. The library itself was heavily optimized for
CPU as well as GPU. The code is exactly the same for both
versions, only the compilation options are different in order
to enable the GPU capabilities. All the tests are performed
on containers in single-precision floating point elements. The
tests are performed as follows. Each expression is evaluated
many times, to account for a total of two seconds of runtime.
A device synchronization is performed just before measuring
the GPU total time to ensure that all kernels have finished their
work. The average evaluation time is reported as final metric.

All the results presented in this section have been computed
on a Gentoo Linux machine, with 12 GB of RAM, on an
Intel R© Core

TM
i7-2600, running at 3.4 GHz (CPU frequency

scaling has been disabled for the purpose of these tests). Both
SSE and AVX vectorization extensions were enabled on the
machine. The BLAS operations are executed with the Intel R©

Math Kernel Library (MKL), in parallel mode. The GPU used
for the benchmarks is a NVIDIA Geforce R© GTX 960 card.
CUDA 9 and CUDNN 5.0.5 are used. The benchmark has
been compiled with GCC 7.1.

A. Simple expression

yy = 3 . 3 f ∗ x + y ;

The first expression that is evaluated is the well-known axpy
operation. This operation is used repeatedly in many fields.

Figure 3 shows the performance of this operation for both
the CPU and the GPU. For 10’000 elements and less, the
CPU version is significantly faster than the GPU
version. Interestingly, for small number of elements, the GPU
time remains the same. This shows that the cost of launching

10
0 1K 10

K
10

0K 1M 10
M

10
0M

10−1

100

101

102

103

104

105

Elements

Ti
m

e
[u
s]

saxpy

CPU
GPU

Fig. 3: Performance of saxpy in CPU-mode and GPU-mode
for different vector size.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

101

102

103

104

Dimension

Ti
m

e
[u
s]

sgemm

CPU
GPU

Fig. 4: Performance of sgemm in CPU-mode and GPU-mode
for different vector size.

the kernel is higher than the execution time of the kernel. Start-
ing from 100’000 elements, the GPU version is significantly
faster, up to one order of magnitude faster for 100 millions
elements.

B. Matrix multiplication

YY = X ∗ Y;

The next expression that is evaluated is the matrix-matrix
multiplication operation. This operation is one of the most
important operation for linear algebra and machine learning.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

102

103

104

Dimension

Ti
m

e
[u
s]

Complex expression

CPU
GPU

Fig. 5: Performance of a complex expression in CPU-mode
and GPU-mode for different vector size.

Figure 4 presents the result of this test for square matrix-
matrix multiplication with increasing dimensions. Even for
a multiplication of matrices of 100x100 dimensions, the
GPU version is already slightly faster and becomes
significantly faster than the CPU version as the size
increases. For matrices of size 1000x1000, the GPU version
is around one order of magnitude faster than the CPU version
and the scaling is better, indicating that the speedup should be
even better for larger matrices.

C. Complex expression

YY = X ∗ (X ∗ 1 . 2 F + Y) ∗ (−1.2F ∗ Y − X) ;

The third expression is a complex expression with several
matrix-matrix multiplications and several serial expressions.

Figure 5 presents the result of this test for square matri-
ces with increasing dimensions. Except for matrices of size
100x100, the GPU version is always faster than the
CPU version. For the bigger matrices, the speedup is
more than one order of magnitude. Nevertheless, the gains are
first smaller than they were with a single matrix multiplication
for smaller matrices. Once the matrix are becoming bigger, the
speedup is becoming bigger as well, amortizing the costs of
the memory transfers and the kernel calls.

D. Dense Neural Network

O1 = s igmoid (b i a s a d d 2 d (I1 ∗ W1, B1)) ;
O2 = s igmoid (b i a s a d d 2 d (O1 ∗ W2, B2)) ;
O3 = s igmoid (b i a s a d d 2 d (O2 ∗ W3, B3)) ;

The next benchmark is evaluating the performance of the
forward pass of a fully-connected three-layer neural network.
The inputs are 784-dimensional, the two first layers have
outputs of size 1000 and the last layer has an output of size

10 20 30 40 50 60 70 80 90 10
0

103

104

105

Number of inputs

Ti
m

e
[u
s]

Dense Neural Network

CPU
GPU

Fig. 6: Performance of the forward pass of a dense neural
network in CPU-mode and GPU-mode for different number
of inputs.

10. This consists of three matrix-matrix multiplications, three
additions of biases and three element-wise logistic sigmoid
computations.

Figure 6 presents the result of this test for varying number
of inputs. In that test, even for 10 inputs at a time, the
GPU version is significantly faster and the scaling is
much better than the CPU version. For the maximum
number of inputs at a time, the GPU version is more than
two orders of magnitude faster than the CPU version. In that
case, some of the speedup is coming from the matrix-matrix
multiplication as before, but more speedup is coming from
the cache-inefficient bias computation and the very expensive
logistic sigmoid computation.

E. Convolutional Neural Network

O1 = r e l u (b i a s a d d 4 d (
c o n v o l u t i o n f o r w a r d <1 ,1 ,1 ,1>(I1 , W1) , B1)) ;

O2 = max pool forward <2, 2>(O1) ;

O3 = r e l u (b i a s a d d 4 d (
c o n v o l u t i o n f o r w a r d <1 ,1 ,1 ,1>(O2 , W2) , B2)) ;

O4 = max pool forward <2, 2>(O3) ;

O5 = r e l u (b i a s a d d 2 d (
r e s h a p e (O4 , N, 32 ∗ 8 ∗ 8) ∗ W3, B3)) ;

O6 = s igmoid (b i a s a d d 2 d (O5 ∗ W4, B4)) ;

The last benchmark is evaluating the performance of the
forward pass of a Convolutional Neural Network (CNN). The
inputs of the network are color images of 32x32 size. The
first convolutional layer has 16 filters of 3x3 size with padding
and the second convolutional layer has 32 filters of the same
configuration. Both convolutional layers are followed by a max
pooling layer with 2x2 kernal. Finally, two dense layers are
used, the first with 1000 hidden units and the last one with 10

10 20 30 40 50 60 70 80 90 10
0

103

104

Number of inputs

Ti
m

e
[u
s]

Convolutional Neural Network

CPU
GPU

Fig. 7: Performance of the forward pass of a Convolutional
Neural Network in CPU-mode and GPU-mode for different
number of inputs.

hidden units. All layers use the Rectified Linear Unit (ReLU)
function, except for the last layer, using the softmax function.

The results are presented in Figure 7 for various number
of inputs. In that test, the GPU version is significantly
faster than the CPU version. For the maximum number
of inputs, the GPU is more than five times faster. For a
small network and small inputs and considering that the CPU
implementation was also heavily optimized, this is an expected
result. In practice, it can be seen that the speedup for larger
networks is larger.

VI. CONCLUSION

In this paper, we presented a novel approach for imple-
menting a GPU expression templates library in a completely
seamless way. This approach can be used either on CPU or
GPU while always using the full capabilities of the platform,
without changing a single line of code. It was shown that the
execution of the code on GPU was significantly faster than on
CPU, at the cost of a simple recompilation of the code. We
believe that GPU Smart Expression Templates offer a very
effective way to give the user the full capabilities of the GPU
while not adding in complexity to the code.

In the proposed approach, there is still work to be done. The
first important task would be to compare the performance of
our approach with the performance of other GPU Expression
Templates frameworks. Then, some expressions are still only
available on CPU. Although this is completely transparent
for the user of the library, it means that the data will go
back and forth between CPU and GPU, implying a large
overhead. Moreover, some operations are still using some
device synchronization, either implicitly or because some
operations need some extra memory whose allocation forces a

synchronization. Reducing as much as possible these points of
synchronization could also improve the overall performance.
Using CUDA streams could also speed up the library. In-
deed, using multiple streams would allow memory copies and
kernels to overlap execution. Moreover, when many small
kernels are run, making them run in different streams can
greatly improve the GPU utilization. However, this would
require an advanced dependency analysis of the expressions.
Advanced selection of GPU and CPU could also profit the
performance of the library. For instance, a small computation
could run on the CPU while the GPU is already busy. The
existing architecture could also be leveraged to provide new
features such as automatic differentiation [34]. Finally, the
library does not have any support for multi-GPU. Although,
it is able to run on a multi-GPU system, it will only use one
GPU. Simply allowing the user to choose the GPU for each
operation would be a step in the correct direction. In the case
of some very large matrices, it could also be interesting to
use multiple GPUs for a single operation, such as matrix-
matrix multiplication. This could be achieved using a multi-
GPU BLAS implementation [35].

APPENDIX A
IMPLEMENTATION

Our C++ approach to GPU Smart Expression Templates is
implemented on the form of a header-only library, Expression
Templates Library (ETL). This library supports vectors and
matrices with any number of dimensions. It supports element
wise operations such as adding two matrices together or the
Hadamard product. It also supports matrix and vector multi-
plications. Unary operations such as logarithms, exponentials,
trigonometric functions or square root are also available and
can be applied to matrices or expressions. Not only does the
library support single-precision and double-precision floating
point values, it also supports integers, booleans and complex
numbers. It also has support for various random number
generators and distributions. Since the library was built to
support machine learning experiments, it has extensive support
for operations such as various forms of convolutions, multi-
dimensional pooling, embeddings, batch operations or Fast
Fourrier Transform (FFTs).

The library was designed to take as much advantage as
possible of the available hardware. It has extensive support
for vectorization (with SSE and AVX) and parallelization.
When available, it uses the efficient BLAS implementation
for many routines. Nevertheless, optimized implementations
of operations on small matrices have been written when BLAS
was not as fast as possible. When efficient implementations are
not available, such as for the convolution operations, hand-
crafted vectorized implementations have been done. When

possible, optimized kernels are written for the most used
configuration such as some convolution or pooling kernel size.
Finally, as explained in this paper, it is able to take full
advantage of the GPU when it is available. All operations
of the library are always available in all compilation and
hardware configurations, optimized kernels are only used when
possible and when set by the user. Therefore, this library is
highly portable as long as a C++ compiler exists for the target
platform. Moreover, the library architecture makes it easy to
add new implementations of existing operations in order to
take advantage of better hardware or better software, without
ever changing a line of user code.

This library is available online1, free of charge, under the
terms of the MIT license. The complementary GPU library,
etl-gpu-blas, is also available online2, under the same terms.

REFERENCES

[1] K. Iglberger, G. Hager, J. Treibig, and U. Rüde, “High performance
smart expression template math libraries,” in High Performance Comput-
ing and Simulation (HPCS), 2012 International Conference on. IEEE,
2012, pp. 367–373.

[2] S. R. Upadhyaya, “Parallel approaches to machine learning: A compre-
hensive survey,” Journal of Parallel and Distributed Computing, vol. 73,
no. 3, pp. 284–292, 2013.

[3] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.
879–899, 2008.

[4] V. W. Lee, C. Kim, J. Chhugani et al., “Debunking the 100x GPU vs.
CPU myth: an evaluation of throughput computing on CPU and GPU,”
in ACM SIGARCH Computer Architecture News, vol. 38, no. 3. ACM,
2010, pp. 451–460.

[5] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE micro,
vol. 30, no. 2, 2010.

[6] D. B. Gajić, R. S. Stanković, and M. Radmanović, “A performance
analysis of computing the lu and the qr matrix decompositions on the
cpu and the gpu,” International Journal of Reasoning-based Intelligent
Systems, vol. 9, no. 2, pp. 114–121, 2017.

[7] A. Heinecke, “Accelerators in scientific computing is it worth the
effort?” in High Performance Computing and Simulation (HPCS), 2013
International Conference on. IEEE, 2013, pp. 504–504.

[8] Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, “Understanding the
impact of CUDA tuning techniques for Fermi,” in High Performance
Computing and Simulation (HPCS), 2011 International Conference on.
IEEE, 2011, pp. 631–639.

[9] J. Falcou, “Designing HPC libraries in the modern C++ world,” in
High Performance Computing & Simulation (HPCS), 2015 International
Conference on. IEEE, 2015, pp. 458–459.

[10] T. Veldhuizen, “Expression templates,” C++ Report, vol. 7, no. 5, pp.
26–31, 1995.

[11] D. Vandevoorde and N. M. Josuttis, C++ Templates. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[12] P. Aubert, N. Di Césaré, and O. Pironneau, “Automatic differentiation
in C++ using expression templates and. application to a flow control
problem,” Computing and Visualization in Science, vol. 3, no. 4, pp.
197–208, 2001.

[13] C. Pflaum, “Expression templates for partial differential equations,”
Computing and Visualization in Science, vol. 4, no. 1, pp. 1–8, 2001.

[14] G. Hager and G. Wellein, Introduction to high performance computing
for scientists and engineers. CRC Press, 2010.

[15] F. G. Van Zee and R. A. Van De Geijn, “BLIS: A framework for rapidly
instantiating BLAS functionality,” ACM Transactions on Mathematical
Software (TOMS), vol. 41, no. 3, p. 14, 2015.

[16] K. Iglberger, G. Hager, J. Treibig, and U. Rüde, “Expression templates
revisited: a performance analysis of current methodologies,” SIAM
Journal on Scientific Computing, vol. 34, no. 2, pp. C42–C69, 2012.

1https://github.com/wichtounet/etl
2https://github.com/wichtounet/etl-gpu-blas

[17] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic
linear algebra subprograms for fortran usage,” ACM Transactions on
Mathematical Software (TOMS), vol. 5, no. 3, pp. 308–323, 1979.

[18] K. Iglberger and U. Rüde, “The math library of the pe physics engine–
combining smart expression templates and BLAS efficiency,” Technical
report, Institut für Informatik, Friedrich-Alexander-Universität Erlangen-
Nürnberg, Tech. Rep., 2009.

[19] J. Härdtlein, A. Linke, and C. Pflaum, “Fast expression templates,”
Computational Science–ICCS 2005, pp. 153–179, 2005.

[20] J. Härdtlein, C. Pflaum, A. Linke, and C. H. Wolters, “Advanced
expression templates programming,” Computing and Visualization in
Science, vol. 13, no. 2, pp. 59–68, 2010.

[21] F. Bassetti, K. Davis, and D. Quinlan, “C++ expression template
performance issues in scientific computing,” in Proceedings of the First
Symposium on Parallel and Distributed Processing 1998. IEEE, 1998,
pp. 635–639.

[22] P. Wiemann, S. Wenger, and M. Magnor, “CUDA expression templates,”
2011.

[23] J. Chen, B. Joo, W. Watson III, and R. Edwards, “Automatic offloading
C++ expression templates to CUDA enabled GPUs,” in Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),
2012 IEEE 26th International. IEEE, 2012, pp. 2359–2368.

[24] D. Demidov, “VexCL: Vector expression template library for OpenCL,”
2012.

[25] P. Tillet, K. Rupp, and S. Selberherr, “An automatic OpenCL compute
kernel generator for basic linear algebra operations,” in Proceedings of
the 2012 Symposium on HPC. SCSI, 2012, p. 4.

[26] A. Breglia, A. Capozzoli, C. Curcio, and A. Liseno, “CUDA expression
templates for electromagnetic applications on GPUs [em programmer’s
notebook],” IEEE Antennas and Propagation Magazine, vol. 55, no. 5,
pp. 156–166, 2013.

[27] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, Mar.
2008. [Online]. Available: http://doi.acm.org/10.1145/1365490.1365500

[28] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to
General-Purpose GPU Programming, Portable Documents. Addison-
Wesley Professional, 2010.

[29] M. Harris, “Unified memory in CUDA 6,” GTC On-Demand, NVIDIA,
2013.

[30] R. Landaverde, T. Zhang, A. K. Coskun, and M. Herbordt, “An
investigation of unified memory access performance in CUDA,” in
High Performance Extreme Computing Conference (HPEC), 2014 IEEE.
IEEE, 2014, pp. 1–6.

[31] C. Nvidia, “CUBLAS library,” NVIDIA Corporation, Santa Clara,
California, vol. 15, no. 27, p. 31, 2017.

[32] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cudnn: Efficient primitives for
deep learning,” CoRR, vol. abs/1410.0759, 2014. [Online]. Available:
http://arxiv.org/abs/1410.0759

[33] W. Nicholas, “The CUDA handbook: A comprehensive guide to GPU
programming,” 2013.

[34] R. J. Hogan, “Fast reverse-mode automatic differentiation using expres-
sion templates in c++,” ACM Transactions on Mathematical Software
(TOMS), vol. 40, no. 4, p. 26, 2014.

[35] L. Wang, W. Wu, Z. Xu, J. Xiao, and Y. Yang, “Blasx: A high perfor-
mance level-3 BLAS library for heterogeneous multi-GPU computing,”
in Proceedings of the 2016 International Conference on Supercomputing.
ACM, 2016, p. 20.

View publication statsView publication stats

https://github.com/wichtounet/etl
https://github.com/wichtounet/etl-gpu-blas
http://doi.acm.org/10.1145/1365490.1365500
http://arxiv.org/abs/1410.0759
https://www.researchgate.net/publication/329066859

