
DLL: A Fast Deep Neural Network Library

Baptiste Wicht, Andreas Fischer, and Jean Hennebert

1 HES-SO, University of Applied Science of Western Switzerland
2 University of Fribourg, Switzerland

Abstract. Deep Learning Library (DLL) is a library for machine learn-
ing with deep neural networks that focuses on speed. It supports feed-
forward neural networks such as fully-connected Artificial Neural Net-
works (ANNs) and Convolutional Neural Networks (CNNs). Our main
motivation for this work was to propose and evaluate novel software
engineering strategies with potential to accelerate runtime for training
and inference. Such strategies are mostly independent of the underlying
deep learning algorithms. On three different datasets and for four dif-
ferent neural network models, we compared DLL to five popular deep
learning libraries. Experimentally, it is shown that the proposed library
is systematically and significantly faster on CPU and GPU. In terms of
classification performance, similar accuracies as the other libraries are
reported.

1 Introduction

In recent years, neural networks have regained a large deal of attention with
deep learning approaches. Such approaches rely on the use of bigger and deeper
networks, typically by using larger input dimensions to incorporate more con-
text and by increasing the number of layers to extract information at different
levels of granularity. The success of deep learning can be attributed mainly to
three factors. First, there is the advent of big data, meaning the availability of
larger quantities of training data. Second, new training strategies have been de-
veloped, such as unsupervised pre-training that allows deep networks to initialize
well and also to learn efficient feature extractors on large sets of unlabelled data.
Finally, better and faster hardware has helped dealing with the training of such
networks. Deep systems are currently improving the state-of-the-art in many do-
mains. Successful deep learning applications include near-human performance at
recognizing objects in images [27], generating detailed image descriptions [13],
adding colors to grayscale images [3] or generating highly-realistic images [7].
Moreover, the availability of free and easy-to-use libraries, as well as the avail-
ability of detailed implementation examples on public datasets, have contributed
to the widespread use of deep learning technologies.

From a practical point of view, an ideal deep learning library would be easy
to use, would offer fast training with good precision and would be versatile
with many configuration options. Reaching all these qualities is difficult as some
are contradictory. For this reason, we may observe large differences among the
available libraries.

In this work, we report on the development of a deep learning library where
we have clearly opted to focus on efficient computation, targeting specific net-
work models and algorithm configurations. While we are aware of these limi-
tations, we believe that the different optimizations we have implemented may
be of interest to the scientific community. Our library, Deep Learning Library
(DLL), is freely available, with source code3. This library can be used to train
standard Artificial Neural Networks (ANNs) and Convolutional Neural Networks
(CNNs) [18], as well as Restricted Boltzmann Machine (RBM) [26] and Convo-
lutional RBM (CRBM) [20].

While speedups are also observed on the GPU, the proposed library has
been especially optimized for speed on Central Processing Unit (CPU). Although
GPUs are beginning to be the de-facto standard for training deep networks, they
are not always available and some deployments are still targeting existing CPU
implementations. Moreover, inference is generally performed on CPU once the
network has been trained. Therefore, we believe that it remains important to be
able to both train neural networks in reasonable time and achieve fast inference
on CPUs. In this work, we also report successful optimizations on GPU, but we
have to note that advanced parallelization capabilities of GPU where already
well used [28], especially for convolutional networks [16].

Further to our speedup contributions, a special contribution of this paper is
a comprehensive evaluation against several important state of the art libraries.
The evaluation is carried on four models and three data sets. Comparisons are
performed in terms of computation time on both CPU and GPU. This shows
that state of the art libraries have still some large margin of optimization.

The rest of this paper is organized as follows. The DLL library is described
in details in Section 2. The evaluation is presented in Section 3. Section 4 is
presenting the results of the experiments on MNIST, Section 5 on CIFAR-10
and Section 6 on ImageNet. Finally, conclusions are drawn in Section 7.

2 DLL: Deep Learning Library

Deep Learning Library (DLL) is a Machine Learning library originally focused
on RBM and CRBM support. It was developed and used in the context of several
research work [29–32]. It also has support for various neural network layers and
backpropagation techniques. It is written in C++ and its main interface is C++
(example in Section 2.2). The library can also be used by describing the task in
a simple descriptor language, to make it easier for researchers.

The library supports conventional neural network. As such, ANNs and CNNs
can be trained. Max Pooling and Average Pooling layers are also supported for
CNNs. These networks can be trained with mini-batch gradient descent. The
basic learning options such as momentum and weight decay are supported. The
library also support advanced techniques such as Dropout [10] and Batch Nor-
malization [11]. Finally, optimizers with adaptive learning rates such as Ada-

3 URL https://github.com/wichtounet/dll

https://github.com/wichtounet/dll

grad [6], Adadelta [33] and Adam [14] are also integrated. The library also sup-
ports Auto-Encoders [2] and Convolutional Auto-Encoders [21].

Also, the library has complete support for the RBM model [26]. The model
can be trained using Contrastive Divergence (CD) [9]. The implementation was
designed following the model from [8]. It also supports Deep Belief Network
(DBN), pretrained layer by layer and then fine-tuned using gradient descent. The
RBM supports a wide range of visible and hidden unit types, such as binary,
Gaussian and Rectified Linear Unit (ReLU) [23]. Support for CRBM is also
integrated, following the two models from [20].

The DLL library is available online4, free of charge, under the terms of the
MIT open source license. Details of the project as well as some tutorials are
available on the home page.

2.1 Performance

The focus of the library is runtime performance, for training and for inference.
The implementation uses several techniques to optimize as much as possible

the runtime performance for training and inference. First, all the computations
are performed using single-precision floating point numbers. This leads to a
better data locality and an increased potential for vectorization. On GPU, it
would even be possible to use half-precision, but modern processors do not have
native capabilities for such computations. Another simple optimization is that
all the computations are performed on a batch rather than on one sample at the
time. This has the advantage of leveraging the necessary operations to higher
level computations. Since this is also generally advantageous for the quality of
the training, this is currently the most common way to train a neural network.

The forward activation of a dense layer for a mini-batch can be computed
with a single matrix-matrix multiplication [31]. This is also possible for the
backward pass, by transposing the weight matrix. Finally, the gradients for the
dense layer can also be computed using one matrix-matrix multiplication. Thus,
such a network mainly needs a good implementation of this operation to be fast.

The Basic Linear Algebra Subprograms (BLAS) interface contains a set of
small and highly-optimized kernels for matrix and vector computation [17].
When using an efficient BLAS library, the matrix-matrix multiplication oper-
ation can be very efficient. Moreover, using a parallel BLAS library also leads to
significantly increased performance for large layers. Moreover, although BLAS
libraries are highly optimized for very large matrices, they are not as fast as
possible for small matrices. Therefore, we automatically detect such cases and
use custom vectorized kernels for small matrix multiplications.

Optimization is more complicated for CNNs. Indeed, the dense layers only
account for a small portion of the training time. Convolutional layers use two
forms of convolution. A valid convolution for the forward pass, which shrinks the
representation and a full convolution for the backward pass to expand it. Every
image batch is convolved with K kernels. It is possible to rearrange an image into

4 URL https://github.com/wichtounet/dll

https://github.com/wichtounet/dll

columns so that a matrix-matrix multiplication can be used to compute the K
valid convolutions of the image at once [24,31]. This proved to be very efficient for
large images or large kernels. When images or kernels are small, it is not efficient
since the rearranging of the input matrix is a slow operation. Therefore, in these
cases, we observed that it is more interesting to perform a real convolution using
an highly-optimized implementation. First, several floating point operations are
computed during the same CPU cycle, using SSE and AVX, a technique known
as Single Instruction Multiple Data (SIMD). Then, to ensure the maximum
throughput, the matrices are padded so that the last dimension is a multiple of
the vector size. Specialized kernels for the most used kernel sizes, such as 3x3 and
5x5, are also used. Finally, most of the convolutions can be performed in parallel
since there are no dependencies between them. This proved significantly faster
than the reduction to a matrix-matrix multiplication in several configurations.

There are several possible implementations for the full convolution. First,
it can be expressed in terms of another operation, the Fast Fourier Transform
(FFT) [22]. For this, the input image and the kernel are padded to the size of
the output. Then, their transforms are computed, in parallel. The Hadamard
product of the input image with the transform of the kernel is computed. The
inverse transform of this product is the full convolution. Computing several con-
volutions of the same image with different kernels is more efficient since the
image transform is only computed once. In our experiments, we observed that
such implementation is very efficient for large inputs and large kernels, but it is
not as interesting for small configurations. With very small kernels, it is more
efficient to pad the input and the kernels and perform a valid convolution. In-
deed, a full convolution is equivalent to a valid convolution with some amount of
padding. When the necessary padding is small enough, it becomes significantly
faster than performing the FFTs. The last option is to use an optimized imple-
mentation of the full convolution. However, due to the large number of border
cases, this would only be faster than the implementation as a valid convolution
for large dimensions, in which case the reduction to FFT would be faster.

Since there is no one-size-fits-all implementation for all configurations, heuris-
tics are used to select the most suited implementations. These heuristics are
based on the size of the convolution kernels and the size of the batch.

Although most of the time is contained inside the previously mentioned op-
erations, it is still important to optimize the other operations such as activation
functions and gradient computations. In our implementation, these operations
are vectorized and parallelized to maximize the processor utilization.

Fortunately, when optimizing for GPU, most of the routines are already im-
plemented in highly specialized libraries. DLL uses NVIDIA libraries in order to
optimize most kernels. NVIDIA CUBLAS is used for the matrix-matrix multi-
plications and a few other linear algebra operations and NVIDIA CUDNN [4] is
used for the machine learning operations such as convolutions, activation func-
tions and gradients computation. For other operations, CUDA kernels have been
written to ensure that most of the time is spent on the GPU. When optimiz-
ing for GPU, it is most important to avoid copies between the CPU and GPU.

Moreover, most of the kernels are launched asynchronously, without device syn-
chronization. This significantly reduces the overhead of CUDA kernel calls.

2.2 Example

Figure 1 shows the code necessary to train a three-layer fully-connected network
on the MNIST data set with the DLL library. The code starts by loading the
MNIST data set in memory. Then, the network is declared layer by layer. After
that, the network training parameters are set and the training is started. Finally,
the accuracy on the test set is computed.

using namespace d l l ;

auto dataset = make mnist dataset (batch s i z e <100>{}, s c a l e p r e <255>{});

using network type = network desc<
network layers<

dense layer <28 ∗ 28 , 500 , sigmoid >,
dense layer <500, 250 , sigmoid >,
dense layer <250, 10 , softmax>

>
, updater<updater type : :MOMENTUM>
, ba t ch s i z e <100>

>:: network t ;

auto net = std : : make unique<network type >();

net−>l e a r n i n g r a t e = 0 . 1 ;
net−>momentum = 0 . 9 ;

net−>d i sp l ay () ;
net−>f i n e t un e (dataset . t r a i n () , 5 0) ;
net−>eva luate (dataset . t e s t ()) ;

Fig. 1: Example to train and evaluate a dense network on the MNIST data set.

3 Experimental Evaluation

We compared our library against popular libraries on four experiments. The time
to train each model is compared for each library, on CPU and on GPU. Each
experiment was run five times. And for each library, the best time is kept as the
final measure. There is no significant different between the different runs. Their
accuracy was also computed. It was shown that all the tested libraries were all
exhibiting comparable accuracy when trained with the same parameters. For
lack of space, these results are not shown here.

The following reference libraries have been selected:

1. Caffe [12]: A high-level Machine Learning library, focusing on speed and
expression, developed in C++ and used through a text descriptor language.
Caffe 1.0 was installed from the sources with GPU and MKL support.

2. TensorFlow [1]: A general low-level library, allowing expressing a data flow
graph to perform numerical computation. The core of the system is written
in C++, but the features are used in Python. Tensorflow 1.3.1 was installed
from the sources with CUDA, CUDNN and MKL support.

3. Keras5: A high-level Machine Learning library, providing a frontend for Ten-
sorflow and Theano, written in Python. It provides a large number of high-
level models, easing the development of Machine Learning models. The ver-
sion 2.0.8 was installed using the official package with Tensorflow 1.3.1.

4. Torch [5]: Torch is another low-level Machine Learning library, one of the
earliest, started in 2002. It is used through a Lua front-end. Although it is
a low-level library, it also contains high-level modules for Machine Learning.
It was installed from the sources, from Git commit 3e9e141 with CUDA and
MKL support.

5. DeepLearning4J6: DeepLearning4J is a deep learning library for Java, writ-
ten in Java, C and C++. It has a very large set of features and focuses on
distributed computing. The version 0.9.1 was used, from Maven.

The libraries have been selected based on their popularity and also to have a
broad range of programming languages. DLL is used directly from the sources,
with the latest version available at this time (Git commit 2f3c62c).

We are underlying here that the goal of these experiments is not to reach
state of the art performance on the tested data sets. The models are kept simple
to allow comparison with a wider range of libraries. Moreover, the networks
are not always trained for as many epochs as they would be, if achieving high
accuracy was the goal. Finally and very importantly, we are not aware of the full
details of all the libraries. We did our best to have similar network architecture
and training parameters, but it could be that some implementation details lead
to slightly different training, explaining time differences.

All the results presented in this chapter have been computed on a Gentoo
Linux machine, on an Intel R© Core

TM

i7-2600, running at 3.4 GHz (CPU fre-
quency scaling has been disabled for the purpose of these tests). Both SSE and
AVX vectorization extensions were enabled on the machine. BLAS operations
are executed with the Intel R© Math Kernel Library (MKL), in parallel mode. The
GPU used is a NVIDIA Geforce R© GTX 960 card. CUDA 8.0.4.4 and CUDNN
5.0.5 are used. The source code used for these experiments is available online7.

All the experiments are trained using mini-batch gradient descent. The last
layer of each network is always a softmax layer. The loss is a softmax cross
entropy loss.

4 MNIST

The first experiment is performed on the MNIST data set [19]. It is a digit recog-
nition task. The data set is made of 60’000 28x28 grayscale images for training
and 10’000 images for testing. It is a very well-known data set and has been re-
peatedly used with most of the existing Machine Learning algorithms. Although
it is considered an easy task, it remains an excellent problem for comparing
libraries since most of them use it as example and have code available.

5 https://github.com/fchollet/keras
6 http://deeplearning4j.org
7 https://github.com/wichtounet/frameworks

https://github.com/fchollet/keras
http://deeplearning4j.org
https://github.com/wichtounet/frameworks

4.1 Fully-Connected Neural Network

The first tested network is a fully-connected three-layer ANN with 500 units in
the first layer, 250 in the second layer and 10 final output units for classification.
The first two layers are using the sigmoid function. The network is trained with
mini-batches of 100 images, for 50 epochs, with a learning rate of 0.1 and a
momentum of 0.9. The training accuracy is computed after each epoch and the
test accuracy is computed after the end of the complete training. As an example,
the code using the DLL library is presented in Figure 1.

CPU GPU

0

200

400

600

800

1
1
6

4
6

6
8
1

5
3

2
2
7

7
9

6
4
5

2
2
4

1
9
8

9
4

5
2
3

1
2
5T

im
e

[s
]

DLL

Caffe

TensorFlow

Torch

Keras

DeepLearning4J

Fig. 2: Training time performance of the libraries for an ANN, on MNIST

Figure 2 presents the performance of each of the libraries. In CPU mode, DLL
outperforms all the other libraries, being around 40% faster than TensorFlow and
Keras, 4.5 times faster than DeepLearning4J and 5.5 times faster than Torch
and Caffe. On GPU, DLL is the fastest library, closely followed by Caffe. DLL is
about 40% faster than TensorFlow and twice faster than Keras. DeepLearning4J
and Torch are respectively 2.5 and 5 times slower than DLL.

4.2 Convolutional Neural Network

The second network, for the same task, is a small CNN with six layers. The
first layer is a convolutional layer using 8 5x5 kernels and followed by a max
pooling layer with a 2x2 kernel. The third and fourth layers are using the same
configuration. The last layers are fully-connected, the first with 150 units and
the last with 10 units for classification. The two convolutional layers and the
first fully-connected layer use a sigmoid activation function. The full network is
trained in the same manner as the first network.

Figure 3 presents the results obtained on this experiment. Again, DLL is
the fastest library on CPU, by a significant margin, three times faster than
TensorFlow and almost four times faster than Keras. DLL is more than 8 times
faster than the slowest library, DeepLearning4J. This shows the effects of the
in-depth CPU optimization of the convolutions. On GPU, TensorFlow and DLL

CPU GPU

0

1,000

2,000

3,000

3
2
9

1
3
1

2
,4

1
6

5
6
41
,0

2
1

1
2
8

1
,9

4
6

8
5
1

1
,4

4
7

1
8
5

2
,8

0
0

1
,1

9
3

T
im

e
[s

]

DLL

Caffe

TensorFlow

Torch

Keras

DeepLearning4J

Fig. 3: Training time performance of the libraries for a CNN, on MNIST

are the fastest libraries, about 30% faster than Keras and significantly faster
than Caffe (4 times), Torch (6.5 times) and DeepLearning4J (9 times).

5 CIFAR-10

The second data set that is tested is CIFAR-10 [15], a data set for object recog-
nition, consisting of 50’000 images for training and 10’000 for testing, in 10
different classes. The data set is composed of colour images of 32x32 pixels.

A larger CNN is used for this task. The first layer is convolutional with 12
5x5 kernels, followed by a 2x2 max pooling layer. They are followed by another
convolutional layer with 24 3x3 kernels and a 2x2 max pooling layer. A dense
layer with 64 hidden units is then used, followed by a softmax layer with 10
output units. All the layers but the last one are using ReLUs. The network is
trained similarly to the previous networks, with a learning rate of 0.001.

CPU GPU

0

2,000

4,000

8
9
2

1
6
1

2
,9

4
6

4
8
3

1
,7

1
0

2
2
8

2
,0

9
7

7
2
7

1
,6

4
8

2
6
9

2
,1

7
3

1
,6

0
4

T
im

e
[s

]

DLL

Caffe

TensorFlow

Torch

Keras

DeepLearning4J

Fig. 4: Training time performance of the libraries on the CIFAR-10 task

In Figure 4, the training times for this task are presented. The speedups
are less significant than for the previous CNN. Nevertheless, DLL still manages

to be the fastest library on CPU. It is about twice faster than TensorFlow,
Keras, DeepLearning4J and Torch and about three times faster than Caffe. On
GPU, DLL is also the fastest library on this experiment, about 30% faster than
TensorFlow and 40% faster than Keras. It is three times faster than Caffe and
about 4.5 times faster than Torch and ten times faster than DeepLearning4J.
This network is significantly larger than in the MNIST experiment. This seems to
indicate that most libraries are more optimized for larger networks. This shows
that GPU performance is better when a lot of data is available.

6 ImageNet

The last experiment is performed on ImageNet, a large data set for image classifi-
cation. We consider the sub part of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2012 [25], there are 50’000 validation images, 100’000 test
images, around 1.2 million training images and 1000 categories. All the images
have been resized to 256x256 images.

The entire data set cannot be kept in memory. Therefore, the images are
loaded from the disk for each epoch. For this experiment, only Caffe provides
an official, up-to-date, code for this data set. The DeepLearning4J reader was
based on existing official reader for structures similar to ImageNet. For Keras,
TensorFlow and Torch, a simple data reader has been written with the image
loading tools available in each library.

The network is significantly larger than the previous networks. It is made
of five convolutional layers, with 16 3x3 kernels for the first two layers and
32 3x3 kernels for the next three layers. Each of these layers is followed by a
ReLU activation function and a 2x2 max pooling layer. All the convolutional
layers are using zero-padding so that their output is the same size as their input
The last two layers are a dense layer with 2048 hidden units, with a ReLU
function and a dense layer with 1000 outputs. The training is different than for
the other data sets. The full network is only trained for five epochs with each
library. The networks are trained using a batch size of 128. However, Torch and
DeepLearning4J models were trained with a batch size of 64, respectively 16,
samples. Indeed, both of these libraries needed more than 12GB of RAM to
train with a batch size of 128 images. This may lead to some small degradation
of the performance for those two libraries.

For the sake of comparison, the average time to train one batch of samples
is used as results. For Torch and DeepLearning4J, the results are the times
for several batches, to make up for 128 samples. These results are presented
in Figure 5. DLL shows to be again the fastest library on CPU for training
this large model, 35% faster than Keras, about 45% faster than TensorFlow and
twice faster than Caffe. Torch is already more than 3 times slower than DLL and
DeepLearning4J around 6 times slower. On GPU, DLL is, also, the fastest library.
Comparisons with Keras and TensorFlow show that most of the difference comes
from the poor performance of reading the ImageNet data from the Python code.
Once this is taken into account, the three libraries have comparable performance.

CPU GPU
0

10,000

20,000

2
,9

8
3

6
2
1

5
,9

5
2

1
,4

6
75
,2

2
8

9
3
0

1
0
,6

0
0

2
,3

4
0

4
,5

2
0

8
8
7

1
7
,6

0
0

6
,2

4
0

T
im

e
[m

s]

DLL

Caffe

TensorFlow

Torch

Keras

DeepLearning4J

Fig. 5: Training time performance of the libraries, on ImageNet. The time is the
average time necessary for the training of one batch of 128 elements.

DLL is more than twice faster than Caffe and almost four times faster than Torch
and almost 10 times faster than DeepLearning4J.

7 Conclusion and Future Work

For all the experiments and the different neural networks models that were
tested, the DLL library has shown to be the fastest gradient descent based
library for training the model when using CPU and GPU. For each test, the
accuracies of the models trained with DLL are similar to the models trained by
the other five Machine Learning libraries.

The speedups provided by the library on CPU mode are especially important
for convolutional layers for which advanced optimization was performed. The
library was especially optimized for small convolutions, but is still able to bring
significant speedups for large images such as the images from the ImageNet data
set. Moreover, while some libraries are mostly optimized for the convolutional
and fully-connected parts of the computation, every part of the training in the
DLL library was tuned. However, since DLL is written in C++, programs using
it need to be compiled. This may make it more complicated for researchers to use.
Finally, while the language itself is very common about performance software
developers, it is not very common for machine learning researchers. Therefore,
there is more of a barrier for use compared to libraries using more common
languages for machine learning.

A few DLL routines are not optimized enough for GPU, such as Dropout
and Batch Normalization. Future work could also include better support for
Recurrent Neural Networks (RNNs), which would be a great advantage for the
library. Finally, the library has currently been optimized only on few machines
and especially consumer grade processors and graphics cards. It would be greatly
beneficial to take advantage of more threads or advanced vectorization capabili-
ties such as those provided by the latest Intel R© Xeon processors or more recent
and more powerful NVIDIA graphics cards.

References

1. Abadi, M., al.: TensorFlow: Large-scale machine learning on heterogeneous systems
(2015), http://tensorflow.org/, software available from tensorflow.org

2. Bengio, Y.: Learning deep architectures for ai. Foundations and trends R© in Ma-
chine Learning pp. 1–127 (2009)

3. Cheng, Z., Yang, Q., Sheng, B.: Deep colorization. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 415–423 (2015)

4. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro,
B., Shelhamer, E.: cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014)

5. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A matlab-like environment for
machine learning. In: BigLearn, NIPS workshop. No. EPFL-CONF-192376 (2011)

6. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research pp. 2121–2159
(2011)

7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

8. Hinton, G.E.: A practical guide to training restricted boltzmann machines. In:
Neural Networks: Tricks of the Trade (2nd ed.), pp. 599–619. Lecture Notes in
Computer Science, Springer (2012)

9. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural computation pp. 1527–1554 (2006)

10. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

11. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

12. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014)

13. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image
descriptions. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 3128–3137 (2015)

14. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

15. Krizhevsky, A., Hinton, G.E.: Learning multiple layers of features from tiny images.
Tech. rep. (2009)

16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

17. Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Basic linear algebra sub-
programs for fortran usage. ACM Transactions on Mathematical Software (TOMS)
pp. 308–323 (1979)

18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE pp. 2278–2324 (1998)

19. LeCun, Y., Cortes, C., Burges, C.J.C.: The mnist database of handwritten digits.
http://yann.lecun.com/exdb/mnist/ (1998), accessed: 2018-02-04

http://tensorflow.org/
http://yann.lecun.com/exdb/mnist/

20. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations. In: Proceedings
of the 26th Annual International Conference on Machine Learning. pp. 609–616.
ACM (2009)

21. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked Convolutional Auto-
Encoders for Hierarchical Feature Extraction, pp. 52–59. Springer Berlin Heidel-
berg (2011)

22. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks
through ffts. arXiv preprint arXiv:1312.5851 (2013)

23. Nair, V., Hinton, G.E.: Rectified Linear Units improve Restricted Boltzmann Ma-
chines. In: Proceedings of the Int. Conf. on Machine Learning. pp. 807–814 (2010)

24. Ren, J.S., Xu, L.: On vectorization of deep convolutional neural networks for vision
tasks. arXiv preprint arXiv:1501.07338 (2015)

25. Russakovsky, O., al.: ImageNet Large Scale Visual Recognition Challenge. Inter-
national Journal of Computer Vision (IJCV) pp. 211–252 (2015)

26. Smolensky, P.: Information processing in dynamical systems: Foundations of har-
mony theory. Tech. rep., Colorado University (1986)

27. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–9
(2015)

28. Upadhyaya, S.R.: Parallel approaches to machine learning: A comprehensive sur-
vey. Journal of Parallel and Distributed Computing pp. 284–292 (2013)

29. Wicht, B.: Deep Learning Features for Image Processing. Ph.D. thesis, University
of Fribourg (2018)

30. Wicht, B., Fischer, A., Hennebert, J.: Deep learning features for handwritten key-
word spotting. In: Pattern Recognition (ICPR), 2016 23rd International Conference
on. pp. 3434–3439. IEEE (2016)

31. Wicht, B., Fischer, A., Hennebert, J.: On cpu performance optimization of re-
stricted boltzmann machine and convolutional rbm. In: IAPR Workshop on Ar-
tificial Neural Networks in Pattern Recognition (ANNPR). pp. 163–174. Springer
International Publishing (2016)

32. Wicht, B., Hennebert, J.: Mixed handwritten and printed digit recognition in su-
doku with convolutional deep belief network. In: Document Analysis and Recogni-
tion (ICDAR), 2015 13th International Conference on. pp. 861–865. IEEE (2015)

33. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

