Check for
Updates

DIVA-DAF: A Deep Learning Framework for Historical Document
Image Analysis

Lars Vogtlin
lars.voegtlin@unifr.ch
University of Fribourg
Fribourg, Switzerland

Andreas Fischer
andreas.fischer@unifr.ch
University of Fribourg
Fribourg, Switzerland

ABSTRACT

Deep learning methods have shown strong performance in solving
tasks for historical document image analysis. However, despite
current libraries and frameworks, programming an experiment or a
set of experiments and executing them can be time-consuming. This
is why we propose an open-source deep learning framework, DIVA-
DAF, which is based on PyTorch Lightning and specifically designed
for historical document analysis. Pre-implemented tasks such as
segmentation and classification can be easily used or customized. It
is also easy to create one’s own tasks with the benefit of powerful
modules for loading data, even large data sets, and different forms
of ground truth. The applications conducted have demonstrated
time savings for the programming of a document analysis task, as
well as for different scenarios such as pre-training or changing the
architecture. Thanks to its data module, the framework also allows
to reduce the time of model training significantly.

CCS CONCEPTS

- Software and its engineering — Object oriented frameworks.

KEYWORDS

deep learning framework, document image analysis, historical doc-
uments, deep neural networks

ACM Reference Format:

Lars Vogtlin, Anna Scius-Bertrand, Paul Maergner, Andreas Fischer, and Rolf
Ingold. 2023. DIVA-DAF: A Deep Learning Framework for Historical Docu-
ment Image Analysis. In 7th International Workshop on Historical Document
Imaging and Processing (HIP °23), August 25-26, 2023, San Jose, CA, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3604951.3605511

1 INTRODUCTION

Automatically analyzing collections of historical documents pro-
vides strong support for the preservation of our cultural heritage.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HIP °23, August 25-26, 2023, San Jose, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0841-1/23/08...$15.00
https://doi.org/10.1145/3604951.3605511

Anna Scius-Bertrand
anna.scius-bertrand@unifr.ch
University of Fribourg
Fribourg, Switzerland

61

Paul Maergner
paul.maergner@unifr.ch
University of Fribourg
Fribourg, Switzerland

Rolf Ingold
rolf.ingold@unifr.ch
University of Fribourg
Fribourg, Switzerland

Although great progress has been made in recent years, this field
of research remains a difficult challenge, especially due to the high
variability of document collections both in terms of form and con-
tent [8]. Deep learning methods have shown a strong potential
for historical document image analysis, achieving state-of-the-art
results for different tasks ranging from layout analysis over hand-
writing recognition to information retrieval.

In order to use deep learning more quickly and efficiently, several
libraries were created (e.g., Tensorflow, Keras, PyTorch, ...). Such
libraries are built in a very open and general fashion to allow good
programmers to take advantage of the full potential of this new
technology. However, due to their generality, these libraries have
a steep learning curve. Additionally, the user usually has to take
care of the whole hardware orchestration, such as moving data to
the GPU or aggregating certain information across a number of
devices. Therefore, software frameworks built on top of the general
deep learning libraries may significantly facilitate the application
of deep learning to specific types of data and tasks.

In the context of historical document analysis, a deep learning
framework must be able to deal with large images and support
different ground truth formats. Furthermore, one of the biggest
challenges for historical documents is the lack of training data. It is
often necessary to use different learning strategies such as transfer
learning, self-learning, or data generation. Conducting scientific
experiments with advanced learning mechanisms requires a high
flexibility from the deep learning framework, to be able to iteratively
test different parameters and configurations without having to
reprogram the whole experiment. Moreover, a prerequisite of any
experiment is its reproducibility.

In this paper, we introduce a new deep learning framework,
DIVA-DAF!, which is specifically designed for conducting exper-
iments in the domain of image analysis for historical documents.
The framework is based on PyTorch Lightning, which allows us
to benefit from its flexibility and hardware management. We have
added features to conduct document analysis experiments with a
view to reproducibility, maintainability, efficiency, and increased
flexibility. These features allow, among others: rapid prototyping,
faster runtime, use of transfer learning and self-learning, simplified
change or swap of network parts, adding own code with unit tests,
using external libraries, simplified change (without reprogramming)
of networks, tasks, and datasets in an experiment, and keeping track

Thitps://github.com/DIVA-DIA/DIVA-DAF

https://doi.org/10.1145/3604951.3605511
https://doi.org/10.1145/3604951.3605511
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3604951.3605511&domain=pdf&date_stamp=2023-08-25

HIP °23, August 25-26, 2023, San Jose, CA, USA

of previous experiments. These features make our framework a
powerful tool to conduct experiments in the context of historical
document image analysis.

DIVA-DAF supports all types of deep neural networks and learn-
ing strategies, including supervised, semi-supervised, and unsu-
pervised learning. Therefore, all typical document image analysis
tasks can be implemented with our framework, such as layout anal-
ysis, line segmentation, keyword spotting, transcription alignment,
handwriting recognition, etc. At the moment, two tasks are already
implemented and readily available: segmentation and classification.
For example, to perform semantic segmentation for layout elements
in a historical document, it is sufficient to indicate the data and
ground truth folders in a configuration file. In this configuration
file, it is also possible to change the network model, loss function,
optimizer, and evaluation metrics, among others. In less than 5
minutes, a custom experiment can be configured and started.

In the remainder of this paper, we provide an overview of related
work in Section 2. Then, we introduce the DIVA-DAF framework
and describe its features in Section 3. Afterwards, we present a case
study using the framework in Section 4. Finally, we provide some
conclusions and an outlook to future work in Section 5.

2 RELATED WORK

In our literature research, we came across different end-to-end
frameworks for Computer Vision and Document Image Analysis
with which we share the general motivation as well as ideas.

Transkribus is a well-known platform designed to automatically
transcribe historical documents. The platform offers the possibility
to train a model with specific data and also provides trained text
recognition models ready to be used. An interface is available. But
the platform is not open source and provides only a restricted
number of document analysis tasks.

Another well-known platform for automatic transcription of
historical documents is eScriptorium [12], which is open source. The
text recognition system is based on Kraken [11]. Other models can
be integrated into the platform. But as Transkribus, eScriptorium
is also limited in the number of document analysis tasks covered.

Chainer [18] provides a wide range of Deep Learning (DL) mod-
els for researchers in a flexible and intuitive fashion. The frame-
work’s focus is high-performance and distributed training, which is
achieved with the help of standard Python libraries. But the frame-
work no longer gets updates (last release June 2022), it misses an
easy definition of an experiment, and networks can not be loaded
in parts. Additionally, as it is based on plain NumPy, there is a lack
of compatibility with other DL-frameworks.

Orhei et al. [13] introduced an End-to-End CV Framework (EECVF)
to tackle the problem of creating a true end-to-end Machine Learn-
ing (ML) platform that allows combining DL approaches together
with classical Pattern Recognition (PR) methods. Their platform is
constructed to be easily usable for research and educational pur-
poses. It uses multiple configuration files to define the behavior
of the different parts without the need to write code. The biggest
problem with this framework is that it is no longer available, does
not support different hardware accelerators, has limited logging,
and no flexible loading of a network’s weights.

62

Végtlin et al.

Goyal et al. [9] from Meta Research created a PyTorch-based
framework named VISSL for self- and unsupervised pretraining of
neural networks for natural images. The main idea of this frame-
work is to provide a fast and easy way to pretrain neural networks
with natural images in a self-supervised fashion with the help of
a configuration system. Additionally, hardware acceleration with
GPUs, logging with Tensorboard, and a large variety of preimple-
mented methods and datasets are a part of it. This project also
has some issues: It is no longer maintained (last release November
2021), it is not possible to fine-tune a network on some final tasks,
logging is limited to Tensorboard, and introducing new networks,
functionalities, or other parts is very tedious work.

DeepDIVA was introduced by Alberti et al. [2, 3] as an out-of-the-
box deep learning framework for Computer Vision (CV). The focus
of the framework was to provide reproducible experiments that the
user can redefine based on existing networks, datasets, and parts,
but they have the possibility to add their own. It also provides e.g.,
hardware acceleration with GPUs, logging with Tensorboard, re-
producibility by versioning the code, and different visualizations of
the data. However, there are several problems with this framework:
Introducing custom network parts is difficult as the framework is
not built in a modular fashion, all parameters are handed over via
Command Line Interface (CLI), which makes it difficult to read,
the weight loading functionalities are limited, and logging is only
provided for Tensorboard.

A library approach was taken by Shen et al. [15] with their
LayoutParser. Their goal is to simplify the construction of Deep
Learning workflows within the Document Image Analysis (DIA)
domain. They additionally provided a platform to share models,
code, and weights. This project seems no longer actively supported
as their last change is from August 2022.

Falcon et al. [7] started 2019 the modular PyTorch-based gen-
eral DL framework PyTorch-Lightning (PL). It focuses on rapid
prototyping, wide hardware integration, and maximal flexibility.
Additionally, it takes advantage of the large ecosystem, providing
implementations for metrics, models, data modules, and other state-
of-the-art functionalities. As the framework is not focusing on CV
or DIA, it lacks the support to handle large images and does not
provide an easy way to create an experimental setup.

To have an overview of the lack of modularity and flexibility of
the different frameworks, see Table 1. With DIVA-DAF, we added
all this modularity and flexibility of the different categories that are
relevant for deep learning experiments in the context of historical
documents. They are further introduced in the following section.

3 DIVA-DAF - DOCUMENT ANALYSIS
FRAMEWORK

To be able to conduct scientific experiments on document image
analysis, our framework has the following characteristics: flexibility,
efficiency, reproducibility, and maintainability. The framework is
mainly designed for experienced programmers in document image
analysis, but thanks to a configuration system, non-experts with
few programming skills can also create, launch, and interpret exper-
iments. In this section, we introduce the deep learning framework
DIVA-DAF and explain its main attributes.

DIVA-DAF: A Deep Learning Framework for Historical Document Image Analysis

HIP °23, August 25-26, 2023, San Jose, CA, USA

Table 1: Modularity of Different Frameworks in Different Categories

Name DeepDIVA VISSL Chainer EECVF PL DIVA-DAF
Input v v v 4 v/ v
Output v X v X) v
Hyper-parameters v v v v v v
Network X X X X X v
Monitoring X v v (X) v v
Evaluation v X v v 4 v
Reproducibility v v v v v 4
Experimental setup X v X 4 X v

3.1 Flexibility

The framework consists of several components following an object-
oriented programming paradigm. The general architecture is pre-
sented in Figure 1.

Each component is independent and can be easily changed. Like
classical frameworks, data is loaded into a data module. But unlike
other platforms, the data module manages the different datasets
needed for each stage (training, validation, testing, prediction) in a
modular way. Furthermore, it calculates data statistics and defines
special data handling, such as data augmentation and transforma-
tions. Besides, the data module is able to load large images thanks
to two strategies: scaling down the image (adapting also the ground
truth) and patch-based approaches. Different ground truth formats
can already be easily handled: images (color encoded, index en-
coded, channel encoded) and classes based on folder structures.

Compared to PyTorch Lightning, the LightningModule is sepa-
rated into two components: the model, which defines the neural
network architecture, and the task, which describes the task to be
solved. By defining these components independently, the same task
can be solved using different models, or the same model can be
used to solve different tasks.

The model specifies the neural network architecture by defining
the backbone and the header. The backbone acts as the encoder part
of the network, and the header as the classifier. By defining these
two parts separately, the framework can save them independently
and combine them with other backbones or headers.

The task defines the workflow during training, validation, testing,
and prediction. It requires four inputs: a loss function, an optimizer,
metrics, and a model. All these components can be easily customized
by the user. Also, it produces the test output and provides the needed
method to bring the network output into a specific loss or metric
format.

The trainer connects the different components of our framework
and runs them. It executes the different stages - training, validation,
testing, and prediction - and runs the neural network. It is respon-
sible for initializing the different hardware devices and moving
data and models to the correct device. The default implementation
of PyTorch Lightning is used, but users could also exchange or
modify this part if required. Trainers are also connected to a logger
and a callback component which will be described in subsection
3.3, and a plugin component which enables changing the behav-
ior of the trainer, e.g., custom precision or cluster environment
implementations.

63

3.2 Efficiency

The first obstacle to using a new framework is the difficulty related
to its installation.

DIVA-DAF is easy to set up: The user clones the code from the
GitHub repository (https://github.com/DIVA-DIA/DIVA-DAF) and
creates a new Python environment (e.g., Anaconda[1] environment)
based on the shipped requirement file. This requirement contains
all dependencies with the corresponding versions to run the frame-
work. If a user wants to run the framework with GPU, TPU, HPU,
MPS, or IPU support, the appropriate drivers and the correct Py-
Torch support packages (CUDA, ROCm, etc.) must be installed.

Thanks to the modular structure of the framework, users can do
rapid prototyping. The user can easily combine existing modules
into a new experiment. The hyperparameters of an existing one
can be changed without writing a single line of code. To create or
introduce new modules and swap them out with existing ones, just
a few lines of code are needed, as the framework provides templates
for the different modules. An example is given in Section 4.

By using the full potential of the underlying PyTorch Lightning
framework, DIVA-DAF takes full advantage of any hardware pro-
vided by the host system, optimized data-loading strategies, and
distributed computing. With an efficient implementation of our
datasets, we were able to further reduce the runtime of the experi-
ments.

3.3 Reproducibility

Another important attribute of a framework is its ability to create
reproducible research experiments. To make each experiment as
reproducible as possible, we store the configuration file alongside
the results and network weights of each run in its output directory. It
also saves the seed used to initialize the pseudo-random generators
used during training to initialize the neural network weights and
other environmental information. Using the configuration file with
this seed, anyone can quickly reproduce published results with this
framework.

To keep track of experiments, we use the logging functionality
of PyTorch Lightning. They provide the most common loggers like
Weights and Biases [5] or Tensorboard. The framework allows using
multiple loggers simultaneously. Besides using a cloud-based logger,
like Weights and Biases, the user can also use a local logger like
the CSV logger. The CSV logger writes all the logging information
into the local experiment folder for later use. Logging is not limited
to scalar data like metrics or loss information. It is also possible to

https://github.com/DIVA-DIA/DIVA-DAF

HIP °23, August 25-26, 2023, San Jose, CA, USA

Vogtlin et al.

Datamodule

Train

Validation

:

Logger

Output

Figure 1: The module schema of DIVA-DAF. Rectangles represent required components, ovals represent optional components,

and green is the configuration.

log figures, images, or histograms, but each logger needs to do this
individually. As with all the other modules of our framework, users
can also implement their own logger or adapt an existing one.

3.4 Maintainability

Maintainability is a key concept to create a long-lasting framework.
DIVA-DAF provides two maintainability factors: injecting external
code and intercompatibility. Users can inject code via callbacks
provided by the underlying PL framework. Callbacks hook into
predefined methods and can be used at each stage of the experi-
ment. The main advantage of callbacks is that the user does not
have to change the core code of the framework. Hence, it provides
extendability without the cost of damaging the integrity of the
system.

Additionally, DIVA-DAF uses GitHub actions to provide Con-
tinuous integration (CI). For every change in the framework, the
different modules get extensively tested with unit tests, and the
code quality (duplication, bugs, complexity) gets checked. This en-
sures a good code base and gives the user the possibility to check if
these changes break anything in the framework.

Thanks to its modularity and compatibility with the PyTorch
ecosystem, any module from PyTorch-based libraries can be inte-
grated into DIVA-DAF.

4 APPLICATIONS

In this section, we compare the programming time and execu-
tion time of a document analysis experiment using DIVA-DAF and
PyTorch-Lightning (PL).

64

4.1 Methods

To compare the programming time, a baseline experiment was
performed and then broken down into three scenarios.

The baseline experimentation consists of semantic segmentation
for layout elements in historical documents. Each pixel of an input
image gets assigned one of the predefined classes. An experienced
PL programmer timed each of the development steps using the two
different frameworks.

Scenario 1 - S1: Pre-training / transfer learning: When the volume
of training data is too small, pre-training or transfer learning can
improve the performance of the network. In this case, the first n
layers of an already pre-trained U-Net [14] (here n=3) were loaded
into a randomly initialized U-Net, and afterward fine-tuned on the
additional data.

Scenario 2 - S2: Comparison of the network architecture: Of-
ten in research, it is necessary to compare several networks for
the same task on identical data. Here the task is to replace the U-
Net with DeepLabV3 [6], an architecture already implemented in
Torchvision.

Scenario 3 - S3: Visual control during training: training a network
can lead to a “black box” effect. Visualizing an intermediate result
during training can be useful for understanding the behavior of
the network. The task here is to be able to save n images randomly
from the validation set (here 1 image).

To compare the execution time, we replicated the experiment by
Studer et al. [17] (same network running on the same hardware),
with the difference that we performed the experiment with DIVA-
DAF.

DIVA-DAF: A Deep Learning Framework for Historical Document Image Analysis

4.2 Data

The dataset is the Codex Bodmer 55 of the DIVA-HisDB [16] dataset
(see Fig. 2). The dataset contains 20 pages for training, 10 pages for
validation, and 10 pages for testing. Each page has a dimension of
48726496 pixels with a resolution of 600 dpi. Each pixel belongs to
one of 8 classes (background, main text body, decoration, comment,
main text body + comment, main text body + decoration, comment
+ decoration, main text body + decoration + comment).

4.3 Results

The baseline implementation is split into three parts: data loading,
network, and execution. Data loading includes the dataset, calculat-
ing statistics on the training data, normalizing the data, and creating
a data module. The network part is just the implementation of the
network and its behavior in the different stages. Last, in the exe-
cution part, we combine the two parts from above into a runnable
experiment. For the time we used to implement this and its code
duplication, see Table 2.

The time to implement the baseline experiment in PL is nearly
15x longer compared to the same experiment in DIVA-DAF. To
load the data, which is the DIVA-HisDB [16] format, it just takes
a few lines of YAML (see Listing 1). In our main experiment con-
figuration, we need to specify the data module we want to use
(_target_), the path to the data (data_dir), how big our crops
should be (crop_size), and the batch size (batch_size).

In contrast, in PL, we have to implement the whole data loading
logic, as well as take care of calculating statistics, multi-device
training, and applying transformations. These parts are very crucial
to have a correctly working experiment and so take a lot of time to
implement.

Listing 1: The config describing the data module
datamodule:
src.datamodules.DivaHisDB.
datamodule_cropped.
DivaHisDBDataModuleCropped

target:

data_dir: /net/research-hisdoc/datasets/
semantic_segmentation/
datasets_cropped/CB55

256

16

crop_size:
batch_size:

The other part that takes more time in plain PL is the imple-
mentation of the network. We can take advantage of the U-Net
class from the Torchvision library, but we still have to implement
the behavior of the network during the training, validation, and
testing stages. In DIVA-DAF, we do not have to do that because the
network’s behavior is defined in the task and not the network.

To implement the execution part of the scenario, the time differ-
ence is not significant. In PL, it takes a few lines of code to create
a Trainer object and hand it over to the data and the network. In
DIVA-DAF, we have to adapt the experiment configuration.

For the first scenario, we can use the preimplemented function-
ality of DIVA-DAF, where we can define in the configuration the
layers of the network we want to load. The same in PL takes more

65

HIP °23, August 25-26, 2023, San Jose, CA, USA

Table 2: Programming time in minutes

Tasks PyTorch L. DIVA-DAF
Data loading 150 2
Network 30 5
Execution 10 5

S1. Pre-training 15 2

S2. Comparing network 20 2

S3. Visualizing 25 20

time as you need to filter out the layers we want to use from the
checkpoint file and load them into the network. For an experienced
PL programmer, this is not a complicated but a time-consuming
task.

In the second scenario, we use the Torchvision library again to
apply a DeepLabv3 model with a ResNet50 [10] backbone to our task.
As the task stays the same, in DIVA-DAF, we have to create a config
file (see Listing 2) for the new network and adapt the experiment. In
PL, we can take advantage of the U-Net implementation and copy
the code defining the behavior of the network during the different
stages. This creates code duplication, which makes the code harder
to maintain and adapt.

Listing 2: The config for the DeepLabv3 network with a
resnet50 backbone

target: torchvision.models.segmentation.
deeplabv3_resnet50

num_classes: ${datamodule:num_classes}

Copying the code in the PL, implementation becomes a problem
in the third scenario, as we want to change the behavior of the
network in the validation stage to save a random image. We have
to copy the code again into both network implementations, which
creates more code duplication and increases the complexity. In
DIVA-DAF, the code has just to be changed in the task class. This
could, in both cases, also be solved with the help of a callback,
which would reduce code duplication but takes our programmer
still less time to implement in DIVA-DAF than in PL.

For the execution time comparison (see Table 3), we used the
same hardware and hyperparameter as Studer et al. [17], as well as
the SegNet [4] and DeepLapv3 [6] architecture. The hardware is a
server with 4 x NVIDIA 1080 GTX with 8GB of GPU memory each,
an Intel i7-5960X CPU, and 64 GB of RAM. The hyperparameters
are available here 2.

The experiments conducted with DIVA-DAF were significantly
faster compared to the implementation of Studer et al. For both
architectures, we achieved similar results. The performance differ-
ence of SegNet [4] is probably due to different default parameters
not mentioned by Studer et al. However, we have time savings for
DeepLabv3 [6] and SegNet of more than 55% and 45%, respectively.
We think this is caused by the efficient data loading in DIVA-DAF
(from the file system but also into the GPU) and the improvements
in driver technology.

Zhttps://bit.ly/218c3dX

https://bit.ly/2I8c3dX

HIP °23, August 25-26, 2023, San Jose, CA, USA

a&‘ dri—fu fitor dlh'g‘"o'" }x’wtﬂo\ _,

a &Tu UM Q—w P queth fhiy g
fmy ﬁam‘:m értt CLT& Men n:umM-z\ off
t*yu (ﬁhmm\ ek s
> DL It arnewiia fwcpd

(a) CB55, p. 25r

(gﬁ,
[p¥

Végtlin et al.

£ k (l;:‘;:y }Y\"}‘L“nt

LA NCEAA

T pt Hme fi I\m neffa vt Dlnee
;ru»v dn i me ‘A _é) P
éﬁ'%l'fx—m ‘u s cterno % ‘\h

Sunamin

—~ g

yr mefina talfs 4 Dutn sicte
(b) CB55, p. 5v

Figure 2: Sample pages of the medieval manuscripts Codex Bodmer 55 of DIVA-HisDB.

Table 3: Results of semantic segmentation on the test set of
DIVA-HisDBs CB55. All our networks were trained for 50
epochs. All experiments are conducted on the same hard-
ware.

Authors Year Model Runtime mloU[%]
[17] 2019 SegNet ~8h 86.90
[17] 2019 DeepLabV3 ~8h 92.90
Ours 2023 SegNet ~4.5h 92.61
Ours 2023 DeepLabv3 ~3.5h 93.04

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce DIVA-DAF. It is an open-source PyTorch-
Lightning-based deep learning framework designed to create rapid
prototypes and reproducible experiments for the historical docu-
ment analysis community.

The framework offers pre-implemented tasks that are easily
adaptable, including segmentation, classification, and object detec-
tion. It is also possible to implement custom tasks and data modules
in a straightforward way due to the framework’s abstract classes.
As shown in the application part, DIVA-DAF allows users to gain
efficiency during implementation as well as model execution.

However, the framework has certain functional limitations like
conducting multi-runs within the framework, doing hyperparam-
eter optimization, running tasks with multiple headers or losses,
and downloading datasets in an automatic fashion.

To encourage a larger public to use the framework, a user inter-
face could be developed. To improve the framework, we envisage
implementing new tasks in document analysis, adding new net-
works, integrating new ground truth formats, and improving its
documentation, which this paper is part of. To further support the
users in analyzing their results, it would be interesting to add clas-
sification activation maps and filter visualization techniques to the
framework.

REFERENCES

[1] 2020. Anaconda Software Distribution.

[2] Michele Alberti, Vinaychandran Pondenkandath, Lars Vogtlin, Marcel Wiirsch,
Rolf Ingold, and Marcus Liwicki. 2019. Improving Reproducible Deep Learning
Workflows with DeepDIVA. In 2019 6th Swiss Conference on Data Science (SDS).
13-18.

Michele Alberti, Vinaychandran Pondenkandath, Marcel Wiirsch, Rolf Ingold,
and Marcus Liwicki. 2018. DeepDIVA: A Highly-Functional Python Framework
for Reproducible Experiments. In 2018 16th International Conference on Frontiers
in Handwriting Recognition (ICFHR). 423-428.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. 2017. Segnet: A deep
convolutional encoder-decoder architecture for image segmentation. IEEE trans-
actions on pattern analysis and machine intelligence 39, 12 (2017), 2481-2495.

=

=

66

[5]
[6]

[7]

[10

[11

[12

(13

[14

[15

=
&

[17

[18

Lukas Biewald. 2020. Experiment Tracking with Weights and Biases.
Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. 2017.
Rethinking atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587 (2017).

William Falcon and The PyTorch Lightning team. 2019. PyTorch Lightning.
https://doi.org/10.5281/zenodo.3828935

Andreas Fischer, Marcus Liwicki, and Rolf Ingold (Eds.). 2020. Handwritten
Historical Document Analysis, Recognition, and Retrieval — State of the Art and
Future Trends. World Scientific.

Priya Goyal, Quentin Duval, Jeremy Reizenstein, Matthew Leavitt, Min Xu,
Benjamin Lefaudeux, Mannat Singh, Vinicius Reis, Mathilde Caron, Piotr Bo-
janowski, Armand Joulin, and Ishan Misra. 2021. VISSL. https://github.com/
facebookresearch/vissl.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770-778.

Benjamin Kiessling. 2019. Kraken-an universal text recognizer for the humanities.
In ADHO, Ed., Actes de Digital Humanities Conference.

Benjamin Kiessling, Robin Tissot, Peter Stokes, and Daniel Stokl Ben Ezra. 2019.
eScriptorium: an open source platform for historical document analysis. In 2019
International Conference on Document Analysis and Recognition Workshops (IC-
DARW), Vol. 2. IEEE, 19-19.

Ciprian Orhei, Silviu Vert, and Muguras Mocofan. 2021. End-To-End Computer
Vision Framework: An Open-Source Platform for Research and Education. Sensors
21, 11 (2021), 3691.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In International Conference on
Medical Image Computing and Computer-Assisted Intervention. Springer, 234-241.
Zejiang Shen, Ruochen Zhang, Melissa Dell, Benjamin Charles Germain Lee,
Jacob Carlson, and Weining Li. 2021. LayoutParser: A unified toolkit for deep
learning based document image analysis. In Document Analysis and Recognition—
ICDAR 2021: 16th International Conference, Lausanne, Switzerland, September 5-10,
2021, Proceedings, Part I 16. Springer, 131-146.

Foteini Simistira, Mathias Seuret, Nicole Eichenberger, Angelika Garz, Marcus
Liwicki, and Rolf Ingold. 2016. DIVA-HisDB: A Precisely Annotated Large Dataset
of Challenging Medieval Manuscripts. In 2016 15th International Conference on
Frontiers in Handwriting Recognition (ICFHR). 471-476.

Linda Studer, Michele Alberti, Vinaychandran Pondenkandath, Pinar Goktepe,
Thomas Kolonko, Andreas Fischer, Marcus Liwicki, and Rolf Ingold. 2019. A
Comprehensive Study of ImageNet Pre-Training for Historical Document Image
Analysis. In 2019 International Conference on Document Analysis and Recognition
(ICDAR). 720-725.

Seiya Tokui, Ryosuke Okuta, Takuya Akiba, Yusuke Niitani, Toru Ogawa, Shunta
Saito, Shuji Suzuki, Kota Uenishi, Brian Vogel, and Hiroyuki Yamazaki Vincent.
2019. Chainer: A Deep Learning Framework for Accelerating the Research Cycle.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD °19). Association for Computing Machinery, New
York, NY, USA, 2002-2011.

https://doi.org/10.5281/zenodo.3828935
https://github.com/facebookresearch/vissl
https://github.com/facebookresearch/vissl

	Abstract
	1 Introduction
	2 Related Work
	3 DIVA-DAF - Document Analysis Framework
	3.1 Flexibility
	3.2 Efficiency
	3.3 Reproducibility
	3.4 Maintainability

	4 Applications
	4.1 Methods
	4.2 Data
	4.3 Results

	5 Conclusion and Future Work
	References

