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a b s t r a c t 

In the last decades historical handwritten documents have become increasingly available in digital form. 

Yet, the accessibility to these documents with respect to browsing and searching remained limited as full 

automatic transcription is often not possible or not sufficiently accurate. This paper proposes a novel re- 

liable approach for template-based keyword spotting in historical handwritten documents. In particular, 

our framework makes use of different graph representations for segmented word images and a sophis- 

ticated matching procedure. Moreover, we extend our method to a spotting ensemble. In an exhaustive 

experimental evaluation on four widely used benchmark datasets we show that the proposed approach 

is able to keep up or even outperform several state-of-the-art methods for template- and learning-based 

keyword spotting. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In order to bridge the gap between availability and accessibility

of ancient handwritten documents handwriting recognition is often

employed for an automatic and complete transcription. In the case

of historical documents this process is inherently an offline task,

and as such, more complex than online handwriting recognition

where temporal information is available [1] . Moreover, the recog-

nition rates of handwriting recognition systems applied to ancient

documents is often negatively affected by both the degenerative

conservation state of scanned documents [2] and different writing

styles [3] . 

In order to overcome the prior obstacles of automatic full

transcriptions of historical handwritten documents, Keyword Spot-

ting (KWS) as a more error-tolerant, flexible, and suitable approach

has been proposed [4–7] . KWS refers to the task of retrieving any

instance of a given query word in a certain document. The concept

of KWS was originally proposed for speech documents [8] and later

adapted for printed [9] and handwritten documents [4] . 

To date, KWS is still highly relevant in different application do-

mains. This is particularly due to the global trend towards digital-

isation of paper-based archives and libraries in both private and

public institutions. Clearly, KWS techniques can make these docu-
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ents accessible for searching and browsing [5] . Similar to hand-

riting recognition, textual KWS can be divided into online and of-

ine KWS. The focus of this paper is on historical documents, and

hus, offline KWS, referred to as KWS from now on, can be applied

nly. 

Most of the KWS methodologies available are based on

emplate-based or learning-based algorithms (similar to the corre-

ponding subfields in handwriting recognition). Early approaches

f template-based KWS are based on pixel-by-pixel matchings of

ord images [4] by either Euclidean distance measures or affine

ransformations by the Scott and Longuet–Higgins algorithm [10] .

ore elaborated and error-tolerant approaches to template-based

WS are based on the matching of feature vectors that numerically

escribe certain characteristics of the word images like projection

rofiles [5,11,12] , gradients [11] , contours [13] , or geometrical char-

cteristics [14] . Also more generic image feature descriptors have

een used like Histograms of Oriented Gradients [15–17] , Local Bi-

ary Patterns [17,18] , or Deep Learning features [19] , to name just

 few. Regardless the features actually employed, Dynamic Time

arping (DTW) is the most frequently used algorithm for match-

ng two sequences of features in KWS [12–16,19,20] . 

Learning-based KWS is based on statistical models that have

o be trained a priori on a (relatively large) training set of word

r character images. Many approaches of learning-based KWS are

ased on Hidden Markov Models (HMM) [6,7,21–26] . Early ap-

roaches are based on generalised Hidden Markov Models that are

https://doi.org/10.1016/j.patcog.2018.04.001
http://www.ScienceDirect.com
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rained on character images, i.e. images of Latin [21] or Ara-

ic [23] characters. However, character-based approaches are nega-

ively affected by an error-prone segmentation step [7] . More elab-

rated approaches rely on feature vectors of word images [22] ,

or example by means of Continuous-HMM [6] or Semi-Continuous-

MM [6] , i.e. HMMs with a shared set of Gaussian Mixture Mod-

ls . Furthermore, the use of a Fisher Kernel has been employed in

onjunction with HMMs in [24] , while a line-based and lexicon-

ree HMM-approach is proposed in [7] . Recently, HMMs have been

sed in combination with Bag-of-Features [25] or Deep Neural Net-

orks [26] . 

Further learning-based approaches are based on Recurrent Neu-

al Networks [20,27] , Support Vector Machines (SVM) [28–30] , or La-

ent Semantic Analysis [31–33] . Moreover, we observe a clear shift

owards Convolutional Neural Network (CNN) in the last years [34–

8] . In most cases, CNNs are used to learn a certain word string

mbedding like Pyramid Histogram of Characters (PHOC) [35–38] or

iscrete Cosine Transform of Words [36–38] that allows the retrieval

f visual and textual queries in the same feature space. 

It is known that template-based matching algorithms generally

esult in a lower recognition accuracy when compared to learning-

ased approaches. Yet, this advantage is accompanied by a loss

f flexibility, which is due to the need for learning the parame-

ers of the actual model. In particular, learning-based methods are

epending on the acquisition of labelled training data by means

f human experts. This is a costly and time-intensive process, es-

ecially in case of handwritten historical documents. In contrast

ith learning-based approaches, template-based algorithms are in-

ependent from both the actual representation formalism and the

anguage of the underlying document. Thus, only a single instance

f a keyword image is needed for the whole retrieval process. 

.1. Related work 

The vast majority of KWS algorithms are based on statistical

epresentations of words by certain numerical features (regard-

ess whether template- or learning-based approaches are used).

owever, in recent years a clear tendency towards structural pat-

ern representation formalisms can be observed in various do-

ains [39,40] . Structural Pattern Recognition is based on more so-

histicated data structures than feature vectors such as strings,

rees, or graphs (whereby strings and trees can be seen as spe-

ial cases of graphs). Graphs are, in contrast with feature vectors,

exible enough to adapt their size to the size and complexity of in-

ividual patterns. Moreover, graphs are capable to represent binary

elationships that might exist in different subparts of the underly-

ng patterns. 

In the last four decades various procedures for evaluating the

issimilarity of graphs, commonly known as graph matching , have

een proposed [41,42] . Although graphs gained noticeable atten-

ion in various fields, we observe only limited attempts where

raphs have been used for the analysis and recognition of hand-

riting [43–45] . This is particularly interesting as graphs offer a

atural and comprehensive way to represent handwritten charac-

ers or words. Moreover, in the last decade substantial progress

as been made in speeding up different graph matching algo-

ithms [42] . These facts build the main motivation of the present

aper that researches the benefits of graph and template-based

WS. 

A first approach to graph-based KWS has been proposed in [43] ,

here certain keypoints are represented by nodes, while edges are

sed to represent strokes between these keypoints. The match-

ng of words is then based on two separate procedures. First, as-

ignment costs between all pairs of connected components (rep-

esented by graphs) are computed by means of a bipartite graph

atching algorithm [46] . Second, optimal assignment costs be-
ween all pairs of connected components are found by means of a

TW implementation. The same matching procedure is improved

y a so-called coarse-to-fine approach in [47] . 

Another framework for graph-based KWS has been introduced

n [44] , where nodes represent prototype strokes (so-called invari-

nts), while edges are used to connect nodes which stem from

he same connected component. The same matching procedure as

n [47] is finally used for computing graph dissimilarities. 

A third graph-based KWS approach has been proposed in [45] ,

here nodes represent prototype stokes (so-called graphemes),

hile edges are used to represent the connectivity between

raphemes. The matching is based on a coarse-to-fine approach.

ormally, potential subgraphs of the query graph are determined

rst. These subgraphs are subsequently matched against a query

raph by means of a similar graph matching procedure as used

n [44,46,47] . 

.2. Contribution 

In the present paper we employ four novel approaches for the

epresentation of handwritten words by means of graphs. A first

pproach is based on the representation of characteristic points

y nodes, while edges represent strokes between these points. An-

ther approach is based on a grid-wise segmentation of word im-

ges, where each segment is eventually represented by a node.

inally, two representation formalisms are based on vertical and

orizontal segmentations of word images by means of projection

rofiles. For matching graphs we adopt the concept of graph edit

istance which can be approximated in cubic time complexity by

eans of the Bipartite graph edit distance algorithm [46] . 

When compared to existing graph-based KWS approaches [43–

5] , the present approach distinguishes manifold. First, our graph

epresentations results in a single graph for every word image.

ence, no additional assignment between graphs of different con-

ected components is necessary during the matching process. Sec-

nd, no prototype library (as used in [44,45] ) is necessary for our

raph representations. Thus, the risk of losing the main character-

stics of handwriting is mitigated in our approach. Last but not

east, besides single matchings we make use of ensemble meth-

ds [48] to combine the graph dissimilarities resulting from the

he different graph representations. 

The present article combines several lines of research and

ubstantially extends three preliminary conference papers [49–

1] . Moreover, in the empirical evaluation we use two additional

atasets of a very recent KWS benchmark [52] and thoroughly

resent and discuss the evaluation of all parameters. 

The remainder of this paper is organised as follows. In

ections 2 and 3 , the proposed graph-based KWS approach is

ntroduced. An experimental evaluation against template- and

earning-based reference systems is given in Section 4 . Finally,

ection 5 concludes the paper and outlines possible future research

ctivities. 

. Graph-based word representation 

The proposed system for KWS is based on representing ancient

andwritten documents by means of a set of single word images,

hich are in turn represented by graphs. Thus, a keyword can

e retrieved in a document by matching a corresponding query

raph against the complete set of document graphs. More formally,

 specific graph matching algorithm computes the dissimilarities

etween the questioned keyword graph and all document graphs.

ased on these graph dissimilarities a retrieval index can be de-

ived. In the best case, this index represents all n instances of a

iven keyword as the final top- n results. 
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Document Words Graphs Gi Query Graph q Retrieval Index

2.1) Image
preprocessing

2.2) Graph
representation

3) Graph matching

Fig. 1. Process of graph-based keyword spotting of the word “October”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Parameters of the four graph extraction algorithms. 

Method Parameter 

Keypoint D = Distance threshold 

Grid w = Segment width h = Segment height 

Projection D v = Vertical threshold D h = Horizontal threshold 

Split D w = Width threshold D h = Height threshold 
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The proposed KWS system includes four basics steps (illus-

trated in Fig. 1 ). During the image preprocessing (1) the original

document images are processed in order to minimise the influ-

ence of variations that are caused, for instance, by noisy back-

grounds, skewed scanning, or document degradation. Subsequently,

the preprocessed document images are automatically segmented

into word images. On the basis of this particular word images,

graphs are extracted by means of different graph extraction algo-

rithms (2) and eventually normalised (3). Finally, the query graphs

are matched with all document graphs. The resulting graph dissim-

ilarities can either be used directly to compute the retrieval index,

or they can be combined by means of different ensemble methods

in order to create a retrieval index (4). 

In the following subsections the first three steps are described

in greater detail. In Section 2.1 we describe the image preprocess-

ing and the word segmentation algorithm that are actually used.

Section 2.2 introduces a unique arsenal of algorithms to extract

graphs from word images. Finally, Section 2.3 covers the step of

graph normalisation. The graph matching algorithm and ensemble

methods for word graphs are thoroughly introduced in a separate

section ( Section 3 ). 

2.1. Image preprocessing 

Image preprocessing basically aims at reducing undesirable

variations which are due to different writers (i.e. interper-

sonal variations), as well as due to the digitised document it-

self (e.g. pixel noise, skewed scanning, or general degradation of

the document). In our particular case, the preprocessing is fo-

cused on the latter problem as variations in the writing style are

minimised by graph normalisation in one of the next steps (see

Section 2.3 ). 

The first preprocessing step locally enhances edges by a Dif-

ference of Gaussians in order to address the issue of noisy back-

ground [53] . Next, document images are binarised by a global

threshold. In the present paper we focus on KWS that operates on

perfectly segmented word images. Thus, single word images are

first automatically segmented based on projection profiles. Next,

the segmentation result is manually inspected and, if necessary,

manually corrected. 1 Moreover, the skew, i.e. the inclination of the

document, is estimated on the lower baseline of a line of text and

then corrected on single word images [14] . Finally, binarised and

normalised word images are skeletonised by a 3 × 3 thinning oper-

ator [54] . We denote segmented word images that are binarised by

B . If the image is additionally skeletonised we use the term S from

now on. 

2.2. Graph representation 

On the basis of segmented, binarised, and possibly skeletonised

word images, we define four graph representation formalisms that
1 The present KWS approach neglects any segmentation errors and can therefore 

be seen as an upper-bound solution. 

 

 

 

 

re built via graph extraction algorithms. These graph extraction

lgorithms aim at representing certain characteristics of a word

mage by means of a graph. 

A graph g is defined as a four-tuple g = (V, E, μ, ν) where V

nd E are finite sets of nodes and edges, and μ: V → L V as well

s ν: E → L E are labelling functions for nodes and edges, respec-

ively. Graphs can be divided into undirected and directed graphs,

here pairs of nodes are either connected by undirected or di-

ected edges, respectively. Additionally, graphs are often distin-

uished into unlabelled and labelled graphs. In the latter case, both

odes and edges can be labelled with an arbitrary numerical, vec-

orial, or symbolic label from L v or L e , respectively. In the former

ase we assume empty label alphabets, i.e. L v = L e = {} . For all of

ur graph representations to be defined in the following four sub-

ection, nodes are labelled with two-dimensional numerical labels,

hile edges remain unlabelled, i.e. L V = R 

2 and L E = {} . 
In the following paragraphs four graph representation for-

alisms (so-called graph extraction algorithms) as well as their

orresponding parameters (see Table 1 ) are introduced. For further

etails and a more thorough introduction we refer to Stauffer et al.

49] . 

• Keypoint : The first graph extraction algorithm makes use of

keypoints in skeletonised word images S such as start, end, and

junction points. These keypoints are represented as nodes that

are labeled with the corresponding ( x, y )-coordinates. Between

pairs of keypoints (which are connected on the skeleton) fur-

ther intermediate points are converted to nodes and added to

the graph at equidistant intervals D . Finally, undirected edges

are inserted into the graph for each pair of nodes that is di-

rectly connected by a stroke. 
• Grid : The second graph extraction algorithm is based on a

grid-wise segmentation with of binarised word images B into

equally sized segments of width w and height h . For each seg-

ment, a node is inserted into the graph and labeled by the

( x, y )-coordinates of the centre of mass of this segment. Undi-

rected edges are inserted between two neighbouring segments

that are actually represented by a node. Finally, the inserted

edges are reduced by means of a Minimal Spanning Tree algo-

rithm [55] . 
• Projection : The next graph extraction algorithm works in a

similar way as Grid . However, rather than a static grid this

method is based on an adaptive and threshold-based segmen-

tation of binarised word images B . Basically, this segmentation

is computed on the horizontal and vertical projection profiles of

B . The resulting segmentation is further refined in the horizon-
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2 That is, an exact and efficient algorithm for the graph edit distance problem can 

not be developed unless P = NP . 
tal and vertical direction by means of two distance thresholds

D h and D v , respectively. A node is inserted into the graph for

each segment and labeled by the ( x, y )-coordinates of the cor-

responding centre of mass. Undirected edges are inserted into

the graph for each pair of nodes that is directly connected by a

stroke in the original word image. 
• Split : The fourth graph extraction algorithm is based on an

iterative segmentation of binarised word images B . That is, seg-

ments are iteratively split into smaller subsegments until the

width and height of all segments are below certain thresholds

D w 

and D h , respectively. A node is inserted into the graph and

labeled by the ( x, y )-coordinates of the point closest to the cen-

tre of mass of each segment. For the insertion of the edges, a

similar procedure as for Projection is applied. 

.3. Graph normalisation 

In order to improve the comparability between graphs of the

ame word class, the labels μ( v ) of the nodes v ∈ V are normalised.

n our case the node label alphabet is defined by L v = R 

2 . We aim

o reduce variations caused by position and size of the underlying

ord images. In particular, the ( x, y )-coordinates of each node label

(v ) = (x, y ) ∈ R 

2 are centralised and scaled. Formally, we com-

ute 

ˆ 
 = 

x − μx 

σx 
and 

ˆ y = 

y − μy 

σy 
, 

here ˆ x and ˆ y denote the new node coordinates, while x and y

enote the original node position. The value pairs ( μx , μy ) and

 σ x , σ y ) represent the means and standard deviations of all ( x, y )-

oordinates in the graph under consideration. 

. Matching word graphs 

For spotting keywords, a query graph q (used to represent

 certain keyword) is pairwise matched against all graphs G =
 g 1 , . . . , g N } stemming from the underlying document. Basically,

raphs can either be matched with exact or inexact meth-

ds [41,42] . In case of exact graph matching, it is verified whether

wo graphs are identical ( isomorphic ) with respect to both their

tructure and labels. In our application graphs that represent the

ame word class might have (subtle) variations in their struc-

ure and their labelling making exact graph matching not feasible.

ence, we focus on inexact graph matching. 

In the following three paragraphs the concept of using inexact

raph matching for KWS is thoroughly discussed. In Section 3.1 ,

he inexact graph matching paradigm of Graph Edit Distance (GED) ,

s well as a fast, yet suboptimal algorithm for this particular dis-

ance model is discussed. A selection of ensemble methods based

n different graph dissimilarities is introduced in Section 3.2 . Fi-

ally, Section 3.3 explains how graph dissimilarities are trans-

ormed into a retrieval index for KWS. 

.1. Inexact graph matching by means of Graph Edit Distance (GED) 

Inexact graph matching allows matchings between two non-

dentical graphs by endowing the matching process with a certain

rror-tolerance with respect to labels and structure. Several ap-

roaches for inexact graph matching have been proposed [41,42] .

et, GED is widely accepted as one of the most flexible and pow-

rful paradigms available [56] . 

Given two graphs, the source graph g 1 = (V 1 , E 1 , μ1 , ν1 ) and the

arget graph g 2 = (V 2 , E 2 , μ2 , ν2 ) , the basic idea of graph edit dis-

ance is to transform g 1 into g 2 using some edit operations. A stan-

ard set of edit operations is given by insertions, deletions , and sub-

titutions of both nodes and edges. We denote the substitution of
wo nodes u ∈ V 1 and v ∈ V 2 by ( u → v ), the deletion of node u ∈ V 1 

y ( u → ε), and the insertion of node v ∈ V 2 by ( ɛ → v ), where ε
efers to the empty node. For edge edit operations we use a simi-

ar notation. A set { e 1 , . . . , e k } of k edit operations e i that transform

 1 completely into g 2 is called an edit path λ( g 1 , g 2 ) between g 1 
nd g 2 . 

Let Y( g 1 , g 2 ) denote the set of all edit paths between two

raphs g 1 and g 2 . To find the most suitable edit path out of Y( g 1 ,

 2 ), one commonly introduces a cost c ( e ) for every edit operation

 , measuring the strength of the corresponding operation. The idea

f such a cost is to define whether or not an edit operation e rep-

esents a strong modification of the graph. Given an adequate cost

odel, the graph edit distance d λmin 
(g 1 , g 2 ) , or d λmin 

for short, be-

ween g 1 = (V 1 , E 1 , μ1 , ν1 ) and g 2 = (V 2 , E 2 , μ2 , ν2 ) is defined by 

 λmin 
(g 1 , g 2 ) = min 

λ∈ ϒ(g 1 ,g 2 ) 

∑ 

e i ∈ λ
c(e i ) . 

For our cost model we use a weighting parameter α ∈ [0, 1] that

ontrols whether the edit operation cost on the nodes or on the

dges is more important. That is, the cost of any node operation

s multiplied by α. In the case of edge operations the costs are

ultiplied by (1 − α) . Thus, a setting of α = 0 . 5 leads to balanced

mportance between node and edge operation cost. 

In our framework a constant cost for node deletions and inser-

ions is defined by c(u → ε) = c(ε → v ) = τv ∈ R 

+ (u ∈ V 1 and v ∈
 2 ) . The same accounts for the edges (constant cost τe ∈ R 

+ for

dge deletions and insertions). The cost for node substitutions

hould reflect the dissimilarity of the associated label attributes. In

ur application the nodes are labelled with ( x, y )-coordinates and

e use a weighted Euclidean distance on these labels to model the

ubstitution cost. Formally, the cost for a node substitution ( u → v )

ith μ1 (u ) = (x i , y i ) and μ2 (v ) = (x j , y j ) is defined by 

(u → v ) = 

√ 

β σx (x i − x j ) 2 + (1 − β) σy (y i − y j ) 2 , 

here β ∈ [0, 1] denotes a parameter to weight the importance of

he x - and y -coordinate of a node, while σ x and σ y denote the

tandard deviation of all node coordinates in the current query

raph. The larger the deviation in x - or y -direction, the more im-

ortant is the particular direction (and weighted accordingly). 

In order to compute the graph edit distance d λmin 
(g 1 , g 2 ) of-

en A 

∗ based search techniques using some heuristics are em-

loyed [57–60] . Yet, graph edit distance computation based on A 

∗

s exponential in the number of nodes of the involved graphs. For-

ally, for graphs with m and n nodes we observe a time complex-

ty of O(m 

n ) . This means that for large graphs the computation of

xact edit distance is intractable. In fact, graph edit distance be-

ongs to the family of Quadratic Assignment Problems (QAPs) [61] ,

hich in turn belong to the class of N P -complete problems. 2 

QAPs basically consist of a linear and a quadratic term which

ave to be simultaneously optimised. In case of graph edit dis-

ance, the linear term of QAPs can be used to model the sum

f node edit costs, while the latter is commonly used to rep-

esent the sum of edge edit costs (see Riesen [39] for further

etails). The graph edit distance approximation framework intro-

uced in [46] reduces the QAP of graph edit distance computation

o an instance of a Linear Sum Assignment Problem ( LSAP ). Similar

o QAPs, LSAPs deal with the question how the entities of two sets

an be optimally assigned to each other. 

For solving LSAPs, a large number of efficient algorithms exist

see Burkard et al. [62] for an exhaustive survey). The time com-

lexity of the best performing exact algorithms for LSAPs is cubic

n the size of the problem. Hence, LSAPs can be – in contrast with

APs – quite efficiently solved. 
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3 George Washington Papers at the Library of Congress, 1741–1799: Series 2, 

Letterbook 1, pp. 270–279 & 300–309, http://memory.loc.gov/ammem/gwhtml/ 

gwseries2.html 
4 Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/ 

databases/iam- historical- document- database/parzival- database 
5 Alvermann Konzilsprotokolle and Botany at ICFHR2016 benchmark database, 

http://www.prhlt.upv.es/contests/icfhr2016-kws/data.html 
6 George Washington Papers at the Library of Congress, 1741–1799: Series 2, 

Letterbook 1, pp. 270–279 & 300–309, http://memory.loc.gov/ammem/gwhtml/ 

gwseries2.html 
Basically, the framework proposed in [46] optimally solves

the LSAP which can be stated on assignments of local struc-

tures (viz. nodes and adjacent edges). This assignment can eventu-

ally be used to infer a complete set of globally consistent node and

edge edit operations, i.e. we can derive a valid edit path λ∈ Y( g 1 ,

g 2 ). The sum of costs of this – not necessarily optimal – edit path

gives us an upper bound on the exact distance d λmin 
[63] . We refer

to the approximated distance as d BP from now on. 

Finally, d BP is normalised by the sum of the maximum cost edit

path between the query graph q and the document word graph g ,

i.e. the sum of the edit path that results from deleting all nodes

and edges of q and inserting all nodes and edges in g . In case a

query consists of a set of graphs { q 1 , . . . , q t } that represents the

same keyword, the normalised graph edit distance is given by the

minimal distance achieved on all t query graphs. 

3.2. Ensemble methods for graphs 

Rather than representing word images by a single graph repre-

sentation, one might represent both the query graph q as well as

the document graphs g i ∈ G with all graph representations as intro-

duced in Section 2.2 . Hence, a query word is actually represented

by four graphs q K , q G , q P , and q S , i.e. one query graph per graph

formalism ( Keypoint (K) , Grid (G) , Projection (P) , and

Split (S) ). The same accounts for all document words which

are now represented by four sets of document graphs { G K , G G , G P ,

G S }. Hence, rather than matching one query graph against one doc-

ument graph, one could also match q K , q G , q P , and q S with the cor-

responding set of document graphs. Consequently, four graph dis-

similarities are obtained for each pair ( q, g ) of a query word q and

a document word g . Based on these dissimilarities, we use differ-

ent combination strategies in order to build a KWS ensemble. 

The first strategy considers all four graph extraction methods by

either choosing the minimal, maximal, or mean GED returned on

the four representations (termed d min , d max , and d mean from now

on). Formally, for one query word q represented by q K , q G , q P , and

q S and one document word g represented by g K , g G , g P , and g S we

define 

d min (q, g) = min 

i ∈{ K,G,P,S} d BP 

(q i , g i ) , 

d max (q, g) = max 
i ∈{ K,G,P,S} 

d BP 

(q i , g i ) , 

d mean (q, g) = 

1 

4 

∑ 

i ∈{ K,G,P,S} 
d BP 

(q i , g i ) . 

The second strategy only considers the two most promis-

ing individual graph extraction methods as proposed in [49] ,

viz. Keypoint and Projection . Two different weighted sums

are applied to combine the respective distances with each

other (termed d sum α and d sum map from now on). Formally, 

d sum α (q, g) = γ d BP 

(q K , g K ) + (1 − γ ) d BP 

(q P , g P ) , 

d sum map 
(q, g) = δ d BP 

(q K , g K ) + ε d BP 

(q P , g P ) , 

where γ denotes a user defined weighting factor, and δ and

ε denote weighting factors based on the mean average preci-

sion of the individual KWS systems operating on Keypoint and

Projection graphs, respectively. 

The individual distances d BP (on single representations) as well

as all combinations can now be used to create retrieval indices for

KWS (for the remainder of this section d stands for single distances

or any of the five combined distances). 

3.3. Computing the retrieval index 

Keyword spotting is either based on a local or global threshold

scenario. In a real world scenario, local thresholds are used in case
f a vocabulary of common keywords, while a global threshold

s used for arbitrary out-of-vocabulary keywords. Generally, global

hresholds are regarded as the more realistic but also more difficult

cenario. That is, in case of local thresholds, the KWS accuracy is

ndependently measured for every keyword, while in case of global

hresholds, the KWS accuracy is measured for every keyword with

ne single threshold. In the following, we introduce two retrieval

ndices for local and global thresholds, respectively. 

First, d is used to derive a retrieval index for local thresholds

y 

 1 (q, g) = −d(q, g) . 

Second, the distance d is normalised to form a retrieval in-

ex r 2 for global thresholds by using the average distance of a

uery graph q to its k nearest document graphs, i.e. the document

raphs { g (1) , . . . , g (k ) } with smallest distance values to q . Formally,

e use 

 ̄k (q ) = 

1 

k 

k ∑ 

i =1 

d(q, g (i ) ) . 

o derive 

ˆ 
 (q, g) = 

d(q, g) 

d̄ k (q ) 
. 

Eventually, ˆ d is used to derive the second retrieval index by 

 2 (q, g) = − ˆ d (q, g) . 

Rather than defining k as a constant, we dynamically adapt k to

very query graph q . Formally, we define k such that the distance

 ( q, g ( k ) ) of q to its k th nearest document graph g ( k ) is equal to 

(q, g (k ) ) = d̄ m 

(q ) + θ ( d̄ N (q ) − d̄ m 

(q )) , 

here m ∈ N and θ ∈ [0, 1] are user defined parameters and N

efers to the number of document graphs. The value of d̄ m 

(q )

efers to the mean distance of q to its m nearest neighbours and

 ̄N (q ) refers to the mean distance to all document graphs avail-

ble. This sum reflects the level of dissimilarities of q to the graphs

n its direct neighbourhood. If the sum is large, k is automatically

efined large, too. This in turn increases d̄ k (q ) , which ultimately

ncreases the scaling for ˆ d . 

. Experimental evaluation 

.1. Datasets 

The experimental evaluation is carried out on two well known

anuscripts, viz. George Washington (GW) 3 and Parzival (PAR) , 4 as

ell as two documents of a very recent KWS benchmark compe-

ition, 5 viz. Alvermann Konzilsprotokolle (AK) and Botany (BOT) . In

ig. 2 small excerpts of all four documents are shown. 

• GW consists of twenty pages stemming from handwritten let-

ters written by George Washington and his associates during

the American Revolutionary War in 1755. 6 The letters are writ-

ten in English and contain only minor signs of degradation.

The variations in the writing style is low, even though differ-

ent writers have been involved in their creation. 

http://memory.loc.gov/ammem/gwhtml/gwseries2.html
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/parzival-database
http://www.prhlt.upv.es/contests/icfhr2016-kws/data.html
http://memory.loc.gov/ammem/gwhtml/gwseries2.html
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(a) George Washington (GW) (b) Parzival (PAR)

(c) Alvermann Konzilsprotokolle (AK) (d) Botany (BOT)

Fig. 2. Exemplary excerpts of the two datasets. 
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Table 2 

Number of keywords and number of word 

images in the training and test sets of the 

four datasets. 

Dataset Keywords Train Test 

GW 105 2447 1224 

PAR 1217 11468 6869 

BOT 150 1684 3380 

AK 200 1849 3734 
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• PAR consists of 45 pages stemming from handwritten letters

written by the German poet Wolfgang Von Eschenbach in the

13th century. 7 The manuscript is written in Middle High Ger-

man on parchment with markable signs of degradation. The

variations in the writing are low, even though three different

writers have been involved. 
• AK consists of 180 0 0 pages stemming from handwritten min-

utes of formal meetings held by the central administration of

the University of Greifswald in the period of 1794 to 1797. The

notes are written in German and contain only minor signs of

degradation. The variations in the writing styles is rather low. 
• BOT consists of more than 100 different botanical records made

by the government in British India in the period of 1800 to

1850. The records are written in English and contain certain

signs of degradation and especially fading. The variations in the

writing style are noticeable especially with respect to scaling

and intraword variations. 

Note that only a subset of the datasets is used in case of BOT

nd AK. Moreover, the word segmentation on these datasets is im-

erfect [52] , and thus, an additional image preprocessing step is

pplied to filter small connected components. In Fig. 3 three ex-

mple words per dataset and their corresponding graph represen-

ations are shown. 8 

.2. Reference systems 

We compare the proposed graph-based KWS approach with two

ypes of reference systems, viz. four different template-based sys-

ems using DTW [14–16,19] , and three learning-based KWS system

sing SVM and CNN [28,35,36] . Note that reference results of the

TW-based systems are available on GW and PAR only. Likewise,

he results of the learning-based reference systems are available

n BOT and AK only. 

DTW optimally aligns (warps) two sequences of features vec-

ors X = { x 1 , . . . , x m 

} and Y = { y 1 , . . . , y n } along one common time

xis using a dynamic programming approach. In the current case

hese feature vectors either consist of nine different geometrical
7 Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/ 

atabases/iam- historical- document- database/parzival- database 
8 Graphs are available at http://www.histograph.ch 

 

t  

p  

T  

fi  
eatures [14] , Histogram of Oriented Gradient features [15,16] , or

eep Learning features [19] . Finally, the alignment cost d ( x, y ) be-

ween each vector pair (x , y ) ∈ R 

n × R 

n is given by the squared Eu-

lidean distance. The DTW distance D ( X, Y ) between two sequences

f feature vectors is then given by the minimum alignment cost

ound by dynamic programming [5] . For speeding up the align-

ent a Sakoe-Chiba band that constrains the warping path [64] is

pplied. 

We take three state-of-the-art learning-based methods into ac-

ount, viz. CVCDAG [28] , PRG [35] , and QTOB [36] . CVCDAG is

ased on PHOC features used in conjunction with an SVM [28] .

HOC is a word string embedding approach based on five different

plitting levels, i.e. on level n a word image is split into n subparts

or which a histogram for the number of character occurrences is

reated. In PRG, the same features are used to train a CNN, the so-

alled PHOCNet [35] . Another CNN is used in QTOB by means of a

riplet network approach [36] . 

.3. Experimental setup 

All parameters are optimised on ten different keywords (with

ifferent word lengths), as shown in Fig. 4 . To this end, we de-

ne a validation set that consists of 10 random instances per key-

ord and 900 additional random words (in total 10 0 0 words). The

etails regarding the parameter optimisation are thoroughly de-

cribed in Appendix A . 

The optimised systems are eventually evaluated on the same

raining and test sets as used in [7,52] (for all datasets). All tem-

lates of a keyword present in the training set are used for KWS. In

able 2 a summary of all datasets can be found. In Section 4.4 we

rst compare our novel framework with the four template-based

http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/parzival-database
http://www.histograph.ch
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Keypoint Grid Projection SplitOriginal Preprocessed

(a) George Washington (GW)

Keypoint Grid Projection SplitOriginal Preprocessed

(b) Parzival (PAR)

Keypoint Grid Projection SplitOriginal Preprocessed

(c) Alvermann Konzilsprotokolle (AK)

Keypoint Grid Projection SplitOriginal Preprocessed

(d) Botany (BOT)

Fig. 3. Different graph representations of the four datasets. 
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9 Global threshold results are not available for BOT and AK as the ICFHR2016 

competition is based on local thresholds only. 
systems on GW and PAR. Eventually, the comparison with the

three learning-based systems on AK and BOT is carried out in

Section 4.5 . 

For measuring the KWS performance of the different systems

we compute the Recall (R) and Precision (P) 

R = 

T P 

T P + F N 

and P = 

T P 

T P + F P 
, 

which are both based on the number of True Positives (TP), False

Positives (FP) , and False Negatives (FN) . 

Both recall and precision can be computed for two types of

thresholds, viz. local and global thresholds. In the case of local

thresholds, the KWS performance is measured for each keyword
ndividually and then averaged over all keyword queries. In the

ase of global thresholds, the same thresholds are used for all key-

ords. This scenario is more practical for a real-world KWS system

ut requires individual keyword scores to be comparable with each

ther. Hence, the global threshold scenario is more challenging in

eneral. 9 

Eventually, two metrics are used to evaluate the quality of the

WS system. For global thresholds, the Average Precision (AP) is

easured, which is the area under the Recall-Precision curve for
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Fig. 4. Selected keywords of the four datasets used for optimisation. 

Table 3 

Mean average precision (MAP) using local thresholds, average precision (AP) using a global threshold as well 

as their average for all graph-based KWS systems in comparison with four DTW-reference systems according 

to [19] . The first, second, and third best systems are indicated by (1), (2), and (3). 

GW PAR 

Method MAP AP MAP AP Average 

Reference (Template) 

DTW’01 [14] 45.26 33.24 46.78 50.67 43.99 

DTW’08 [15] 63.39 41.20 47.52 55.82 51.98 

DTW’09 [16] 64.80 43.76 73.49 69.10 62.79 

DTW’16 [19] 68.64 56.98 (3) 72.38 72.71 (3) 67.68 (3) 

Graph (Ensemble) 

min 70.56 (1) 56.82 67.90 62.33 64.40 

max 62.58 47.94 67.57 50.59 57.17 

mean 69.16 (3) 57.11 (2) 79.38 (1) 73.77 (1) 69.85 (1) 

sum α 68.44 55.78 74.51 (3) 68.12 66.71 

sum map 70.20 (2) 57.38 (1) 76.80 (2) 73.56 (2) 69.48 (2) 
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ll keywords given a single (global) threshold. For local thresholds,

e compute the Mean Average Precision (MAP) , that is the mean

ver the AP of each individual keyword query. The values are com-

uted using the trec_eval 10 software. 

.4. Graph-based vs. template-based KWS 

The novel graph-based ensemble for KWS is compared on the

ndependent test set with four DTW-reference systems for both

enchmark datasets GW and PAR. Note that the evaluation of

he single graph representations, underlying our ensemble, can be

ound in Appendix B . The MAP (for local thresholds), the AP (for

lobal thresholds) as well as their average are given in Table 3 .

hese results are also reflected in Fig. 5 where the recall-precision

urves are plotted for local and global thresholds on GW and PAR,

espectively. 
10 http://trec.nist.gov/trec _ eval 
We observe that the ensemble method mean achieves in two

ut of four cases the best and and in two cases the second and

hird best result, while sum map achieves once the best result and

hree times the second best result. Hence, we conclude that mean

nd sum map are the best performing ensembles. On the other hand,

e observe that the ensemble max is not a well suited strategy in

ur specific scenario as it achieves the worst result of all ensem-

les in all four cases. 

Overall, we see a clear performance improvement of our graph-

nd ensemble based approach when compared to state-of-the-art

TW-based reference systems. Especially, the ensemble methods

ean and sum map achieve a higher accuracy on both datasets and

hreshold scenarios. This is in particular interesting as two refer-

nce systems [16,19] are using advanced feature sets, 11 while our

raph-based methods are based on coordinate labels only. 

http://trec.nist.gov/trec_eval
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(a) Local - George Washington (GW)
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(b) Global - George Washington (GW)
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(c) Local - Parzival (PAR)
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(d) Global - Parzival (PAR)

Fig. 5. Comparing the keyword spotting performance for both local and global thresholds on both datasets using recall-precision curves. 

(a) George Washington

(b) Parzival

Fig. 6. Top ten results for given keywords using the min ensemble method. 
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A qualitative evaluation of our graph ensemble is given in Fig. 6 ,

where the top ten results for one random keyword of each dataset

is given (using the ensemble method min ). On GW we observe

that the first retrieved keyword ( searched ) does not correspond to

the actual query word ( wanted ). Yet, the word images are visu-

ally similar to each other. The single instance available is retrieved
11 In particular, [19] performs an unsupervised feature learning step using unla- 

belled data. 

w  

t  

c  
econd. Similar effects of false positives can be observed on PAR,

here the first retrieved keyword does not correspond to the ac-

ual query word. Note the slight differences in orthography, which

ighlight a particular challenge of the medieval PAR dataset. 

We provide an empirical performance evaluation on the GW

ataset in Table 4 . We show the average matching time per key-

ord for all four DTW-based systems and two graph-based sys-

ems, i.e. the proposed cubic time framework BP and a more re-

ent quadratic time algorithm Hausdorff Edit Distance (HED) [65] .
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(a) Alvermann Konzilsprotokolle (AK)

(b) Botany (BOT)

Fig. 7. Top ten results for given keywords using the min ensemble method. 

Table 4 

Average matching time per keyword pair 

in ms. 

Reference Systems ms 

DTW’01 [14] 0.7 

DTW’08 [15] 5.6 

DTW’09 [16] 10.2 

DTW’16 [19] 7.7 

Graph Matching Algorithms 

BP 303.0 

HED [65] 3.2 

Table 5 

Mean average precision (MAP) using local thresholds for graph-based 

KWS systems in comparison with three state-of-the-art learning-based 

reference systems of the ICFHR2016 competition [52] . The first, second, 

and third best systems are indicated by (1), (2), and (3). 

Method AK BOT Average 

Reference (Learning) 

CVCDAG [28] 77.91 75.77 (2) 76.84 (2) 

PRG [35] 96.05 (1) 89.69 (1) 92.87 (1) 

QTOB [36] 82.15 54.95 68.55 

Graph (Ensemble) 

min 82.75 65.19 73.97 

max 82.09 67.57 74.83 

mean 84.25 (3) 68.88 (3) 76.57 

sum α 84.77 (2) 68.77 76.77 (3) 

sum map 84.25 (3) 68.88 (3) 76.57 
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omparing the average matching time per keyword for BP with

he DTW methods, we observe a clear performance loss. However,

f we compare the average matching time for HED, we see lower

atching times in three out of four cases. These results highlight

he potential of graph matching also with a view to runtime con-

iderations. Only DTW’01, where low dimensional feature vectors

re used, is faster than HED. 

.5. Graph-based vs. learning-based KWS 

Last but not least, we provide a comparison of graph-based

nsemble methods 12 with recent results of learning-based ap-

roaches achieved on the ICFHR2016 benchmark dataset [52] . Note

hat the evaluation of the single graph representations, underlying

ur ensemble, can be found in Appendix B . In Table 5 , the MAP on

oth datasets as well as their average is given for all graph-based
12 For this comparison, we only consider the two most promising graph represen- 

ations Keypoint and Projection . 

a

 

g  

k  
nsemble methods and the learning-based reference systems. In

ase of graph-based ensemble methods, we observe that the en-

emble methods mean, sum α , and sum map outperform min and

ax . In case of the learning-based reference systems, we observe

hat the PHOCNet leads to an astonishing accuracy. However, the

nsemble method sum α achieves almost the same overall KWS ac-

uracy as the learning-based PRG-approach. In particular, on the

K dataset our graph-based methods can keep up or even outper-

orm PRG. 

We conclude that our graph-based methods can keep up with

ost state-of-the-art learning-based methods. This is especially re-

arkable as these reference methods are based on more advanced

eatures than our approach (e.g. PHOC), and use learning-based

lgorithms (i.e. SVM, and CNN). In particular, some of the refer-

nce systems need relatively large training sets, i.e. labelled train-

ng data (e.g. PRG achieves lower rates on penalised/weighted MAP,

ee Pratikakis et al. [52] for details). Yet, the manual labelling

f historical handwriting with the help of human experts is a

abour- and cost-intensive process. This makes our novel graph-

ased methods especially valuable as only a single instance of a

eyword is required. 

To conclude this section, we provide a qualitative comparison

n Fig. 7 , where the top ten results for one random keyword of

ach dataset is given (using the ensemble method min ). On the

K dataset, we observe false positives on the first three retrieval

esults for the query Schema . However, all false positives are visu-

lly very similar to the actual query word. On the BOT dataset, a

imilar effect can be observed for the query Division and the false

ositives Revenue . Note the additional challenge of KWS due to the

mperfect word segmentation. 

. Conclusion and future work 

A novel graph-based framework is presented for the task of

eyword spotting in historical handwritten documents. The pro-

osed approach allows to search arbitrary keywords in handwrit-

en documents, which is particularly interesting for historical doc-

ments where an automatic transcription is not feasible or not

ufficiently accurate. The basic algorithm for keyword spotting is

emplate-based and can thus be used without a priori learning of

 statistical model. Hence, no labour- and time-intensive labelling

f historical handwriting is necessary. This makes the presented

raph-based framework not only more universally applicable but

lso more flexible when compared to learning-based approaches. 

To represent individual words we make use of four different

raph extraction methods. The first extraction method is based on

eypoints detected in a word image, which are eventually repre-
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sented by nodes, while the edges are represent the line strokes

between two keypoints. The second extraction method is based on

grid-wise segments of a word image, which are eventually repre-

sented by nodes, while the edges model a minimal spanning tree

on the adjacency structure of these segments. The third and fourth

extraction method make both use of vertical and horizontal pro-

jection profiles to segment a word image. The resulting segments

are then represented by nodes, while edges are inserted between

nodes based on the line strokes between segments. The actual key-

word spotting is then based on combined graph dissimilarities re-

turned by bipartite graph matching. 

For the experimental evaluation the proposed method is first

compared with four state-of-the-art template-based DTW refer-

ence systems on two well-known benchmark datasets. For both

datasets the task of keyword spotting is evaluated using both lo-

cal and global thresholds. On both datasets and thresholds the

novel graph-based methods clearly outperform all of the reference

systems. Moreover, our novel graph-based ensemble method can

keep up or even outperform several learning-based approaches on

the very recent ICFHR2016 benchmark datasets. This indicates the

power and flexibility of graphs in conjunction with template- and

ensemble-based KWS. 

A limitation of the proposed approach is the need for a seg-

mentation of document pages into single word images. In future

work we therefore aim at extending our word-based approach to

a line-based approach, where a query graph can be found in a line

(represented as a line graph) by means of error-tolerant subgraph

isomorphism. Moreover, the current graph representations and edit

functions are based on the Euclidean space R 

2 . More meaningful

label functions for both nodes and edges (based on texture descrip-

tors for instance) could further improve the performance of our

keyword spotting framework. Finally, the performance of the novel

framework could be improved w.r.t. runtime by graph matching

algorithms with a lower computational complexity [65] or other

heuristics [66,67] . 
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Table A.6 

Parameter optimisation for the graph extraction a

tion. Optimal parameters are marked with an aste

Method Parameter 

GW Keypoint D = {4 ∗ , 6,8,10,12

Grid w = {6 ∗ , 8,10,12,1

Projection D v = {4 ∗ , 6,8,10} 

Split D w = {4,6 ∗ , 8,10} 

PAR Keypoint D = {2 ∗ , 4,6,8,10,1

Grid w = {4 ∗ , 6,8,10,12

Projection D v = {2 ∗ , 4,6,8,10}

Split D w = {2 ∗ , 4,6,8,10}

AK Keypoint D = {16 ∗ , 20,24,2

Projection D v = {10,12,14,16 ∗}

BOT Keypoint D = {16 ∗ , 20,24,2

Projection D v = {10,12,14 ∗ , 16

Table A.7 

Optimal cost function parameter for graph edit distance computa

GW PAR 

Method τ v τ e α β τ v τ e α

Keypoint 4 1 0.5 0.1 4 4 0.5 

Grid 4 1 0.7 0.1 4 1 0.7 

Projection 4 1 0.5 0.1 4 1 0.5 

Split 4 1 0.5 0.1 4 1 0.3 
ppendix A. Optimisation of the parameters 

The optimisation of the parameters is conducted in four subse-

uent steps. The first two steps are actually used for optimising the

ystems based on local thresholds, while the third step is solely

sed for global thresholds. Note that global thresholds are opti-

ised for GW and PAR only, as the ICFHR2016 benchmark (i.e. AK

nd BOT) is based on local thresholds only. Finally, the fourth step

s used for the ensemble methods only. 

First step: The parameters for each graph extraction algorithm

re optimised with respect to the MAP on the validation set

sing different node and edge deletion/insertion costs τv = τe =
 1 , 4 , 8 , 16 , 32 } , fixed weighting parameters α = β = 0 . 5 and re-

rieval index r 1 . In Table A.6 , an overview of the tested parameters

s given for all four datasets. The best performing parameters are

arked with an asterisk. 

Second step: Using the optimal parameters for each graph

xtraction method, the parameters for graph edit distance

re further optimised. That is, we evaluate the 25 pairs of

onstants for node and edge deletion/insertion costs ( τv =
e = { 1 , 4 , 8 , 16 , 32 } ). In combination with the weighting pa-

ameters α = { 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 } and β = { 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 } .
ence, we evaluate a total of 625 parametrisations per graph ex-

raction method and dataset (resulting in 50 0 0 settings in total).

n Table A.7 the optimal cost function parameters are given for all

raph extraction algorithms. 

Third step: For KWS systems using global thresholds we em-

loy retrieval index r 2 rather than r 1 . Hence, the parameter m and

hreshold scaling factor θ are individually optimised for each sys-

em ( N is defined by the number of document graphs). We tested

0 0 0 0 parameters pairs ( m, θ ) with m ∈ { 10 , 20 , . . . , 990 , 10 0 0 }
nd θ ∈ { 0 . 01 , 0 . 02 , . . . , 0 . 99 , 1 . 00 } . In Table A.8 , the optimal pa-

ameter settings for r 2 are given for all systems. 

The differences of the optimal parameter settings are due to dif-

erent distributions of the graph edit distances for GW and PAR,

espectively. In case of GW, the graph edit distances for global

hresholds are optimised by considering a rather large neighbour-

ood m and small weighting factor θ . In case of PAR, we can ob-

erve the opposite case. 
lgorithms during the first step of optimisa- 

risk. 

} 

4} × h = {6 ∗ , 8,10,12} 

× D h = {4,6 ∗ , 8,10} 

× D h = {4 ∗ , 6,8,10} 

2} 

} × h = {4 ∗ , 6,8,10} 

 × D h = {4 ∗ , 6,8,10} 

 × D h = {4 ∗ , 6,8,10} 

8,32,36} 

 × D h = {10 ∗ , 12,14,16} 

8,32,36} 

} × D h = {10,12 ∗ , 14,16} 

tion. 

AK BOT 

β τ v τ e α β τ v τ e α β

0.3 16 16 0.5 0.1 32 32 0.3 0.1 

0.5 - - - - - - - - 

0.5 8 32 0.7 0.1 8 32 0.9 0.3 

0.3 - - - - - - - - 

https://doi.org/10.13039/501100003475
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Table A.8 

Optimal m and θ for retrieval index r 2 . 

GW PAR 

Method m θ m θ

Keypoint 60 0.02 10 0 0 0.20 

Grid 90 0.01 820 0.19 

Projection 60 0.03 980 0.20 

Split 80 0.03 990 0.18 

min 70 0.08 10 0.72 

max 40 0.10 10 0.61 

mean 60 0.06 10 0.64 

sum α 70 0.04 10 0.61 

sum map 90 0.02 10 0.61 

Table A.9 

Optimal γ for the sum α ensemble. 

GW PAR AK BOT 

γ MAP MAP MAP MAP 

0.1 73.21 10 0.0 0 30.65 51.20 

0.2 73.34 99.19 30.74 51.38 

0.3 75.23 99.19 30.25 51.56 

0.4 71.84 99.19 29.74 51.74 

0.5 71.75 99.19 29.12 50.06 

0.6 71.34 96.33 29.49 50.50 

0.7 72.00 94.65 29.91 49.73 

0.8 72.10 94.28 28.59 46.49 

0.9 72.05 93.95 27.91 46.71 

 

s  

o

 

f  

p

A

 

i  

a

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[  

 

[  

 

 

 

[  

 

[  

 

 

[  

 

[  

[  

 

 

[  

 

 

 

[  

 

 

 

[  

 

 

 

Fourth step: The weighting factor γ ∈ { 0 . 1 , . . . , 0 . 9 } for the en-

emble sum α is the sole parameter that needs to be optimised (all

ther ensemble strategies need no parameter tuning). 

In Table A.9 , the MAP is given for the tested parameter settings

or γ on all benchmark datasets. Note that the best performing

arameter setting is indicated in bold face. 

ppendix B. Results graph-based representations 

We compare the novel graph representations with each other

n Table B.10 . We observe that either Keypoint or Projection

Table B.10 

Mean average precision for all graph-based KWS systems. The first, second, and 

third best systems are indicated by (1), (2), and (3). 

GW PAR AK BOT 

Keypoint 66.08 (1) 62.04 (2) 77.24 (1) 45.06 (2) 

Grid 60.02 56.50 - - 

Projection 61.43 (2) 66.23 (1) 76.02 (2) 49.57 (1) 

Split 60.23 (3) 59.44 (3) - - 

chieve the best results among all graph extraction methods. 
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