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Abstract—Scanned handwritten historical documents are
often not well accessible due to the limited feasibility of au-
tomatic full transcriptions. Thus, Keyword Spotting (KWS)
has been proposed as an alternative to retrieve arbitrary
query words from this kind of documents. In the present
paper, word images are represented by means of graphs.
That is, a graph is used to represent the inherent topological
characteristics of handwriting. The actual keyword spotting
is then based on matching a query graph with all document
graphs. In particular, we make use of a fast graph matching
algorithm that considers the contextual substructure of nodes.
The motivation for this inclusion of node context is to increase
the overall KWS accuracy. In an experimental evaluation
on four historical documents, we show that the proposed
procedure clearly outperforms diverse other template-based
reference systems. Moreover, our novel framework keeps up
or even outperforms many state-of-the-art learning-based
KWS approaches.

Keywords-Handwritten Keyword Spotting; Graph Repre-
sentation; Hausdorff Edit Distance; Ensemble Methods

I. INTRODUCTION

The accessibility of handwritten historical documents
is often limited, especially as an automatic and full
transcription is often negatively affected by high writ-
ing variations and degraded documents. Hence, Keyword
Spotting (KWS) has been proposed as an alternative to a
full transcription [1]. KWS allows us to retrieve arbitrary
keywords in handwritten historical documents.

KWS approaches are either based on template-based or
learning-based algorithms. In the former case, a query
image is directly matched against a set of document
images. To this end word images are often represented
by sequences of features vectors and then matched by
means of Dynamic Time Warping (DTW) [2], [3], [4],
[5]. In the latter case, the extracted features are used to
train a statistical model like for example Hidden Markov
Models [2], [4], [5], Support Vector Machine (SVM) [6], or
Convolutional Neural Networks (CNN) [7]. Learning-based
approaches often achieve higher accuracies than template-
based approaches. However, this advantage is accompanied
by a loss of flexibility which is due to the a priori learning
and the need for labelled training data.

The present template-based KWS approach makes use
of graphs — rather than sequences of feature vectors — for

the representation of handwritten words. Graphs actually
offer a natural way to represent the inherent topological
characteristics of handwriting. Moreover, several fast match-
ing algorithms applicable to large and complex graphs
have been proposed in recent years (e.g. [8], [9]). Both
observations make graphs to a valid alternative to vectorial
representations.

In previous graph-based KWS approaches (e.g. [10],
[11]), the employed matching algorithms rely on finding
correspondences of local substructures (i.e. nodes and
their adjacent edges). To make the matching of local
structures more precise, the current paper employs a novel
graph matching algorithm [12] that considers not only
adjacent edges but a more comprehensive context of nodes,
viz. hierarchical subgraphs. The second major contribution
of this paper is that we combine several context levels and
graph representations by means of ensemble methods [13]
to further improve the KWS accuracy.

The remainder of this paper is organised as follows.
In Section II, the graph representation for handwriting
is introduced. The actual graph-based KWS system is
defined in Section III. An experimental evaluation and
comparison with template- and learning-based system is
given in Section IV. Finally, Section V concludes the paper
and outlines possible future research activities.

II. GRAPH-BASED REPRESENTATION OF HANDWRITING

In Fig. 1, the proposed graph-based KWS framework is
illustrated. First, scanned document images are enhanced to
reduce the influence of noisy background. In the same step,
handwritten document images are binarised and segmented
into single word images1. Optionally, word images are
skeletonised by means of a thinning operator. For details
with respect to the image preprocessing we refer to [14].

On the basis of preprocessed word images, graphs
are extracted by means of two different representation
formalisms. The actual keyword spotting is then based on
matching graphs (see Sect. III).

Generally, a graph g is defined as a four-tuple g =
(V,E, µ, ν) where V and E are finite sets of nodes and

1The present framework focuses on KWS that operates on perfectly
segmented word images. Thus, the achieved end-to-end performance can
be seen as an upper-bound.
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Figure 1: Process of Graph-based Keyword Spotting of the Word “October”

edges, and µ : V → LV as well as ν : E → LE
are labelling functions for nodes and edges, respectively.
Graphs can be divided into undirected and directed graphs,
where pairs of nodes are either connected by undirected or
directed edges. Additionally, graphs are often distinguished
into unlabelled and labelled graphs. In the latter case,
both nodes and edges can be labelled with numerical,
vectorial, or symbolic labels from LV or LE , respectively.
In the former case we assume empty label alphabets,
i.e. LV = LE = {}.

On the basis of binarised and/or skeletonised word
images, graphs are derived by means of two different
representation formalisms as originally proposed in [14].
Both graph extraction methods result in undirected graphs
with labelled nodes and unlabelled edges, i.e. LV = R2

and LE = {}.
• Keypoint (K): The first graph extraction algo-

rithm makes use of characteristics points (so called
keypoints) in skeletonised word images. These key-
points are represented as nodes that are labelled with
the corresponding (x, y)-coordinates. Between pairs
of keypoints (which are connected on the skeleton)
further intermediate points are converted to nodes and
added to the graph at equidistant intervals. Finally,
undirected edges are inserted into the graph for each
pair of nodes that is directly connected by a stroke.

• Projection (P): The second graph extraction
algorithm works on an adaptive and threshold-based
segmentations of binarised word images. Basically,
this segmentation is computed on horizontal and ver-
tical projection profiles. The resulting segmentation is
further refined in the horizontal and vertical direction
by means of two distance-based thresholds. A node is
inserted into the graph for each segment and labelled
by the (x, y)-coordinates of the corresponding centre
of mass. Undirected edges are inserted into the graph
for each pair of nodes that is directly connected by a
stroke in the original word image.

For both graph types, the (x, y)-coordinates of the node
labels µ(v) are normalised by a z-score. Formally,

x̂ =
x− µx
σx

and ŷ =
y − µy
σy

,

where (µx, µy) and (σx, σy) represent the mean and
standard deviation of all (x, y)-coordinates in the graph
under consideration.

III. GRAPH MATCHING

The proposed keyword spotting system is based on
the pairwise matchings of a query graph q (used to
represent a given keyword) with all available document
graphs G = {g1, . . . , gN}. In general, graphs can either
be matched by exact or inexact graph matching algo-
rithms [15]. However, in the current case graphs are used
to represent the topological characteristics of handwriting,
and thus, affected by small variations in both their structure
and labels. As a consequence, inexact graph matching is
feasible only.

A. Graph Edit Distance

In the last decades, several approaches have been
proposed for inexact graph matching [15]. Graph Edit
Distance (GED) is regarded as one of the most flexible
and powerful paradigms available [16]. GED measures
the minimum amount of distortion needed to transform
graph g1 into graph g2 using a sequence of edit operations
like insertions, deletions, and substitutions of both nodes
and edges. Such a sequence (e1, . . . , et) is called an edit
path λ(g1, g2) between g1 and g2. Formally, the graph edit
distance dGED(g1, g2), or dGED for short, between g1 and
g2 is defined by

dGED(g1, g2) = min
λ∈Υ(g1,g2)

∑
ei∈λ

c(ei) ,

where Υ(g1, g2) is the set of all valid edit paths between
g1 and g2.

The graph edit distance crucially depends on the defini-
tion of a specific cost function c(e) for every node and edge
edit operation e. This cost function is generally used to
embed certain domain-specific knowledge to the matching
procedure. Thus, the cost function should correspond to
the strength of a certain modification of the graph. The
current cost model is based on a constant cost for both
node and edge deletions/insertions, i.e. τv ∈ R+ and
τe ∈ R+, while the cost for node substitutions is given by
a weighted Euclidean distance between the corresponding
node labels, i.e. (x, y)-coordinates. Formally, the cost for
substituting a node vi with node vj with µ(vi) = (xi, yi)
and µ(vj) = (xj , yj) is given by

√
ασx(xi − xj)2 + (1− α)σy(yi − yj)2 ,
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Figure 2: Structural context of node u1 with degree n = 3.

where α ∈ [0, 1] denotes a parameter to weight the
importance of the x- and y-coordinate of a node, while
σx and σy denote the standard deviation of all node coor-
dinates in the current query graph (in x- and y-direction,
respectively). Finally, a weighting factor β ∈ [0, 1] is used
in our model to balance the sum of all node and edge edit
costs in a given edit path by β and (β − 1), respectively.

B. Context-Aware Hausdorff Edit Distance

The number of possible edit paths between two graphs —
and therefore also the time complexity of the computation
of dGED — is exponential with respect to the number of
nodes of the involved graphs. Actually, the computation
of GED is an instance of the Quadratic Assignment Prob-
lem (QAP) [17], which in turn belongs to the class of NP-
complete problems2. To reduce this high computational
complexity, several fast but suboptimal algorithms for GED
have been proposed in the last decade (see [15] for an
exhaustive review).

In this paper, we consider the Hausdorff Edit Dis-
tance (HED) [9] for graph matching. It reduces the
problem of GED to a set matching problem between local
substructures, similar to the Hausdorff distance between
finite sets. With respect to substructures that consist of
nodes and their adjacent edges, a lower bound of GED
is computed in quadratic time. Formally, dHED(g1, g2) is
defined as

∑
u∈V1

min
v∈V2∪{ε}

h(u, v) +
∑
v∈V2

min
u∈V1∪{ε}

h(u, v) ,

where h(u, v) is the assignment cost between the local
substructures around the nodes u ∈ V1 and v ∈ V2. The
terms h(u, ε) and h(ε, v) are the costs for deleting and
inserting a substructure, respectively.

The Context-Aware Hausdorff Edit Distance (CED) [12]
extends the local substructures beyond the adjacent edges,
in order to better integrate the global context into the set
matching process, thus reducing the approximation error
with respect to the exact GED.3

The structural node context of node u with degree n is
defined as

cn(u, g) = (L1, . . . , Ln) ,

2That is, an exact and efficient algorithm for the graph edit distance
problem can not be developed unless P = NP .

3The lower bound property, however, is lost.

with respect to the subgraphs Li containing all nodes that
have the shortest path distance of (i− 1) from u. Figure 2
illustrates the structural node context with an example.

Next, the distance between two structural node contexts
is defined as

d(cn(u, g1), cn(v, g2)) =

n∑
i=1

dHED(Li,Ki) ,

and the graph distance dCED is computed as

∑
u∈V1

min
v∈{bn(u,g2),ε}

h(u, v) +
∑
v∈V2

min
u∈{bn(v,g1),ε}

h(u, v) ,

where bn(u, g2) is the node in g2 with the minimum
distance from u with respect to the structural node context.
Similarly, bn(v, g1) is the nearest neighbour of v in g1.
For more details on CED, we refer the reader to [12].

Finally, the distance dCED between query graph q and a
document graph g ∈ G is normalised by the sum of the
maximum cost edit path between q = (Vq, Eq, µq, νq) and
g = (Vg, Eg, µg, νg), i.e. the sum of the edit path costs
that results from deleting all nodes and edges of q and
inserting all nodes and edges in g. Formally,

d̂CED(q, g) =
dCED(q, g)

(|Vq|+ |Vg|) τv + (|Eq|+ |Eg|) τe
,

where τv and τe denote the node and edge inser-
tion/deletion costs. In case a query consists of a set of
graphs {q1, . . . , qt} that represents the same keyword, the
normalised graph edit distance d̂CED is actually given by
the minimal distance achieved on all t query graphs, i.e.

min
qi∈{q1,...,qt}

d̂CED(qi, g).

C. Ensemble Method
In order to combine the graph edit distances of different

context levels and/or graph representations, we make use
of the mean-ensemble method [13] in three different types
of settings (resulting in six ensemble methods in total).
• mean-Graph(n): The first type of ensemble meth-

ods averages both graph edit distances derived on
Keypoint and Projection graphs. We repeat
this combination for three context radii n ∈ {1, 3, 5}.

• mean-Context(m): The second type of ensemble
methods averages all graph edit distances derived
with the three different context radii. This combina-
tion is individually carried out for Keypoint and
Projection graphs (i.e. m ∈ {K,P}).

• mean-All: Finally, the last ensemble method averages
the graph edit distances of both representations and
all three context radii.

D. Retrieval Method
Finally, the graph edit distances (or the mean of graph

edit distances in case of ensemble methods) between the
query graph q and all document graphs G = {g1, . . . , gN}
are used to form a retrieval index for KWS. Formally,

r(q, g) = −d̂CED(q, g) .



IV. EXPERIMENTAL EVALUATION

A. Datasets

The experimental evaluation is based on two well-
known manuscripts, viz. George Washington (GW)4 and
Parzival (PAR)5, as well as two documents of a recent
KWS benchmark competition6, viz. Alvermann Konzilspro-
tokolle (AK) and Botany (BOT). GW is written in English
and based on twenty pages with minor variations in writing
and degradation. PAR is written in Middle High German
and based on 45 pages with low writing variations but
markable signs of degradation. AK is written in German
and based on 18,000 pages with minor variations and
signs of degradation. Finally, BOT is written in English
and based on ten pages with high writing variation and
markable signs of degradation.

In Fig. 3, an exemplary word image of each document
as well as the corresponding graph representation for
Keypoint and Projection is given.

B. Reference Systems

We consider three types of reference systems, viz. two
graph-based systems, four template-based approaches, and
three learning-based systems.

1) Graph-based Reference Systems: The first graph-
based reference system [10] makes use of the bipartite
GED (denoted by BP) [8]. BP reduces the QAP of GED
to a Linear Sum Assignment Problem (LSAP), that can
be optimally solved in cubic time. This assignment takes
the local node structure into consideration only, and thus,
the derived GED constitutes an upper bound of the actual
GED. The second graph-based reference system [11] is
based on the Hausdorff Edit Distance (HED) [9], which is
a lower bound of the GED and can be solved in quadratic
time complexity. In particular, HED reduces GED to a set
matching problem between local substructures (nodes and
their adjacent edges)7.

4George Washington Papers at the Library of Congress, 1741-1799:
Series 2, Letterbook 1, pp. 270-279 & 300-309, http://memory.loc.gov/
ammem/gwhtml/gwseries2.html

5Parzival at IAM historical document database, http://www.fki.inf.unibe.
ch/databases/iam-historical-document-database/parzival-database

6Alvermann Konzilsprotokolle and Botany at ICFHR2016 benchmark
database, http://www.prhlt.upv.es/contests/icfhr2016-kws/data.html

7CED is an extension of HED, that takes not only the adjacent edges
of a node but a certain context into consideration (see Section III-B).
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Figure 3: Exemplary graph representations of the Alver-
mann Konzilsprotokolle (AK), Botany (BOT), George
Washington (GW), and Parzival (PAR) dataset.

2) Template-based Reference Systems: The employed
template-based reference systems make use of a DTW
matching approach applied on sequences of feature vectors.
The features are acquired by means of a sliding window
approach. The different systems mainly differ in the
features extracted from word images. That is, DTW’01 [18]
employs geometrical features, while DTW’08 [2] and
DTW’09 [3] both rely on Histogram of Oriented Gradient
features. Finally, DTW’16 [5] uses Deep Learning features.

3) Learning-based Reference Systems: The first learning-
based reference system CVCDAG is based on Pyramidal
Histogram Of Characters labels (PHOC) features used
in conjunction with an SVM [6]. For the second system,
termed PRG, the same features are used to train a CNN,
the so called PHOCNet [7]. Finally, another CNN is used
in the third reference system QTOB by means of a triplet
network approach.

Note that the results of the template-based reference
systems are available for GW and PAR only, while the
results of all learning-based systems are available for AK
and BOT only.

C. Experimental Setup

For parameter optimisation, ten different keywords (with
different word lengths) are selected on all four datasets.
These keywords are manually retrieved on independent
validation sets that consist of 10 random instances per key-
word instance and 900 additional random words (for each
dataset). The optimised systems are eventually evaluated
on the same training and test sets as used in [4] and [19]
for GW/PAR and AK/BOT, respectively. All templates of
a keyword present in the training set are used for KWS.
In Table I a summary of the datasets is given.

Table I: The number of keywords as well as the size of
the training and test sets for all four documents.

Dataset Keywords Train Test

GW 105 2,447 1,224
PAR 1,217 11,468 6,869
BOT 150 1,684 3,380
AK 200 1,849 3,734

The performance of all KWS systems is measured by the
Mean Average Precision (MAP), which is the mean area
under all recall-precision curves of all individual keywords.

For the basic cost model for graph matching, we evaluate
25 pairs of constants for node and edge deletion/insertion
costs (τv/τe ∈ {1, 4, 8, 16, 32}) in combination with the
weighting parameters α/β ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (see
Section III-A). In Table II the optimal cost function param-
eters for three different context levels (i.e. n = {1, 3, 5})
are given for both graph representations and all datasets.

D. Results and Discussion

Our novel KWS framework is first compared with the
two previous graph-based reference systems (i.e. BP and
HED) as shown in Table III. On all four datasets we
observe a clear improvement of the KWS accuracy using
CED rather than HED or BP. In case of GW and PAR, a



Table II: Optimal cost function parameters and scaling
factors for graph edit distance computation.

τv τe α β

n 1 3 5 1 3 5 1 3 5 1 3 5

GW Keypoint 8 8 16 4 4 8 0.1 0.1 0.1 0.5 0.5 0.7
Projection 8 8 8 1 1 4 0.1 0.1 0.1 0.3 0.3 0.5

PAR Keypoint 8 4 4 4 1 1 0.5 0.5 0.3 0.3 0.1 0.1
Projection 4 4 8 4 4 4 0.5 0.3 0.3 0.5 0.5 0.5

BOT Keypoint 4 8 32 16 4 8 0.1 0.1 0.1 0.5 0.1 0.3
Projection 16 32 8 32 4 16 0.1 0.1 0.1 0.5 0.1 0.3

AK Keypoint 4 32 8 16 16 4 0.3 0.3 0.3 0.3 0.7 0.1
Projection 32 32 8 4 16 32 0.1 0.1 0.1 0.1 0.5 0.5

context radius of n = 1 is ideal, while in case of BOT and
AK a context radius of n = 5 leads to the best results.

Next, we compare the single graph-based approaches (us-
ing the three context levels) as well as the six ensemble
methods with four template-based approaches on the GW
and PAR dataset as shown in Table IV.

Generally, an accuracy improvement can be observed
for all CED approaches when compared with the DTW
approaches. That is, for context level n = 1 our novel
graph-based framework outperforms all DTW systems on
both datasets. The ensemble methods further improve the
KWS accuracies in our framework. Especially the ensemble
mean-Graph (n = 1) and mean-All clearly excel all other
template-based reference systems.

Finally, the novel graph-based KWS systems are com-
pared with three state-of-the-art learning-based reference
systems. In case of single graph-based approaches, we
observe a clear advantage of learning-based systems on
BOT, while the proposed graph-based methods can keep up
on AK. In case of ensemble methods, a substantial increase
of the performance can be observed on both BOT and
AK. Overall, we can observe that graph-based ensemble
methods can keep up (or even outperform) two out of three
learning-based reference systems. This is quite astonishing
as the proposed methods — in contrast to the learning-
based approaches — are not trained on labelled data.

V. CONCLUSION

In the present paper graphs are used for the representa-
tion of handwritten historical documents in the context
of keyword spotting. That is, the inherent topological
characteristics of a handwritten word are represented
by means of a graph. Representing words by means of
graphs makes graph matching necessary. However, the
time complexity of general graph matching procedures,
such as graph edit distance, is typically exponential with
respect to the number of nodes. Thus, several fast but
suboptimal approaches have been proposed in recent years.
These suboptimal graph matchings often neglect the global
structure of graphs during the matching procedure and rely
on local information only.

In this paper we make use of a recent matching algorithm
that considers a larger node context than previous methods.
This leads to a better approximation of the resulting graph
distance, and thus to a higher accuracy of the keyword
spotting system. In particular, the proposed approach

outperforms several state-of-the-art template-based methods
and most of the learning-based frameworks. This underlines
the high potential of structural approaches. Especially as
learning-based approaches are depending on the acquisition
of large sets of labelled training data, which is a labour-
intensive and costly procedure in case of handwritten
historical documents.

In future work we focus on two lines of research. We
aim at combining graph-based approaches with statistical
approaches (applied on vector space embedded graphs).
Second, it would be a rewarding avenue to verify whether
graphs can be used in the context of learning-based KWS
methods.
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