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a b s t r a c t 

The accessibility to handwritten historical documents is often constrained by the limited feasibility of 

automatic full transcriptions. Keyword Spotting (KWS), that allows to retrieve arbitrary query words from 

documents, has been proposed as alternative. In the present paper, we make use of graphs for represent- 

ing word images. The actual keyword spotting is thus based on matching a query graph with all docu- 

ments graphs. However, even with relative fast approximation algorithms the shear amount of matchings 

might limit the practical application of this approach. For this reason we present two novel filters with 

linear time complexity that allow to substantially reduce the number of graph matchings actually re- 

quired. In particular, these filters estimate a graph dissimilarity between a query graph and all document 

graphs based on their node and edge distribution in a polar coordinate system. Eventually, all graphs 

from the document with distributions that differ to heavily from the query’s node/edge distribution are 

eliminated. In an experimental evaluation on four different historical documents, we show that about 

90% of the matchings can be omitted, while the KWS accuracy is not negatively affected. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

In the last decade a vital amount of historical handwritten

ocuments have been made publicly available due to digitisation

ffort s in private and public institutes. However, the automatic

ecognition of historical handwriting is often negatively affected by

oth the degenerative conservation state of scanned manuscripts

nd variations in the handwriting. Hence, an automatic and full

ranscription is often not feasible and thus the accessibility — in

ontrast to the availability — is still a widely unsolved issue. 

To bridge this gap between availability and accessibility, Key-

ord Spotting (KWS) as a flexible and more error-tolerant alterna-

ive has been proposed [10,22,25,30] . KWS allows to retrieve an

rbitrary query word in a certain document without the need of

 full transcription. Originally, the concept of KWS has been in-

roduced for speech recordings [31] , and was later adapted for

rinted [1] and handwritten documents [22] . In case of historical

andwritten documents the KWS process is inherently offline and

imited to spatial information only. Generally, offline KWS is re-

arded as more difficult task when compared to online KWS which
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onsiders temporal information about the writing process as well.

he focus of this paper is on historical documents, and thus, offline

WS can be applied only (referred to as KWS from now on). 

KWS approaches are either based on template-based or learning-

ased algorithms. In case of template-based KWS, a single instance

f a query word image is directly matched against a set of doc-

ment word images. In the latter case, a trained statistical model

s used to detect single characters or words of a given visual or

extual query. Roughly speaking, template-based methods result

n lower recognition rates when compared to learning-based ap-

roaches. Yet, this advantage of learning-based approaches is ac-

ompanied by a loss of flexibility and generalisability, which is

ue to the need of an a priori learning of the statistical model.

oreover, the accuracy of learning-based algorithms is crucially

epending on the size of the labelled training set. However, the

cquisition of labelled training data for historical documents is

ased on human experts and turns out to be a labour and time-

onsuming task. Besides, many historical documents consist of few

ages only, and thus, the size of labelled training data is often in-

erently limited. This makes template-based KWS a more feasible

pproach for historical documents. In particular, as the matching

lgorithms are independent from both the actual representation

ormalism and the language of the underlying document. 
ord spotting in historical handwritten documents, Pattern Recog- 
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The first template-based KWS approaches are based on pixel-

wise matchings of word images [22] . Likewise, global features ( Gra-

dient, Structural and Concavity features) as well as Zones Of Inter-

est , rather than single pixels, are matched in [50] and [20] , respec-

tively. However, these features tend to be negatively affected by

noisy word images. Thus, more elaborated and error-tolerant meth-

ods for template-based KWS are based on matching sequences of

feature vectors rather than single vectors. In many cases these

features are used to describe certain characteristics of word im-

ages like, for example, projection profiles [25,50] , gradients [50] ,

or geometrical characteristics [23] , to mention just a few. Yet,

also more generic image feature descriptors have become popu-

lar in recent years like for example Histograms of Oriented Gradi-

ents [29,43] , Scale-Invariant Feature Transform [17] , or Deep Learning

features [48] . Regardless the features actually used, Dynamic Time

Warping (DTW) is employed as the quasi standard for matching the

resulting sequences of feature vectors. 

In learning-based KWS similar features as described above are

used to train a statistical model. Early and widely used approaches

are based on Hidden Markov Models (HMM) [8,10,19,30,32,44] .

In [8] , for instance, generalised Hidden Markov Models are trained

on character images. More recent HMM approaches are based

on feature vectors of word images rather than character-based

segmentations which are often error-prone and labour inten-

sive [10,19,30] . However, also other statistical models have been

applied like for example Support Vector Machine (SVM) [2] , or Re-

current Neural Networks [13,14] to name just two examples. With

the rise of Convolutional Neural Networks (CNN) , we recently ob-

serve a shift in KWS and related fields from HMMs towards

CNNs [21,33,42,45,49] . 

1.1. Related work 

The KWS approach proposed in this paper is template-based

and makes use of graphs — rather than feature vectors —

for the representation of handwriting. In recent years, graphs

gained noticeable interest in many pattern recognition applica-

tions [12,27,41] . The increased interest might be due to the in-

troduction of fast approximation algorithms that allow to effi-

ciently measure the dissimilarity of larger and more complex

graphs (e.g. [11,28] ). Moreover, graphs, in contrast with feature vec-

tors, offer a natural way to represent the inherent topological char-

acteristics of a pattern. Additionally, graphs are capable to adapt

both their size and complexity to the underlying pattern. However,

only limited attempts can be observed for the representation of

handwriting by means of graphs [5,26,37,47] . This is rather surpris-

ing, as graphs — in contrast to feature vectors — are well suited

to adapt to the high structural variabilities of handwriting. These

representational advantages of graphs in conjunction with fast ap-

proximation algorithms motivate the method of the present paper.

A first graph-based KWS approach has been proposed in [47] ,

where certain characteristic points (so called keypoints ) in a word

image are represented by nodes, while edges are used to represent

strokes between these keypoints. The matching of word graphs is

then based on a two step procedure. First, graph dissimilarities are

measured between pairs of connected components. Second, an op-

timal alignment between pairs of connected components is found

by means of DTW. The same procedure has been extended by a so-

called coarse-to-fine approach in [46] . Two similar approaches have

been proposed by Bui et al. [5] and Riba et al. [26] , where nodes

represent prototype strokes (termed invariants and graphemes , re-

spectively), while edges are used to connect nodes that stem from

the same connected component. In all of these approaches graph

dissimilarity is measured by means of the Bipartite graph matching

algorithm [28] . 
Please cite this article as: M. Stauffer et al., Filters for graph-based keyw
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When compared to these existing approaches, the present

raph-based KWS framework distinguishes in many facets. First,

ord images are represented by single graphs, and thus, no ad-

itional alignment between subgraphs of different connected com-

onents is necessary. Moreover, the applied graph representations

im to capture the inherent characteristics of word images without

he need of a prototype library (as used in [5,26] ). Thus, the risk

f losing certain characteristics of the handwriting is minimised.

inally, the present paper introduces novel filters for graphs to sub-

tantially speed up the KWS procedure (similar in spirit in [46] ). 

.2. Contribution 

In case of a document (represented by a set of graphs G =
 g 1 , . . . , g N } ) and a number of queries Q = { q 1 , . . . , q n } , we need

o compute N × n graph matchings. Even with a fast approxima-

ion algorithm for computing graph dissimilarities, this particular

etting might limit the general applicability of our method. Thus,

e aim to reduce the actual number of graph matchings required

y efficiently filtering large parts from G with a low similarity to

he current query graph q ∈ Q . This approach is known as fast re-

ection [29,30] and the focus of the present paper. That is, we in-

roduce novel graph filters (with linear time complexity) that sub-

tantially reduce the number of graph matchings without nega-

ively affecting the KWS accuracy. 

The present paper differs and extends our previous approaches

o graph-based KWS in various ways [3,37–40] . In [37] , we pre-

ented our first graph-based KWS approach, while different com-

inatorial strategies (so called ensemble methods) are introduced

n [38] . In three independent publications we introduced then

hree strategies to speed up the KWS procedure [3,39,40] . The

resent article follows this line of research and substantially ex-

ends the method for fast rejection presented in [40] . In particular,

e present a novel graph dissimilarity measure with linear time

omplexity that makes use of edges and nodes, rather than nodes

nly as proposed in [40] . This fast graph dissimilarity measure al-

ows very high filter rates (i.e. a clear speed up when compared to

he baseline system can be expected). Moreover, also the empiri-

al evaluation is substantially extended when compared with our

reliminary paper. That is, we use two additional datasets of a re-

ent KWS benchmark [24] and thoroughly present and discuss the

valuation of all parameters. 

The remainder of this paper is organised as follows. In

ection 2 , the basic graph-based KWS framework is introduced.

he proposed filters to speed up the KWS process are introduced

n Section 3 , while the actual graph matching is described in

ection 4 . An experimental evaluation and comparison with several

eference systems is given in Section 5 . Finally, Section 6 concludes

he paper and outlines possible future research activities. 

. Graph-based keyword spotting 

The proposed graph-based KWS system includes four basics

teps as illustrated in Fig. 1 . 

First, document word images are preprocessed in order to min-

mise the influence of noisy and skewed scanning (detailed in

ection 2.1 ). Based on binarised and preprocessed document im-

ges, word images are automatically segmented and manually cor-

ected if necessary. Next, single word images are represented with

raphs by means of different graph extraction algorithms (see

ection 2.2 ). Rather than matching every query graph q ∈ Q with

ll graphs from the set of document graphs G , we apply a specific

ltering on G with respect to q based on the spatial distribution

f nodes and edges, respectively (see Section 3 ). On the remain-

ng graphs from G we apply the Bipartite graph matching algo-

ithm [28] in order to compare the dissimilarity from q to the un-
ord spotting in historical handwritten documents, Pattern Recog- 
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Fig. 1. Process of graph-based keyword spotting of the word “October”. 

fi  

t

 

l  

S

2

 

v  

m  

d  

o  

a

 

b  

q  

p  

g  

u  

i  

w  

T  

c  

i  

l  

i  

s  

a  

w  

e  

i

2

 

f  

e  

b

 

w

a  

r  

g  

d  

g  

n  

t  

w

t

w

c

c  

o  

t  

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

F

x

w  

v

ltered graphs. Finally, the resulting graph dissimilarities are used

o form a retrieval index (see Section 4 ). 

The two first steps are described in greater detail in the fol-

owing subsections, while step 3 and 4 are separately described in

ections 3 and 4 , respectively. 

.1. Image preprocessing 

Image preprocessing basically aims at reducing undesirable

ariations which are due to different writers or the digitised docu-

ent itself (e.g. pixel noise, skewed scanning, or degradation of the

ocument). In our particular case, image preprocessing is focused

n document/scanning issues, while variations in the writing style

re minimised by graph normalisation (see Eq. (1) in Section 2.2 ). 

The first image preprocessing step addresses the issue of noisy

ackground by means of Difference of Gaussians filtering [9] . Subse-

uently, document images are binarised by a global threshold ap-

roach. The present framework focuses on KWS that operates on

raphs of perfectly segmented word images. For this reason, doc-

ment images are first automatically segmented into single word

mages by means of their projection profiles. Next, the resulting

ord images are manually inspected and, if necessary, corrected.

he present KWS approach neglects any segmentation errors and

an therefore be seen as an upper-bound solution. To handle skew,

.e. the inclination of the document, the gradient of the lower base-

ine of a line of text is estimated and used to deskew single word

mages [23] . In an optional step, preprocessed word images are

keletonised by means of 3 × 3 thinning operator [16] . The filtered

nd binarised word images are denoted by B , while skeletonised

ord images are denoted by S from now on. 1 In Fig. 4 the influ-

nce of the image preprocessing is shown on four exemplary word

mages stemming from different historical manuscripts. 

.2. Graph representation 

Based on binarised and/or skeletonised word images, four dif-

erent representations are derived [36] . These formalisms aim at

xtracting the inherent topological characteristics of word images

y means of graphs. 

In general, a graph g is defined as a four-tuple g = (V, E, μ, ν)

here V and E are finite sets of nodes and edges, and μ: V → L V 
s well as ν: E → L E are labelling functions for nodes and edges,

espectively. Graphs can be divided into undirected and directed

raphs, where pairs of nodes are either connected by undirected or

irected edges, respectively. Additionally, graphs are often distin-

uished into unlabelled and labelled graphs. In the latter case, both

odes and edges can be labelled with an arbitrary numerical, vec-

orial, or symbolic label from L or L , respectively. In the former
V E 

1 In case of two datasets, viz. AK and BOT (see Section 5.1 for details), segmented 

ord images are directly taken from the ICFHR2016 benchmark database [24] , and 

hus, only binarisation has been employed. To handle small segmentation errors, 

e employ an additional image preprocessing step that removes small connected 

omponents on these two manuscripts. 

3

 

m  

o  
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ase we assume empty label alphabets, i.e. L V = L E = {} . For all of

ur graph representations described below, nodes are labelled with

wo-dimensional numerical labels, while edges remain unlabelled,

.e. L V = R 

2 and L E = {} . 
• Keypoint : The first graph extraction algorithm makes use of

characteristics points (so called keypoints) in skeletonised word

images S . These keypoints are represented as nodes that are la-

belled with the corresponding ( x, y )-coordinates. Between pairs

of keypoints (which are connected on the skeleton) further in-

termediate points are converted to nodes and added to the

graph at equidistant intervals. Finally, undirected edges are in-

serted into the graph for each pair of nodes that is directly con-

nected by a stroke. 
• Grid : The second graph extraction algorithm is based on a

grid-wise segmentation of binarised word images B into equally

sized segments. For each segment, a node is inserted into the

graph and labelled by the ( x, y )-coordinates of its respective

centre of mass. Undirected edges are inserted between two

neighbouring segments that are actually represented by a node.

Finally, the inserted edges are reduced by means of a Minimal

Spanning Tree algorithm. 
• Projection : The next graph extraction algorithm works on

an adaptive and threshold-based segmentation of binarised

word images B . Basically, this segmentation is computed on the

horizontal and vertical projection profiles of B . The resulting

segmentation is further refined in the horizontal and vertical

direction by means of two distance-based thresholds. A node is

inserted into the graph for each segment and labelled by the ( x,

y )-coordinates of the corresponding centre of mass. Undirected

edges are inserted into the graph for each pair of nodes that is

directly connected by a stroke in the original word image. 
• Split : The fourth graph extraction algorithm is based on an

iterative segmentation of binarised word images B . That is, seg-

ments are iteratively split into smaller subsegments until the

width and height of all segments are below certain thresholds.

A node is inserted into the graph and labelled by the ( x, y )-

coordinates of the point on the stroke closest to the centre of

mass of each segment. For the insertion of the edges, a similar

procedure as for Projection is applied. 

Finally, the resulting graphs or more precisely the ( x, y )-

oordinates of the node labels μ( v ) are normalised by a z-score.

ormally, we use normalised coordinates ( ̂  x , ̂  y ) derived by 

ˆ 
 = 

x − μx 

σx 
and 

ˆ y = 

y − μy 

σy 
, (1) 

here ( μx , μy ) and ( σ x , σ y ) represent the mean and standard de-

iation of all ( x, y )-coordinates in the graph under consideration. 

. Filtering 

Representing word images with graphs makes a certain graph

atching necessary. Generally, graphs can be matched by means

f exact or inexact dissimilarity measures. Inexact graph matching
ord spotting in historical handwritten documents, Pattern Recog- 
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Fig. 2. Construction of the polar graph dissimilarity. 
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in contrast with exact graph matching is able to deal with small

deviations in both structure and labelling of the graphs under con-

sideration. The problem in either case is the high computational

complexity. In KWS, where huge amounts of matchings have to be

conducted, this might become a problem. 

To reduce the number of graph matchings, we need an effi-

cient and effective measure to estimate whether or not a ques-

tioned document graph g ∈ G might be an instance of a given query

graph q . If, and only if, this measure is below a certain threshold

we apply the computational demanding graph matching between q

and g (otherwise we filter g ). Such a filter method needs to ful-

fil two requirements. First, the estimated graph dissimilarity needs

to be coherent with the actual graph dissimilarity in order to fil-

ter graphs from G with high precision. Second, the computational

complexity of the additional measure needs to be low such that

the computational overhead can be compensated. 

In order to meet these requirements, we introduce a novel

graph dissimilarity measure with linear time complexity. This dis-

similarity method measures the distance between histograms of

spatial graph segments in a polar coordinate system. We denote

this novel graph dissimilarity by Polar Graph Dissimilarity (PGD)

and the corresponding distance d PGD from now on. 

PGD has been inspired by the scale-invariant shape descrip-

tor Contour Points Distribution Histogram (CPDH) for matching

2D-shape images [35] . Basically this shape descriptor segments

equidistant contour points by means of the polar coordinate sys-

tem. Thus, a contour image can be formally described by a his-

togram CPDH = { h 1 , . . . , h i , . . . , h n } where h i consists of the number

of contour points in the corresponding segment. Finally, two shape

images can be compared with each other by computing the Earth

Mover Distance (or similar metrics) between shifted and mirrored

histograms [34] . 

In the following paragraphs we explain how this concept is

adapted to graphs g = (V, E, μ, ν) with L V = R 

2 and L E = {} . First,

graphs are segmented in a polar coordinate system. Second, his-

tograms are extracted for each segment that represent the node

and edge distributions. Finally, two graphs are compared on the

basis of the resulting histograms. 

Segmentation. We transform a given graph g into a polar co-

ordinate system based on its centre of mass ( x m 

, y m 

) as illus-

trated Fig. 2 a. 2 Formally, the ( x, y )-coordinates of each node label

μ(v ) = (x, y ) ∈ R 

2 are transformed to 

ρ = 

√ 

(x − x m 

) 2 + (y − y m 

) 2 and θi = atan2 ((y − y m 

) / (x − x m 

)) , 

where ρ denotes the radius from the centre of g to the node po-

sition and −π ≤ θi < π refers to the angle from the x -axis to the
2 Node coordinates are a priori denormalised by the standard deviation of all 

node coordinates, for further details we refer to [37] . 

i  

F  

1  

h  

Please cite this article as: M. Stauffer et al., Filters for graph-based keyw
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ode position (computed via arctangent function with two argu-

ents in order to return the correct quadrant). 

Second, a bounding circle C with the maximum radius ρmax 

hat surrounds all nodes of graph g is defined. Based on this

ounding circle C , the graph is segmented into P r × P φ bins where

 r and P φ define the number of different radii and angles, respec-

ively. An example is given in Fig. 2 b, where a graph is segmented

nto 24 bins (with P r = 3 and P φ = 8 ). Note that every bin b i is

efined by two radii ρi min 
and ρi max 

, and two angles θi min 
and

i max 
. Hence, every node v ∈ V with polar coordinates ( ρ , θ ) and

i min 
≤ ρ < ρi max 

and θi min 
≤ θ < θi max 

can be assigned to the cor-

esponding bin b i . 

Node-based Histograms. The first histogram is created by count-

ng the number of nodes per bin. That is, the histogram H i =
 h 1 , . . . , h n } represents the node frequency per bin b i (see Fig. 2 b

nd c). Finally, the resulting histograms are normalised by the l 1-

orm. 

Edge-based Histograms. The second histogram reflects the distri-

ution of both nodes and edges. To this end, we adapt the concept

f Histogram of Oriented Gradients to (undirected) graphs to form

 histogram with radial directions of the corresponding edges (the

ame adaptation can be applied to directed graphs as well). In par-

icular, we first define the maximal number of subbins P that de-

nes the radial range of every subbin b n i . For every edge in a seg-

ent, we measure the Euclidean distance d between the two adja-

ent nodes as well as the angle θ of the edge to the x -axis. Next, d

s assigned to the two enclosing subbins b n i and b n j with respect

o their radial difference to θ . Formally, 

 n i + = 1 − θ − θi 

v 
d and b n j + = 

θ − θi 

v 
d. 

Note that every edge is taken into account in both direc-

ions as we make use of undirected edges. Finally, the resulting

istogram { b n 1 , . . . , b n P } (i.e. one histogram per segment with P

ins) is first concatenated to form one global histogram H = { h 1 =
 b 1 1 , . . . , b 1 P } , . . . , h n = { b n 1 , . . . , b n P }} as illustrated in Fig. 2 b and

 and then normalised by the l 1-norm. In our evaluation we set

 = 10 for all subbins. 

Polar Graph Dissimilarity. To measure the dissimilarity between

wo histograms H 1 and H 2 that represent the node and/or edge

istribution of two graphs g 1 and g 2 , respectively, we make use of

he χ2 distance. However, rather than comparing two histograms

irectly, we make use of a quadtree segmentation. That is, we seg-

ent the graph into smaller subgraphs and measure the dissim-

larity between smaller subgraphs as formalised in Algorithm 1 .

irst, the procedure is initialised by an external call with l =
 (i.e. PGD (1, g 1 , g 2 )). On the basis of two graphs g 1 and g 2 the

istograms H 1 and H 2 are created with respect to P r and P φ (see
ord spotting in historical handwritten documents, Pattern Recog- 
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Algorithm 1 Polar Graph Dissimilarity (PGD). 

Input: Graphs g 1 and g 2 , number of radii and segments P r and P φ , 

recursion depth r 

Output: Polar graph dissimilarity between graph g 1 and g 2 
1: function PGD ( l, g 1 , g 2 ) 

2: Create H 1 based on g 1 , P r , P φ , and H 2 based on g 2 , P r , P φ
3: Calculate χ2 -distance d(H 1 , H 2 ) 

4: if l equal r then 

5: return d 

6: Segment g 1 and g 2 based on quadtree to g 1 1 , g 1 2 , g 1 3 , g 1 4 
and g 2 1 , g 2 2 , g 2 3 , g 2 4 

7: return d(H 1 , H 2 ) + 

(
4 ∑ 

i =1 

PGD (l + 1 , g 1 i , g 2 i ) 

)
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4 That is, an exact and efficient algorithm for the graph edit distance problem can 
ine 2 of Algorithm 1 ). 3 Next, the χ2 -distance between the two

istograms is measured (see line 3). If the current recursion level

 is equal to the maximal recursion depth r , the distance is re-

urned (see lines 4 and 5). Otherwise, both graphs g 1 and g 2 are

egmented into four independent subgraphs. Each of these sub-

raphs represent the nodes and edges in one of the four quadrants

n circle C (see line 6). Eventually, for each subgraph pair, the PGD

s measured by means of a recursive function call (see line 7). This

rocedure is repeated until the current recursion level l is equal to

he user-defined maximum depth r . 

If the resulting distance d PGD ( q, g i ) between a query graph q and

ocument graph g i is below a certain threshold D , we additionally

arry out the computationally more expensive Bipartite Graph Edit

istance (BP) (denoted by d BP and thoroughly described in the next

ection) [28] , otherwise we reject graph g i and assign the graph

issimilarity to be ∞ . Formally, 

(q, g i ) 

{
d BP (q, g i ) , if d PGD (q, g i ) < D 

∞ , otherwise 
. 

Clearly, if the threshold D is increased the number of filtered

ocument graphs is reduced. Likewise, the number of filtered

raphs is increased when threshold D is decreased. Overall we aim

t finding a good tradeoff between high filter rates and low error

ates. 

We denote the graph matching procedure with this fast rejec-

ion procedure by BP-FRN in case of node-based histograms and

P-FRE in case of edge-based histograms. 

. Graph matching 

We apply Graph Edit Distance (GED) , a powerful and flexible

raph matching paradigm [6] . The basic idea of GED is to trans-

orm graph g 1 into graph g 2 using a sequence of edit operations

ike insertions, deletions , and substitutions of both nodes and edges.

 set { e 1 , . . . , e k } of k edit operations e i that transform g 1 com-

letely into g 2 is called an edit path λ( g 1 , g 2 ) between g 1 and g 2 . 

To find the most suitable edit path, one commonly introduces

 cost c ( e ) for every edit operation e , measuring the strength of

he corresponding operation. The idea of such a cost is to define

hether or not an edit operation e represents a strong modifica-

ion of the graph. Given an adequate cost model, the graph edit

istance d GED ( g 1 , g 2 ), or d GED for short, between g 1 and g 2 is de-

ned by 

 GED 

(g 1 , g 2 ) = min 

λ∈ ϒ(g 1 ,g 2 ) 

∑ 

e i ∈ λ
c(e i ) , 

here Y( g 1 , g 2 ) is the set of all edit paths between g 1 and g 2 . 
3 Note that P r and P φ can be defined for every recursion level separately. 

n

e
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For the exact computation of d GED , A 

∗-based search techniques

sing some heuristics are usually employed [4,15] . However, the

earch space of possible edit paths is exponential with respect to

he number of nodes of the involved graphs. Formally, GED is an

nstance of a Quadratic Assignment Problems (QAPs) [18] , which in

urn belongs to the class of N P -complete problems. 4 

To tackle the high computational complexity of GED, several

ast but suboptimal algorithms have been proposed in the last

ears (see [12] ). These concepts make GED also applicable to larger

raphs. A cubic time approximation for GED has been proposed

n [28] , for instance. This algorithm reduces the QAP of GED to a

inear Sum Assignment Problem ( LSAP ) that can be optimally solved

n cubic time (see [7] for an exhaustive survey on LSAP solving al-

orithms). The optimal LSAP solution is eventually used to derive

 suboptimal GED. 

The employed cost model in our case is based on constant cost

or both node and edge deletions/insertions, i.e. τv ∈ R 

+ and τe ∈
 

+ , respectively. The cost for node substitutions reflects the dis-

imilarity of the associated label attributes, i.e. ( x, y )-coordinates.

ormally, the cost for substituting node n i with μ(n i ) = (x i , y i ) and

ode n j with μ(n j ) = (x j , y j ) is given by a weighted Euclidean dis-

ance 
 

α σx (x i − x j ) 2 + (1 − α) σy (y i − y j ) 2 , 

here α ∈ [0, 1] denotes a parameter to weight the importance of

he x - and y -coordinate of a node, while σ x and σ y denote the

tandard deviation of all node coordinates in the current query

raph. We additionally use a weighting factor β ∈ [0, 1] to weight

he relative importance of node and edge edit costs. 

Retrieval Index. For spotting keywords, we build two retrieval

ndices that are separately optimised for a local and global thresh-

ld scenario. Local thresholds are used in case of a vocabulary of

ommon keywords, while a global threshold is used for arbitrary

ut-of-vocabulary keywords. In case of local thresholds, the accu-

acy is independently measured for every query word, while in

ase of global thresholds, the accuracy is measured for every query

ord with the same single threshold. 5 Global threshold are thus

egarded as more realistic yet also more difficult scenario. 

For building the retrieval indices we first normalise the graph

dit distances d BP between query graph q and all document graphs

 = { g 1 , . . . , g N } by the sum of the maximum cost edit path be-

ween q and g i , i.e. the sum of the edit path that results from

eleting all nodes and edges of q and inserting all nodes and edges

n g i . Formally, 

ˆ 
 BP (q, g i ) = 

d BP (q, g i ) 

(| V q | + | V g i | ) τv + (| E q | + | E g i | ) τe 
. 

In case a query consists of a set of graphs { q 1 , . . . , q t } that rep-

esent the same keyword, the normalised graph edit distance ˆ d BP 
s given by the minimal distance achieved on all t query graphs,

.e. min 

q j ∈{ q 1 , ... ,q t } 
ˆ d BP (q j , g i ) . 

Based on normalised distances, the retrieval index for local

hresholds is derived by 

 1 (q, g) = − ˆ d BP (q, g) , 

hile the retrieval index for global thresholds is derived by 

 2 (q, g) = −
ˆ d BP (q, g) 

ω 

, 

here ω is a linear scaling factor based on the mean distance of

 to its ten nearest neighbours (denoted by d̄ from now on) and
ot be developed unless P = NP . 
5 In both cases, the threshold defines whether a document word is regarded rel- 

vant for a given query word not. 

ord spotting in historical handwritten documents, Pattern Recog- 
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Table 1 

The number of keywords as well as the size of the training 

and test sets for all four documents. 

Dataset Keywords Train Test 

GW 105 2447 1224 

PAR 1217 11,468 6869 

BOT 150 1684 3380 

AK 200 1849 3734 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Exemplary excerpts of the four historical manuscripts. 
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the minimum mean distance of all available query graphs (denoted

by d̄ BP min 
). Formally, ω is given by 

ω = 1 + m ( d̄ BP − d̄ BP min 
) , 

where m is a user defined scaling slope. The basic idea of this pro-

cedure is to gradually scale ˆ d BP (q, g) depending on the mean dis-

tance of q to its ten next neighbours. This is expected to reduce

the intraclass variance between different queries and improve the

accuracy for global thresholds. 

5. Experimental evaluation 

5.1. Datasets 

The evaluation is based on two well known manuscripts,

viz. George Washington (GW) 6 and Parzival (PAR), 7 as well as

two recent KWS benchmark datasets, 8 viz. Alvermann Konzilspro-

tokolle (AK) and Botany (BOT) . GW is written in English and based

on twenty pages with minor variations in writing and degrada-

tion. PAR is written in Middle High German and based on 45

pages with low writing variations but markable signs of degrada-

tion. AK is written in German and based on 18,0 0 0 pages with

minor variations and signs of degradation. Finally, BOT is writ-

ten in English and based on ten pages with high writing vari-

ation and markable signs of degradation. On all four documents

we extract graphs from segmented word images by means of the

graph extraction algorithms introduced in Section 2.2 . For AK and

BOT, we only consider the two most promising graph extraction

algorithms, i.e. Keypoint and Projection . Small excerpts of all

four manuscripts and the corresponding graph representations are

shown in Figs. 3 and 4 . 

On the resulting sets of word graphs, ten different key-

words (with different word lengths) are manually selected on all

four datasets. Moreover, we define an independent validation set

for parameter optimisation that consists of 10 random instances

per keyword instance and 900 additional random words (in total

10 0 0 words). The optimised systems are eventually evaluated on

the same training and test sets as used in [10] for GW and PAR

and [24] for AK and BOT. All templates of a keyword present in

the training set are used for KWS. In Table 1 a summary of the

datasets is given. 

5.2. Optimisation of the parameters 

The proposed KWS framework is separately optimised for local

and global thresholds. In the global threshold scenario, the Aver-

age Precision (AP) is measured, which is the area under the Recall-

Precision curve for all keywords given a single threshold. In the
6 George Washington Papers at the Library of Congress, 1741–1799: Series 2, 

Letterbook 1, pp. 270–279 & 300–309, http://memory.loc.gov/ammem/gwhtml/ 

gwseries2.html . 
7 Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/ 

databases/iam- historical- document- database/parzival- database . 
8 Alvermann Konzilsprotokolle and Botany at ICFHR2016 benchmark database, 

http://www.prhlt.upv.es/contests/icfhr2016-kws/data.html . 
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ocal threshold scenario, the Mean Average Precision (MAP) is com-

uted, that is the mean over the AP of each individual keyword

uery. To measure the effects of the proposed rejection methods,

e compute the relative amount of pairwise matchings that is fil-

ered (termed Filter Rate (FR) ) and the Speed-up Factor (SF) when

ompared to the matching time of BP. 

The optimisation of the parameters is conducted in three steps

n the validation set. First, we optimise the cost functions for the

dit distance computation. Second, the parameters for the PGD fil-

ers are optimised. Third, threshold D is used to optimally adjust

he filter rate. These three steps are described in detail in the next

hree paragraphs. 

Optimisation of BP. The parameters for graph edit distance

re individually optimised for both MAP and AP. That is,

e evaluate 25 pairs of constants for node and edge dele-

ion/insertion costs ( τv = τe = { 1 , 4 , 8 , 16 , 32 } ) in combination with

he weighting parameters α = { 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 } and β =
 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 } . Hence, we evaluate a total of 625 parametri-

ations per graph extraction method and dataset. Using optimised

ost functions, we optimised our framework for a global threshold

cenario using retrieval index r 2 . That is, we optimised the scal-

ng factor m = { 0 . 05 , . . . , 10 . 0 } for all graph extraction methods and

atasets. For local thresholds no additional parameter tuning has to

e conducted. In Table 2 the optimal cost function parameters as

ell as the scaling factor for global retrieval indices are given for

ll graph extraction algorithms and datasets. 

Optimisation of PGD The parameters of PGD are optimised

ith respect to AP. On the validation set different polar segmen-

ations (defined via P r and P φ) are validated for two recursion

evels (i.e. we define the maximal recursion depth to r = 2 ). For

 = 1 , the parameter combinations P r = { 1 , 2 , 3 , 4 , 5 , 6 } × P φ =
 4 , 8 , 12 , 16 , 20 , 24 , 28 , 32 , 36 , 40 } are evaluated, while for
ord spotting in historical handwritten documents, Pattern Recog- 

http://memory.loc.gov/ammem/gwhtml/gwseries2.html
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Fig. 4. Exemplary graph representations of the George Washington (GW), Parzival (PAR), Botany (BOT), and Alvermann Konzilsprotokolle (AK) database. 

Table 2 

Optimal cost function parameters and scaling factors for graph 

edit distance computation. 

Method τ v τ e α β m 

GW Keypoint 4 1 0.1 0.5 4.55 

Grid 4 1 0.1 0.7 4.70 

Projection 4 1 0.1 0.5 4.90 

Split 4 1 0.1 0.5 4.75 

PAR Keypoint 4 4 0.3 0.5 2.50 

Grid 4 1 0.5 0.7 3.60 

Projection 4 1 0.5 0.5 3.90 

Split 4 1 0.3 0.3 2.65 

BOT Keypoint 32 32 0.1 0.3 3.30 

Projection 8 32 0.3 0.9 6.05 

AK Keypoint 16 16 0.1 0.5 3.35 

Projection 8 32 0.1 0.7 2.35 

Table 3 

Optimal P r and P φ for PGD on both recursion levels l in conjunction with node- 

and edge-based histograms, respectively. 

Method Node Edge 

l = 1 l = 2 l = 1 l = 2 

P r P φ P r P φ P r P φ P r P φ

GW Keypoint 5 8 1 4 4 16 1 4 

Grid 4 8 1 2 5 40 1 4 

Projection 5 16 1 4 6 4 1 2 

Split 6 24 1 2 5 40 1 4 

PAR Keypoint 6 36 4 8 3 36 3 4 

Grid 1 36 1 8 6 36 4 4 

Projection 6 36 4 4 4 36 4 8 

Split 2 36 3 8 6 8 3 8 

BOT Keypoint 6 40 1 4 1 16 2 4 

Projection 4 40 4 4 1 36 2 4 

AK Keypoint 4 20 1 2 4 4 1 4 

Projection 4 20 1 10 4 20 2 4 

l  

{  

6  

e  

p

 

t  

u  

e  

F  

d  

Fig. 5. Average precision (AP) and filter rate (FR) for BP-FRE as function of thresh- 

old D . 

Table 4 

Optimal D and corresponding filter rate (FR). 

Method BP-FRN BP-FRE 

D FR D FR 

GW Keypoint 7.50 88.08 45.0 93.57 

Grid 4.50 89.43 55.0 94.17 

Projection 8.25 91.55 35.0 92.66 

Split 12.75 56.74 62.5 82.75 

PAR Keypoint 24.00 82.49 65.0 94.12 

Grid 6.75 91.91 77.5 94.48 

Projection 17.25 95.51 82.5 91.00 

Split 16.50 88.42 65.0 94.66 

BOT Keypoint 13.50 95.97 92.5 84.59 

Projection 19.50 91.09 105.0 93.78 

AK Keypoint 7.50 96.00 60.0 89.18 

Projection 12.75 92.36 110.0 90.03 
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B  
 = 2 the parameter combinations P r = { 1 , 2 , 3 , 4 } × P φ =
 2 , 4 , 6 , 8 , 10 } are evaluated. Hence, in total we evaluate

 × 10 × 4 × 5 = 1200 parameter combinations for every graph

xtraction method. In Table 3 the best performing parameters are

resented for all graph extraction methods and datasets. 

Optimisation of Filtering. Finally, we optimise the threshold D

hat controls the amount of filtered graphs. For BP-FRN we eval-

ate thresholds D = { 0 . 75 , 1 . 5 , . . . , 29 . 25 , 30 } and for BP-FRE we

valuate thresholds D = { 2 . 5 , 5 , . . . , 147 . 5 , 150 } . In Fig. 5 the AP and

R for BP-FRE are shown for every tested threshold D on the GW

ataset (similar plots can be achieved on all other datasets). By in-
Please cite this article as: M. Stauffer et al., Filters for graph-based keyw

nition Letters (2018), https://doi.org/10.1016/j.patrec.2018.03.030 
reasing D we observe that the KWS performance is improved in

eneral. Simultaneously, the number of filtered graphs is decreas-

ng (making the KWS process slower in general). Threshold D is

etermined such that the AP is maximised (if this threshold is ac-

ually too restrictive, we choose the next higher threshold where

he AP is not further decreasing). In Table 4 the selected threshold

 and the corresponding filter rates FR are given for each graph

xtraction method and all four datasets. 

.3. Reference systems 

In order to evaluate the two proposed fast rejection heuristics

P-FRN and BP-FRE, we consider three types of reference systems,
ord spotting in historical handwritten documents, Pattern Recog- 
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viz. (1) a recent graph-based system, (2) template-based systems

using DTW, and (3) learning-based KWS systems. 

First, we compare the novel filter methods with the graph-

based KWS framework without fast rejection (denoted by BP) pro-

posed in [37] on all datasets. 

Next, we compare the proposed approach with four template-

based KWS systems using DTW on the GW and PAR datasets. 9 

These systems optimally align sequences of feature vectors like

geometrical features [23] (denoted by DTW’01), Histogram of

Oriented Gradient features [29,43] (denoted by DTW’08 and

DTW’09, respectively), and Deep Learning features [48] (denoted

by DTW’16). 

Finally, we compare our method with three state-of-the-art

learning-based methods, viz. CVCDAG [2] , PRG [42] , and QTOB [49] ,

on the BOT and AK datasets. 10 CVCDAG is based on Pyramidal His-

togram Of Characters labels (PHOC) features used in conjunction

with a SVM [2] . In PRG, the same features are used to train a

CNN, the so called PHOCNet [42] . Another CNN is used in QTOB

by means of a triplet network approach [49] . 

5.4. Results and discussion 

First, we compare the proposed rejection methods BP-FRN and

BP-FRE with the graph-based KWS framework BP without fast re-

jection [37] on the independent test sets. In Table 5 the MAP for

local thresholds, the AP for global thresholds, as well as the FR

is given for all methods. On the GW dataset we observe filter

rates between 60% and 90% for BP-FRN, and 85% and 95% for BP-

FRE (i.e. only 5% to 40% of all comparisons have to be carried out

by the bipartite graph matching algorithm). Due to this filtering,

we observe speed-up factors of 4 to 21 when compared with the

original framework, as shown in Table 6 . 11 

Simultaneously both methods BP-FRN and BP-FRE achieve bet-

ter KWS accuracies than the plain method BP. In particular, the

KWS accuracy can be improved by up to 4%. When compared with

BP-FRN, BP-FRE generally leads to higher filter rates as well as

higher accuracies in both threshold scenarios. In particular, BP-FRE

in combination with Keypoint graphs lead to promising results. 

Given the high accuracies achieved by our filter methods BP-

FRN and BP-FRE, one might wonder how the graph dissimilar-

ity PGD performs as a single graph dissimilarity measure for

KWS, rather than as filter method. In Table 7 , the MAP for

PGD with node-based histograms (termed PGD-Node) and edge-

based histograms (termed PGD-Edge) is compared against BP us-

ing Keypoint graphs (for the other graphs similar results are ob-

tained). We observe that PGD-Node results in a lower KWS accu-

racy when compared to BP, whereas PGD-Edge performs similar or

even better than BP. Thus, we conclude that PGD-Edge can be em-

ployed for both filtering and for computing a basic dissimilarity

measure for KWS. 

Next, we compare the two novel graph-based methods BP-FRN

and BP-FRE (using the best performing graph extraction method)

with four DTW-based reference system for template-based KWS

on GW and PAR. In Table 8 , the MAP for each dataset as well as

their average is given. On GW we observe that both graph-based

methods clearly outperform the DTW-based reference systems. Es-

pecially, BP-FRE leads to substantial improvements when compared

to all DTW systems. On PAR both DTW’09 and DTW’16 are slightly

better than our graph-based methods. However, these methods
9 Template-based reference results are only available for GW and PAR. 
10 Learning-based reference results are only available for BOT and AK. 
11 Actually, we carry out our experiment on a high performance computing cluster 

with dozens of CPU nodes. Hence, these readings are approximated by means of the 

average matching time per keyword measured on the validation set in a sequential 

scenario. T
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Table 6 

Mean average precision (MAP) for local thresholds and speed-up factor (SF), for 

the original bipartite graph matching (BP), and the bipartite fast rejection with 

nodes (BP-FRN) and edges (BP-FRE), respectively, on the Keypoint graphs. 

GW SF PAR SF BOT SF AK SF 

BP 66.08 62.04 45.06 77.24 

BP-FRN 69.81 7.68 67.28 3.79 56.10 6.97 81.51 6.87 

BP-FRE 70.61 21.35 68.16 13.38 57.14 6.56 81.51 8.75 

Table 7 

Mean average precision for local thresholds for the original bipartite graph match- 

ing (BP), and the polar graph dissimilarity with nodes (PGD-Node) and edges (PGD- 

Edge), respectively, on the Keypoint graphs. 

GW ± PAR ± BOT ± AK ±
BP 66.08 62.04 45.06 77.24 

PGD-Node 58.47 −7.62 46.71 −15.33 45.81 + 0.75 69.66 −7.58 

PGD-Edge 68.78 + 2.70 61.47 −0.57 52.11 + 7.05 76.17 −1.07 

Table 8 

Mean average precision (MAP) using local thresholds for graph-based KWS systems 

in comparison with four template-based reference systems on the George Washing- 

ton (GW) and Parzival (PAR) dataset. The first, second, and third best systems are 

indicated by (1), (2), and (3). 

Method GW PAR Average 

Reference (Template) DTW’01 45.26 46.78 46.02 

DTW’08 63.39 47.52 55.46 

DTW’09 64.80 73.49 (1) 69.15 

DTW’16 68.64 (3) 72.38 (2) 70.51 (2) 

Graph BP-FRN 69.81 (2) 71.09 70.45 (3) 

BP-FRE 70.61 (1) 72.03 (3) 71.32 (1) 

Table 9 

Mean average precision (MAP) using local thresholds for graph-based KWS systems 

in comparison with three state-of-the-art learning-based reference systems on the 

Alvermann Konzilsprotokolle (AK) and Botany (BOT) datasets. The first, second, and 

third best systems are indicated by (1), (2), and (3). 

Method BOT AK Average 

Reference (Learning) CVCDAG 75.77 (2) 77.91 76.84 (2) 

PRG 89.69 (1) 96.05 (1) 92.87 (1) 

QTOB 54.95 82.15 (2) 68.55 

Graph BP-FRN 56.10 81.51 (3) 68.81 

BP-FRE 57.14 (3) 81.51 (3) 69.33 (3) 
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12 Some of the reference systems need relatively large training sets, i.e. labelled 

training data (e.g. PRG achieves lower rates on penalised/weighted MAP, see [24] for 

details). 
re based on highly sophisticated features. In particular, DTW’16

akes use of an unsupervised feature learning approach. Overall,

e conclude that both graph-based methods are able to outper-

orm, or at least keep up with, the DTW-based reference systems. 

Finally, in Table 9 we compare our novel methods for graph-

ased KWS with three learning-based methods on the two

CFHR2016 benchmark datasets. We observe that both fast rejec-

ion methods obtain high accuracy rates. Yet, BP-FRE is slightly

etter in case of BOT when compared to BP-FRN. Among the

earning-based methods we observe that both PHOC-based meth-

ds, i.e. CVCDAG and PRG, result in the overall best performance.

specially, the combination of a CNN and PHOC features (PRG) re-

ults in remarkable high accuracies on all datasets. 

However, the proposed graph-based methods can keep up or

ven outperform several learning-based methods, especially on AK.

his is quite interesting as the reference methods are based on

ore advanced features than our approach and make use of so-

histicated learning-based algorithms (i.e. SVM and CNN). 

Considering that manual labelling of historical handwriting is

 labour- and cost-intensive process, and, the limited availability

f training data, our graph-based methods become a valuable and
Please cite this article as: M. Stauffer et al., Filters for graph-based keyw

nition Letters (2018), https://doi.org/10.1016/j.patrec.2018.03.030 
exible alternative especially as only one single keyword is re-

uired for retrieval without a priori training. 12 

. Conclusion and outlook 

In the present paper two novel filter methods for graph-based

WS are introduced. These filters allow to decide in linear time

hether or not a graph from a document is similar enough to a

iven query graph. In particular, the filter methods compare his-

ograms of the node and edges distributions in a polar coordi-

ate system. If, and only if, two histograms are similar enough,

he more powerful and accurate graph matching is actually carried

ut, otherwise the document graph is rejected. Due to this filter-

ng, more than 90% of all matchings can be omitted. The proposed

ejection criterion is computed in linear time, while the graph

atching has cubic time complexity. Thus, we observe substantial

peed-ups of the complete KWS process. Moreover, the proposed

lters also improve the KWS accuracy in most scenarios. Hence,

he advantage of our novel framework is twofold: It makes KWS

ast and more accurate. 

Finally, we show that the two novel filters for graph-based KWS

an keep up or even outperform several state-of-the-art template-

nd learning-based systems. This is quite remarkable as some

f these reference systems are based on advanced features and

se learning-based matching algorithms (e.g. CNN). Moreover, it is

orth to note that the learning systems are crucially depending

n the size of labelled training data. Yet, such training data is of-

en difficult to acquire in case of handwritten historical documents.

his makes our graph-based methods to a viable alternative, espe-

ially as only one keyword template is necessary for retrieval. 

In future work we aim to optimise and automise the thresh-

lding of the filter methods, such that no additional optimisation

tep is required. Moreover, as our novel linear time graph compar-

son achieves quite high accuracies, one might consider to use the

roposed graph filter as an independent dissimilarity measure in

ther graph-based pattern recognition applications. 
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