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Abstract. Automatic handwriting recognition for historical documents
is a key element for making our cultural heritage available to researchers
and the general public. However, current approaches based on machine
learning require a considerable amount of annotated learning samples to
read ancient scripts and languages. Producing such ground truth is a
laborious and time-consuming task that often requires human experts.
In this paper, to cope with a limited amount of learning samples, we
explore the impact of using synthetic text line images to support the
training of handwriting recognition systems. For generating text lines,
we consider lineGen, a recent GAN-based approach, and for handwriting
recognition, we consider HTR-Flor, a state-of-the-art recognition sys-
tem. Different meta-learning strategies are explored that schedule the
addition of synthetic text line images to the existing real samples. In
an experimental evaluation on the well-known Bentham dataset as well
as the newly introduced Bullinger dataset, we demonstrate a significant
improvement of the recognition performance when combining real and
synthetic samples.

Keywords: Handwriting recognition · synthetic handwriting · meta-
learning strategies · lineGen · HTR-Flor.

1 Introduction

The state of the art in handwritten text recognition (HTR) for historical doc-
uments has improved greatly in the past decade, leading to relatively robust
systems for automated transcription and keyword spotting [3]. However, the
main limitation of such systems is the need to access thousands of annotated
training samples, which have to be produced by human experts for each script
and handwriting style anew.

A promising approach to alleviate this limitation is to support the training of
the recognition system with synthetic samples. Recent progress include the use
of Generative Adversarial Network (GANs) for generating synthetic handwriting
based on examples of existing handwriting styles.
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In this paper, we aim to investigate whether or not synthetic handwriting
samples can help to improve the recognition performance for historical docu-
ments when only few real labeled samples are available. To the best of our
knowledge, this question has not been addressed comprehensively so far. We
consider a recent GAN-based approach, lineGen [2], for style transfer and syn-
thesis of text line images, and use the synthetic learning samples for training a
state-of-the-art recognition system, HTR-Flor [14]. Several meta-learning strate-
gies are investigated to schedule the addition of synthetic samples to the real
ones.

Two datasets are considered for experimental evaluation. First, the well-
known Bentham collection [5], which contains a single-writer collection of En-
glish manuscripts from the 18th and early 19th century. Secondly, the newly
introduced Bullinger dataset, a work in progress that aims to make the letter
correspondence of Heinrich Bullinger, a Swiss reformer, available in an electronic
edition. The letters were written in Latin and German in the 16th century and
encompass a considerable number of writers who are represented with only one
or few letters in the collection. Handwriting synthesis is particularly interesting
in this scenario, as it may allow to adapt a handwriting recognition system to
the particular writing styles of these letters.

In the following, we discuss related work, describe the handwriting datasets,
introduce the synthesis and recognition methods as well as the meta-learning
strategies, and present the experimental results. The paper is concluded with an
outlook to future work.

1.1 Related work

We found relatively few examples of using synthetic handwriting data to help
with the training of HTR systems. One recent example is TrOCR [9]. It uses
a transformer-based architecture as well as pre-trained image and text trans-
formers to achieve state-of-the-art recognition performance on both printed and
handwritten text datasets. One issue of transformer-based architectures is that
they require huge amount of training data. The solution implemented by TrOCR
is to use synthetic data to augment existing datasets. They did not however use a
handwriting generator, but instead generated training data using publicly avail-
able fonts with both printed and handwritten style.

There have been several attempts at handwritten text generation in recent
years since the introduction of Generative Adversarial Networks [6], but only in
a few cases, the resulting synthetic data has been used to train an HTR system.

To the best of our knowledge, Alonso et al. [1] is the first attempt at gen-
erating handwritten text images by using a Generative Adversarial Networks
(GAN) [6] trained on offline data. While it is able to generate legible French
and Arabic words, it suffers from several limitations. It is only able to generate
fixed width images with consequently a fixed character count. It is also unable to
properly disentangle style from content, making it impossible to control the style
of the generated images. Despite these limitations, the generated images were
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used to augment the IAM dataset with 100k new entries and train a handwritten
text recognition system, but to no noticeable improvements.

ScrabbleGAN [4] improves on Alonso et al. [1] by using a fully convolutional
generator and a filter bank to handle character style. These improvements allow
for variable word length and control over the generated style, but the charac-
ter width is still fixed, making generated cursive text look unrealistic. Gener-
ated data was evaluated by mixing 100k images to existing datasets of modern
handwriting, specifically IAM and RIMES, and retraining the HTR system. A
improvement of around 1% was measured on both datasets. More interestingly,
they highlighted the possibility of using such a generation system in domain
adaptation scenarios.

GANWriting [8] improves on ScrabbleGAN [4] by removing the character
width limitation, and therefore showing huge improvements in generation quality
for cursive and tight handwriting styles. Unfortunately, they did not evaluate
their data for HTR system training.

SmartPatch [10] is the latest improvement of GANWriting [8]. Custom patch
discriminators are used to improve generation quality by removing some common
artifacts produced by GANWriting. In a human evaluation, SmartPatch was
thought to look better than GANWriting 70.5% of the time, and it even seemed
more real than the true real data 54.4% of the time. They did not however
evaluate their results on a HTR model either.

LineGen [2] is based on Alonso et al. [1]. It works directly on entire lines and
is capable of extracting style information from only a few samples. It uses an
additional spacing network to allow much better variation in character output
width. It makes use of an autoencoder-like architecture to introduce perceptual
and pixel-wise reconstruction loss, enabling for high-fidelity results. However, we
find once again no evaluation of the results on a HTR model.

In this paper, we consider lineGen for generating synthetic handwriting be-
cause of convincing visual results and its ability to generate complete text lines,
which are the standard input for current HTR systems. The synthetic train-
ing samples are studied in the context of handwriting recognition with HTR-
Flor [14], a relatively lightweight convolutional recognition system with state-of-
the-art performance.

2 Data

2.1 Bentham

The Bentham collection [5] [13] is a set of manuscripts images written by the
English philosopher Jeremy Bentham during the 18th and early 19th centuries.
It is therefore a single writer dataset. It contains 433 pages of scanned letters,
totaling 11,473 lines. The scans are of high quality, with a clearly legible black
ink on grey background handwriting, as can be seen in Figure 1.

The dataset comes as either directly the pages or the lines, along with a
ground truth indicating what is written on each image. There is no word-level
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Fig. 1. Example of a line from the Bentham dataset.

isolation available. That means that, as can be seen on Figure 1, the entire lines
are cut from the pages. The skew, i.e. the inclination of the text lines, is not
corrected, so some of the lines are not perfectly horizontal and may have a slight
upward or downward angle.

2.2 Bullinger

The Bullinger dataset is a novel, work-in-progress dataset originating from the
Bullinger Digital project1. This project aims to scan and associate transcriptions
to letters sent by and to the Swiss reformer Heinrich Bullinger (1504-1575), which
leads to the presence of different handwriting styles. While the scans are of high
quality, the dataset itself is a challenge for handwriting recognition. It features
16th century style handwriting with ink on paper that is often hard to read
even for a human observer. It is also a multi-language dataset, featuring letters
mostly in Latin but also in German. A line example is shown in Figure 2.

Fig. 2. Example of a line from the Bullinger dataset.

The dataset is composed of a set of scanned letters with the line location
information.

As the dataset is still a work in progress, we did not have access to all the
data at once. We therefore used two distinct releases. The first release, the small
Bullinger dataset, is composed of 1,488 lines after preprocessing. The second
release, the large Bullinger dataset, is composed of 18,925 lines.

There are also some caveats with the provided ground truth and segmenta-
tions. While some of the content and segmentations have been proofread and
are human-verified, most of the data comes from a Transkribus [7] based tran-
scription alignment system. Although transcription alignment has a very high
precision, the resulting ground truth still contains a few errors. In particular,
some abbreviations that are commonly used in handwritten Latin text may be
written out in full. While this makes sense when providing a transcription of a

1 https://www.bullinger-digital.ch/
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letter to a human reader, it is not ideal for training an HTR system, because it
leads to a mismatch between the abbreviation character visible in the image and
the word written out in full in the transcription. Nevertheless, an experimental
evaluation of this dataset is still feasible, since we only compare relative HTR
performances measured on the same data.

3 Methods

In this section, we describe our choice of methods for evaluating the impact
of synthetic training data. First, the GAN-based approach to generate synthetic
text lines using lineGen, secondly, the HTR system, and finally the meta-learning
strategies for mixing real and synthetic data.

3.1 Text-line image generation

To generate new text-line images we use lineGen [2]. It works directly on entire
lines and is capable of extracting style information from only a few samples of the
target style. It uses an additional spacing network to allow much better variation
in character output width. It makes use of an autoencoder-like architecture to
introduce perceptual and pixel-wise reconstruction loss, enabling for high-fidelity
results.

The network is composed of six components: a style extractor, a space pre-
dictor, a pre-trained HTR system, a generator, a discriminator and a pre-trained
encoder. The style extractor takes a single image as input and outputs a style
vector. The space predictor takes a line of text and the style vector as input and
outputs spaced text. Both the style vector and the spaced text are then fed to
the generator which outputs a generated image that should have the content of
the given line of text with the style of the given image example.

Three loss functions are considered. First, the generated image is used by the
pre-trained HTR system to compute a Connectionist Temporal Classification
(CTC) loss. Second, the discriminator computes an adversarial loss and, third,
the pre-trained encoder computes a perceptual and pixel-wise reconstruction
loss.

We use this network on two datasets described below, Bentham and Bullinger.
The data is split randomly into independent sets for training, validation, and
testing, respectively. The exact split is indicated in Table 2 in the experiments
Section 4.1.

Bentham To generate synthetic text lines for the English Bentham dataset, we
write lines from The Lord of the Rings in the style of the Bentham dataset. We
successively trained the encoder (25’000 iterations), the internal HTR system
(15’000 iterations), and the generator (50’000 iterations). Figure 3 shows the re-
sults obtained after this training process. Visually the lines look like the original
database lines. They are legible with relatively few artifacts. Some do appear,
especially with characters that go below the baseline like “y” or “g”. We can



6 M. Spoto et al.

also see some artifacts appear around punctuation marks like “!” or “,”. Some
of those artifacts are due to the data, in particular the non-frequent characters.
For example, we count only 19 occurrences of “!” in the whole Bentham dataset.

Fig. 3. Example of generated lines using lineGen on the Bentham dataset after 50’000
iterations

The artifacts of letters like “y” and “g” are harder to understand. One possi-
ble explanation is that they are somewhat often cut or overlapped in the dataset,
due to the segmentation of the lines. One other interesting point regarding those
letters is that they seem to share the same defects across sentences. Figure 4
shows a close up of those artifacts from multiple different lines. We can clearly
see that the defaults as well as the general shape are similar for each instance. It
seems that the generator does not produce enough variations. We tried to add
some variations by introducing a normal noise X ∼ N (0, 0.5) to the style vector
centered around the mean. We do not observe any significant difference with
or without additional noise, hinting that adding noise to the style vector is not
enough to fix the variation issues of the generator.

Fig. 4. Example of artefacts in a line generate by lineGen on the Bentham dataset

Bullinger On the Bullinger dataset, the same lines from The Lord of the Rings
were synthesized. The training of lineGen was done in two parts. It was first
attempted on the small original dataset containing only 1,190 transcribed lines.
As the results were not satisfactory, training was then continued on the bigger
17,033 lines dataset.

After training our text-line generator on the small dataset we reach a Char-
acter Error Rate lower than 1% on the training data and 30% on the validation
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data. These results show clearly an overfitting, as should be expected with such
a small dataset. Nevertheless, we went ahead with the training of the generator
to see how it would perform in such bad conditions. It was trained for 50,000
iterations (about 54 hours). As visible in Figure 5a), the generator struggled to
output something coherent, and it took over 40’000 iterations just to start seeing
something that was remotely similar to what we would expect. After another
10,000 iterations, the output stabilized to very blurry but still coherent text,
as can be seen in Figure 5b). We can however see that the general look of the
generated image matches the expected style of the Bullinger dataset.

After this initial training, we continued on the larger one. The generator was
trained for another 10,000 steps. This resulted in a significant improvement in
generation quality, as can be seen in Figure 5c). The text is sharper and mostly
legible. We can however observe the same artifacts as on the Bentham dataset,
particularly visible on the “y” letter. This effect is amplified here because we
generated an English sentence, which has vastly more occurrences of “y” than
the original Latin or German languages of the dataset.

As an attempt to further increase the generation quality, both the encoder
and internal HTR were also trained on the larger dataset. The encoder was
trained for an additional 54,000 iterations, bringing the total to 80,000. The
internal HTR was trained for 15,000 more iterations, for a total of 30,000. This
renewed training ended up with a Character Error Rate of 6% on the training
data and 15% on the validation data, i.e., we see much less overfitting than after
the initial training, as it shows on the results obtained on the validation data.
Using those new pre-trained parts, the generator was then trained for another
20,000 iterations, reaching a total of 80,000. An example is shown Figure 5d).

a)

b)

c)

d)

Fig. 5. Example of generated line images using lineGen on the small Bullinger dataset
after a) 40’000 iterations, b) 50 000 iterations and on the large one with c) 60’000 and
d) 80’000 iterations

While the results may look worse than before at first glance, they are actually
closer to the original dataset. This is explained by the fact that the internal
HTR got significantly better. Before the additional data and training, it was
biased towards “easy to read” characters, and this bias got carried over to the
generator. By increasing the ability of the internal HTR, the generator is able
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to create a wider variety of character styles that are still correctly recognized,
and is therefore not incorrectly penalized by the character loss.

Note, however that the final results are overall worse than on the Bentham
dataset, with more artifacts appearing. This is easily explainable by the nature
of the two datasets. The Bentham dataset being a cleaner, single writer dataset,
it is obviously easier than the Bullinger one and its multiple writers with hard
to read handwriting, even for an human observer. The synthetic Bullinger style
is expected to contain predominant character styles across the whole database
but not to mimic one writer in particular, although it will be biased towards the
style of Bullinger himself who wrote the largest number of letters.

3.2 Recognition system

To choose the recognition system, three networks were compared on the Bentham
and IAM dataset: HTR-Flor [14], TrOCR [9] and PyLaia [12], used in commercial
tools like Transkribus [7]. The results of the papers mentioned above have been
reported in Table 1. TrOCR has the lowest CER rate but is the network with the
largest number of parameters and the longest decoding time. Also, this network
needs more training data than the two other networks.

For evaluating the impact of synthetic training samples on the recognition
performance, we chose HTR-Flor as our baseline recognition system, because it
offers an excellent trade-off between recognition performance and computational
effort. It is lightweight, relatively fast, and still manages to outperform other
models like PyLaia.

Model # of params Decoding Time CER (Bentham) CER (IAM)

HTR-Flor 0.8 M 55 ms/line 3.98% 3.72%
PyLaia 9.4 M 81 ms/line 4.65% 4.94%
TrOCR 558 M 600 ms/line - 2.89%

Table 1. Comparison between different recognition models, results from [14] and [9]

Additionally, having less parameters also means that the network can be
trained with less data, and with less risks of overfitting when data is scarce.
This is also an advantage in our case, since our final use case aims to be able to
train the HTR system on as little as a single page of real text for a particular
writer.

3.3 Meta-learning strategy

The standard meta-learning strategy for using synthetic data is to add a fixed
number s of synthetic samples to the real samples and then train the system
until convergence. Because there is no limit in the number of synthetic text lines
that can be produced by the generator, different values for s can be tested. The
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expectation is that adding some synthetic data will be helpful because of the
increased data quantity but adding too much synthetic data leads to a reduced
performance because of the decreased data quality when compared with real
samples.

We explore also a more detailed meta-learning strategy by gradually adding
more synthetic data to the system as the number of training epochs increase.
Our intuition is that real data is especially important at the beginning of the
training process, in order to find good initial parameters for the HTR system
with high-quality data, and that adding synthetic data is especially beneficial at
the end of the training process to fine-tune the parameters with high-quantity
data.

The suggested meta-learning strategy applies a sequence L1, . . . , Ln of learn-
ing steps, where each step Li = (ri, si, ei) utilizes ri real samples and si syn-
thetic samples for training the HTR system during ei epochs, with ri ≥ ri+1

and si ≤ si+1 to gradually increase the number of synthetic learning samples.
The following strategies are considered in this paper:

– Real-only. Use only real samples L = (r, 0, e).
– Synthetic-only. Use only synthetic samples L = (0, s, e).
– Fixed. Use a fixed amount of real and synthetic samples L = (r, s, e).
– Increase. Increase synthetic samples L1 = (r, s1, e1), . . . , Ln = (r, sn, en).
– Replace. Also decrease real samples L1 = (r1, s1, e1), . . . , Ln = (rn, sn, en).

4 Experiments

4.1 Setup

The Bentham and Bullinger datasets consist of independent sets of text lines
for training, validation, and testing, as indicated in Table 2. To evaluate the
impact of synthetic data for HTR training, we used HTR-Flor with its standard
configuration. Because there was no need to optimize meta-parameters on an
independent set, we used the training set to train the system and the validation
set to evaluate the results, i.e., the test set was not used.

Dataset Training Validation Test Total

Bentham 9,198 1,415 960 11,573

Bullinger (large) 17,033 946 946 18,925

Table 2. Distribution of text lines partitions

After training the lineGen text line generator for the two datasets (see Sec-
tion 3.1), we consider two scenarios for evaluating the HTR system:
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– Medium. A medium amount of 1000 real text lines from the training set
is used to train the HTR-Flor recognition system. Such a situation is en-
countered when ground truth is available for several pages of a historical
manuscript.

– Low. A low amount of 200 real text lines is used. Such a situation is encoun-
tered when ground truth is prepared only for one or few pages of a historical
manuscript.

The HTR system is trained for 75 epochs in total, which is sufficient for
convergence. Depending on the meta-learning strategies employed, the 75 epochs
are subdivided into several learning steps Li = (ri, si, ei) with

∑n
i=1 ei = 75.

For the Medium scenario, the meta-learning strategies are evaluated:

– Real-only: 1000 real samples.
– Synthetic-only: 1000 synthetic samples.
– Fixed: 1000 real and 1000 synthetic samples.
– Increase: (1000, 0, 20), (1000, 500, 10), (1000, 1000, 20), (1000, 2000, 25)
– Replace: (1000, 0, 25), (750, 250, 25), (500, 500, 15), (0, 1000, 10)

For the Low scenario, the following meta-learning strategies are evaluated:

– Real-only: 200 real samples.
– Synthetic-only: 200 synthetic samples.
– Fixed: 200 real and 200 synthetic samples.
– Fixed-4k: 200 real and 4000 synthetic samples.
– Fixed-8k: 200 real and 8000 synthetic samples.
– Increase: (200, 0, 20), (200, 200, 10), (200, 500, 20), (200, 1000, 25)
– Replace: (200, 0, 25), (150, 50, 25), (100, 100, 15), (0, 200, 10)

In both scenarios, to put the results into context, a baseline is provided, which
corresponds to a situation where a large amount of ground truth is created for
a historical document collection.

– Baseline: Use all the available real training samples (see Table 2).

4.2 Medium Scenario

The recognition results of the Medium scenario are summarized in Table 3 in
terms of character error rate (CER). The best results on Bentham are achieved
with the Fixed meta-learning strategy, with a CER of 11.38%, and the best
results on Bullinger are achieved with the Increase strategy, with a CER of
23.55%. In both cases, the results of the Fixed and Increase strategies are very
similar. When compared with the Real-only scenario, significant improvements
of 3.39% (Bentham) and 3.24% (Bullinger) are obtained when using synthetic
text lines during training. When compared with the Baseline, the achieved CER
indicates that HTR remains feasible even when ground truth exists only for 1000
text lines.
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Medium Bentham Bullinger

Baseline 05.01 10.69

Real-only 14.77 26.79

Synthetic-only 67.70 83.37

Fixed 11.38 24.09

Increase 11.99 23.35

Replace 30.63 55.96

Table 3. Character error rates for the Medium scenario. The best results among the
different meta-learning strategies are highlighted in bold font.

When comparing the different meta-learning strategies, we can see that both
datasets follow the same general trends. While the Real-only scenario reaches a
solid performance of 14.77% and 26.79% on Bentham and Bullinger, respectively,
the Synthetic-only one seems to quickly get stuck at 67.70% and 83.37%. This
strongly hints that the HTR model is overfitting on the synthetic training data.
The most likely explanation is that the generated images do not have enough
variations. As previously shown in Figure 4 during the generator training, the in-
dividual characters do not seem to vary in a meaningful way, suggesting that the
HTR model learns the shape of a few particular characters but cannot generalize
to real variations present in the handwriting.

Figures 6 and 7 show the evolution of the CER in more detail during training
with the different meta-learning strategies. Again, we observe consistent results
among the two datasets.

0 25 50 75
0

0.2
0.4
0.6
0.8
1

Epoch

C
E
R

Baseline Real-only Synthetic-only

Fixed Increase Replace

Fig. 6. Training behavior for the Medium scenario on the Bentham dataset.

Real-only and Synthetic-only In the Medium scenario, training with only real
data achieves a reasonable performance but leaves room for improvements when
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R

Baseline Real-only Synthetic-only

Fixed Increase Replace

Fig. 7. Training behavior for the Medium scenario on the Bullinger dataset.

compared with the Baseline. Using only synthetic data fails and leads quickly
to overfitting.

Fixed The Fixed scenario uses the same amount of real and synthetic images over
75 training epochs. It clearly outperforms the Real-only scenario, both learning
faster and reaching a lower CER. This is a very encouraging result, as it shows
that the additional generated data did indeed help training the HTR model.

Increase The Increase scenario gradually adds more synthetic data. As expected,
this scenario stays close to the performances of the real-only one until the 20th
epoch. It then starts to outperform it as additional generated data is included,
reaching a final performance similar to the Fixed scenario. These results seem
to indicate that it is not necessary to add the synthetic data progressively to
“guide” the training.

Replace The Replace scenario both decreases the real data and increases the
synthetic data gradually. This scenario is interesting because the training seems
to follow the Real-only scenario, up to the 65th epoch, where we switch to
generated data only. We can then see the CER climbing back up, presumably as
the model overfits on the generated data, as theorized previously. It shows that
the model overfits very quickly when presented with only synthetic data, even
when previously “warmed up” with real data.

4.3 Low Scenario

The recognition results of the Low scenario are summarized in Table 4. The best
results on Bentham are achieved with Fixed-4k, with a CER of 19.78%, and the
best results on Bullinger are also achieved with Fixed-4k, with a CER of 40.24%.
When compared with the Real-only scenario, drastic improvements of 61.31%
(Bentham) and 47.79% (Bullinger) are observed, highlighting that synthetic data
is especially helpful when only very few labeled samples are available in the
ground truth, i.e. only a few pages or a single letter in a historical document
collection.

Figures 8 and 9 illustrate the evolution of the CER during training. Again,
consistent trends are observed among the two datasets.
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Low Bentham Bullinger

Baseline 05.01 10.69

Real 81.10 88.03

Generated 68.41 80.71

Fixed 27.03 47.68

Fixed-4k 19.78 40.24

Fixed-8k 21.29 43.70

Increase 29.02 47.04

Replace 63.30 77.40

Table 4. Character error rates for the Low scenario. The best results among the
different meta-learning strategies are highlighted in bold font.

0 25 50 75
0

0.2
0.4
0.6
0.8
1

Epoch

C
E
R

Baseline Real-only Synthetic-only Fixed

Fixed-4k Fixed-8k Increase Replace

Fig. 8. Training behavior for the Low scenario on the Bentham dataset.

Real-only and Synthetic-only We see that the real data is not sufficient to train
the model in the Low scenario. For Synthetic-only, the performance remains
similar to the Medium scenario.

Fixed The different Fixed meta-learning strategies greatly outperform Real-only
and Synthetic-only, demonstrating that a combination of real and synthetic data
is of crucial importance when working in the Low scenario. We observe that
adding more synthetic data using Fixed-4k improves the performance reaching
a peak performance. Adding even more synthetic data with Fixed-8k does not
further improve the result.

Increase As expected, we see the same “slow start” for Increase as with Real-
only. We then see a rapid improvement as we add more data, the CER con-
tinuously decreases until the end of the training. On the Bullinger dataset, the
strategy to gradually increase the synthetic data slightly outperforms the fixed
combination of the Fixed strategies.
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0 25 50 75
0

0.2
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Fixed-4k Fixed-8k Increase Replace

Fig. 9. Training behavior for the Low scenario on the Bullinger dataset.

Replace As for the Medium scenario, it is again not beneficial to remove the
real samples. It leads to an overfitting to the synthetic data after the 65th epoch
when all real data is removed. However, unlike the Medium scenario, the error
rate does not increase significantly after this epoch, it just stops improving.

5 Conclusion

In this paper, we have studied the impact of GAN-based handwriting synthe-
sis on the recognition performance, when training HTR systems with only few
labeled data in the context of historical documents. With the right mix of real
and synthetic data, supported by different meta-learning strategies, we were able
to demonstrate a significant decrease in character error rate, ranging from 3%
when using 1000 real text line images for training up to 60% when using only
200 real text lines. These results are especially promising for multi-writer docu-
ment collections, such as the newly introduced Bullinger dataset, which contain
a large number of unique writing styles.

There are several lines of future research. First, the handwriting generation
system itself also depends on training data to perform a successful style transfer.
This might not always be feasible for smaller datasets, as the initial training with
the small Bullinger dataset showed. It would be interesting to further investigate
the behavior of generators when trained using low quantity of data, or to explore
new ways of training the generators, such as transfer learning with fine-tuning.

Secondly, all experiments in this paper have been realized using lineGen. It
would be beneficial to test other generators as well, in particular to verify if the
same drop in performance is observed when using only synthetic data.

Finally, the synthetically generated samples, although matching the target
style well, were lacking some natural variability. Future work should investigate
methods to increase the variability and make it as natural as possible. Using
the kinematic theory of rapid human movements [11] for this purpose seems
especially promising.
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