
Aggregation procedure of Gaussian Mixture Models
for additive features

Antonio Ridi∗†, Christophe Gisler∗†, Jean Hennebert∗†
∗University of Applied Sciences Western Switzerland,

School of Engineering and Architecture of Fribourg, iCoSys Institute
{antonio.ridi, christophe.gisler, jean.hennebert}@hefr.ch

†University of Fribourg, Department of Informatics, Fribourg, Switzerland
{antonio.ridi, christophe.gisler, jean.hennebert}@unifr.ch

Abstract—In this work we provide details on a new and
effective approach able to generate Gaussian Mixture Models
(GMMs) for the classification of aggregated time series. More
specifically, our procedure can be applied to time series that
are aggregated together by adding their features. The procedure
takes advantage of the additive property of the Gaussians that
complies with the additive property of the features. Our goal
is to classify aggregated time series, i.e. we aim to identify
the classes of the single time series contributing to the total.
The standard approach consists in training the models using
the combination of several time series coming from different
classes. However, this has the drawback of being a very slow
operation given the amount of data. The proposed approach,
called GMMs aggregation procedure, addresses this problem. It
consists of three steps: (i) modeling the independent classes, (ii)
generation of the models for the class combinations and (iii)
simplification of the generated models. We show the effectiveness
of our approach by using time series in the context of electrical
appliance consumption, where the time series are aggregated by
adding the active and reactive power. Finally, we compare the
proposed approach with the standard procedure.

I. INTRODUCTION

A time series is usually defined as a collection of samples
equally spaced in time coming from a system observed for a
certain amount of time. Time series are popular in several
fields, as statistics, economics and environmental science.
More formally, a time series is defined as X = {xt : t ∈ τ}
where τ = {1, 2, . . . , T} is the index set.

Sometimes time series can be aggregated together. More
specifically, with the term “aggregated”, we generically refer
on the way of combining two or more independent time series.
In this work we focus on time series that are aggregated
together by adding their features. For sake of simplicity, in this
paper we will refer to them as “additive time series”. Several
fields are concerned, as economics [1], electrical appliance
recognitions [2] or urban traffic [3]. Considering a set of N
time series {X1,X2, . . . ,XN}, we can define the additive time
series as Y = {yt : t ∈ τ}, where:

yt =
N∑

n=1

xn,t = x1,t + x2,t + · · ·+ xN,t (1)

In this work, we focus on the classification of the additive
times series. Supposing that each independent time series X
belongs to a specific class, the aim of the classification of the

additive times series Y is to retrieve the list of classes that
are contributing to the total. This task could also be seen as a
multi-labeling problem, given that Y has to be associated with
multiple target labels. The difficulty of the task is related to
the number of combinations that can be generated.

Suppose to have a set of independent time series divided
in M classes, being P the average number of time series
per class. The aim is to build the models of all the class
combinations for being able to identify additive time series.
The standard approach for classifying the additive time series
consists in training the models using all the combinations of
time series. The number of different combinations depends on
the aggregation level L, i.e. the number of time series aggre-
gated together. We can estimate the number of combinations
through the following formula:

cs =

(
M

L

)
PL =

(M)! PL

(M − L)! L!
(2)

where the binomial coefficient represents the number of
models and the exponential represents the number of combina-
tions per model. The number of combinations cs exponentially
grows when increasing the aggregation level L and, in few
steps, it requires a high computational time.

In this work, we propose a different approach able to
generate the models of the additive time series without gen-
erating all the time series combinations. In particular, we
use Gaussian Mixture Models (GMMs) as machine learning
technique for building these models. We take advantage of
the additive property of the Gaussians that complies with
the additive property of the features of the additive time
series. Our approach consists in three steps: (i) modeling the
independent classes, (ii) the generation of the models for the
class combinations and (iii) the simplification of the generated
models.

This papers is organized as follows: in Section II we present
the related works, in Section III we introduce the GMMs and
in Section IV we show the proposed procedure. In Section V
we analyze a case of study in the context of the electrical
appliance identification and in Section VI we discuss the
results. Finally in Section VII we conclude the paper.

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4846-5/16/$31.00 ©2016 IEEE 2545

Aggregation procedure of Gaussian Mixture Models for additive features - ICPR2016 - A. Ridi, C. Gisler, J. Hennebert

II. RELATED WORKS

Generally speaking, among the most common approaches
for the time series classification we find Dynamic Time Warp-
ing (DTW), GMMs and Hidden Markov Models (HMMs).
DTW determines a measure of the similarity between the time
series in the test set with those in the training set, by warping
them non-linearly in the time dimension. A very different
approach is used by GMMs and HMMs, that use stochastic
probabilistic techniques for estimating the probability density
distribution of the features. Differently from the GMMs,
HMMs include the notion of state and try to capture the
state sequence that can be implicitly contained in time series.
The strength of these classification techniques is the ability to
cope well with the intrinsic characteristics of time series, in
fact (i) they are not particularly sensitive to the total amount
of noise, (ii) they scale well with the length of time series
and (iii) the difference in lengths between time series is not
problematic. Other machine learning classification techniques,
as Neural Networks, are much more sensitive to the intrinsic
characteristics of time series [4].

As previously said, in this work we address the classification
of additive time series, i.e. when two or more time series are
aggregated by adding their features. The classification task
consists in retrieving the classes of the time series combined
together. This problem can also be addressed from a multi-
labeling classification perspective. In fact, each aggregated
time series is associated with multiple target labels. The multi-
label classification problem has two approaches: (i) transfor-
mation, which transforms multi-label classification problem
into single label classification problem and (ii) algorithm
adaptation, which adapts an existing single label classification
algorithm to handle multi-label data. While the first method
is more general and can be applied to several classifiers, the
other applies only to specific classifiers [5]. To best of our
knowledge, the multi-label classification applied to aggregated
time series has not been formalized so far.

Some works deal with a different but related problem, i.e.
the “disaggregation” of the aggregated time series. Disaggre-
gation algorithms are usually defined as those able to separate
the single contributions in the whole signal. Instead of finding
the labels of the single time series, all the time series are
computed. This task is clearly more difficult than the multi-
label classification, given that at each time step a decision on
the level of the contributions is taken. The disaggregation task
has two main approaches, i.e. (i) optimization and (ii) pattern
recognition. The optimization method combines different time
series for finding the most similar to those observed. The main
drawback is that only the known time series are combined
and if an unknown time series has been aggregated, important
effects could derive on the identification rate. Instead, the
pattern recognition approach identifies specific events able to
identify specific time series [2]. In this approach the steady-
states and transient parts of the time series are analyzed. The
steady-state has been defined as a difference between any two
samples of a sequence that does not exceed a given tolerance

value [6]. The transient analysis searches for relevant changes
in the aggregated time series when a transition is verified and
analyzes the portions of the signal considered unstable.

In the appliance recognition field, the Non Intrusive Load
Monitoring (NILM) measures the consumption of the whole
home by using smart meters. The aim is to “disaggregate” the
total energy consumption for separating the single appliance
contributions. The most used steady-state technique is the
Power change approach, that consists in analyzing the active
and eventually the reactive power of the total power consump-
tion [6]. As a drawback, it is hard to separate appliances having
similar consumption signatures. Other approaches are based on
the analysis of current, voltage and other features in time or
frequency. Trajectories in the voltage-current domain or the
voltage noise can also be used [2]. Other techniques use the
information left by the appliances on their signature when they
are turned on or off. Even if this information is usually very
short in time, it can be used for identifying the appliance. The
major drawback is that the transitions can be captured by using
a high sampling frequency.

In this work, we propose a new approach for the additive
time series classification. Our method is based on GMMs and
we take advantage of the additive property of the Gaussians
that complies with the additive property of the features.

III. GAUSSIAN MIXTURE MODELS

GMMs is a stochastic machine learning technique that esti-
mates the probability densities of the features. The probability
densities are represented by multivariate Normal distributions
by using a parameter vector θ = {µ,Σ}, where µ is the
mean vector and Σ is the covariance matrix. The probability
densities are computed as a weighted sum of multivariate
Normal densities, called mixtures. The likelihood of a generic
sample x is equal to:

p(x | θ) =
K∑

k=1

wk√
(2π)D|Σk|

e[−
1
2 (x−µk)

T Σ−1
k (x−µk)] (3)

where K is the number of mixtures, wk is the weight and
D the dimension. Considering the mixture case, the param-
eter vector θ is {µ1, . . . ,µK ,Σ1, . . . ,ΣK , w1, . . . , wK}. In
addition, the sum of the weights must be equal to 1.

Mixture models are typically used for representing complex
density functions and the mixture parameters are estimated
during the training phase. A common procedure for training
GMMs consists in (i) finding clusters in the training data,
usually with a K-Means algorithm, (ii) using the centroids
as initial mean values of the mixture parameters and (iii) esti-
mating the mixture parameters, usually with the Expectation-
Maximization (EM) algorithm. For estimating the mixture
parameters, the EM algorithm alternates two steps until con-
vergence:
Expectation (E-step). For every mixture k the responsibility
rnk of each point to each mixture is computed:

rnk =
wkp(xn | θk)∑
k wkp(xn | θk)

(4)

2546

Aggregation procedure of Gaussian Mixture Models for additive features - ICPR2016 - A. Ridi, C. Gisler, J. Hennebert

p
d

f

μ
1

μ
2

μ
3

μ
4

μ
1
+μ

2

μ
2
+μ

3

μ
1
+μ

4

μ
3
+μ

4

μ
1
μ
2

μ
3

μ
4

σ
1 σ

2 σ
3

σ
4

μ
1
+μ

2
μ
2
+μ

3
μ
1
+μ

4
μ
3
+μ

4

σ
1
+σ

2

σ
2
+σ

3
σ
1
+σ

4

σ
3
+σ

4

w
1 w

2

w
3

w
4

w
1
.w

2

w
2
.w

3
w
1
.w

4

w
3
.w

4p
d

f

2 2

2 2 2 2

2 2

F
e
a
tu

re
F

e
a
tu

re

time

time feature

feature

signal 1
signal 2

signal 1 + 2

Fig. 1. Synthetic example of the model merging for the classification of additive time series.

The expectation step is divided in two steps: the computation
of the cluster posterior probabilities and the evaluation of the
densities.
Maximization (M-step). During the M-step, the parameters
are updated. The maximum-likelihood estimation of the mean,
the covariance and the mixture weights can be computed.
The mean of the k-th mixture is the weighted average of
all the points assigned to the mixture, while the covariance
matrix is proportional to the weighted empirical scatter matrix.
The weight of a mixture is the proportion of the sum of the
responsibilities against the total.

In this work the hypothesis of uncorrelated features is
made, as usually done in several implementations. When the
covariance matrices are diagonal, the computational complex-
ity is widely reduced. From the computational complexity
perspective, the EM algorithm dominates during the GMMs
training. Considering t iterations, k Gaussians, n points and d
dimensions, the total complexity of the EM algorithm is equal
to O(t(kd3+nkd2)) for full covariance matrices and O(tnkd)
for diagonal covariance matrices. The main difference is
during the E-step, where we need to invert Σk and compute
its determinant [7].

IV. GMMS AGGREGATION PROCEDURE

We propose an approach able to generate the models of
the additive time series without computing all the time series
combinations. By using the GMMs, we take advantage of
the additive property of the Gaussians that complies with the
additive property of the features of the additive time series.

When using GMMs, every category is represented by a
given number of Gaussians. For computing the combination
of two or more models, we can use an interesting property of
the Gaussians: if X and Y are independent random variables
normally distributed, then their sum is also normally dis-
tributed [8]. The sum of two independent normally distributed
random variables is normal, with its mean being the sum of

Algorithm 1 Aggregating schema
Input: data xi, label ci, aggregation level L
λnew(µ,Σ, π)← GMMs(xi,ci)
λold ← λnew

for l = 1 to L− 1 do
λnew ← merge models(λnew, λold)
λnew ← simplify models(λnew)

end for

Algorithm 2 Merging models
Input: GMMs′(λ′), GMMs′′(λ′′)
M ← total number of classes
for m← 1 to M do
nGauss1 ← total number of Gaussians for GMMs′

nGauss2 ← total number of Gaussians for GMMs′′

k ← 0
for k1 ← 1 to nGauss1 do

for k2 ← 1 to nGauss2 do
µm,k ← µ′

m,k1
+ µ′′

m,k2

Σm,k ← Σ′
m,k1

+ Σ′′
m,k2

wm,k ← π′
m,k1

· w′′
m,k2

k ← k + 1
end for

end for
end for
Output: new models λ(µ,Σ, w)

the two means, and its variance being the sum of the two
variances:  X ∼ N (µX , σ

2
X)

Y ∼ N (µY , σ
2
Y)

Z = X + Y
(5)

then:
Z ∼ N (µX + µY , σ

2
X + σ2

Y) (6)

The main algorithm is presented in Algorithm 1. For creat-
ing the models for all the combinations of L classes, we firstly
have to compute the models of the independent classes (A),
and later we can iteratively merge (B) and simplify (C) the
models.

2547

Aggregation procedure of Gaussian Mixture Models for additive features - ICPR2016 - A. Ridi, C. Gisler, J. Hennebert

Algorithm 3 Simplifying models - Optimal solution
Input: GMMs (λ)
distthr ← set a distance threshold
M ← total number of classes
for m← 1 to M do
reduce← true
while reduce do
comb← all the Gaussians combinations
C ← number of combinations
for c← 1 to C do

(k1, k2)← comb(c)

distvect(c)← distance computation

end for
distmin ← minimum distance
(k̂1, k̂2)← Gaussian combination corresponding

to the minimum distance
if distmin < distthr then
λm,k ← recompute the new parameters
λm,k̂1

← λm,k

remove λm,k̂2
else
reduce← false

end if
end while

end for
Output: reduced models λ(µ,Σ, w)

A. Independent classes modeling

During this step we simply train our models by using the
independent classes. The set of parameters derived from this
step will be used in the next steps.

B. Model merging

The main algorithm is presented in Algorithm 2. We il-
lustrate this step by using a synthetic example in Figure 1.
We assume two different signals, one represented in green
and the other in red, belonging to different classes. In the
upper-right side of the figure we represent the probability
density functions when using the GMMs algorithm with two
Gaussians for each model. The first model, in green, has two
mixtures (µ1, σ2

1 , w1) and (µ3, σ2
3 , w3). The second model,

in red, has also two mixtures (µ2, σ2
2 , w2) and (µ4, σ2

4 , w4).
Our aim is to find the model representing the combination of
the two. The model merging consists in using the property
of the sum of two independent normally distributed random
variables. Starting with the two models, we can combine them
in order to obtain the model representing the combination of
the two. Every mixture of every model has to be added to
every mixture of the other model. The weight of the resulting
mixture is the product of the weights of the original mixtures.
The combined model therefore has four mixtures (µ1 + µ2,
σ2
1 + σ2

2 , w1 · w2), (µ2 + µ3, σ2
2 + σ2

3 , w2 · w3), (µ1 + µ4,
σ2
1 + σ2

4 , w1 · w4) and (µ3 + µ4, σ2
3 + σ2

4 , w3 · w4).

C. Model simplification

One of the main problem of the proposed method is that
the number of Gaussians quadratically grows when increasing
the agglomeration level L. However, very often Gaussians

Algorithm 4 Simplifying models - Suboptimal solution
Input: GMMs (λ)
distthr ← set a distance threshold
M ← total number of classes
for m← 1 to M do
k̂1 ← 1; k̂2 ← 1
reduce← true
nGauss← compute the number of Gaussians
nGaussold ← nGauss
while reduce do
search← true
k1 ← k̂1; k2 ← k̂2
while k1 < nGauss and search do

while k2 < nGauss and search do
distval ← computation of the distance
if distval < distthr then
search← false
k̂1 ← k1; k̂2 ← k2

end if
k2 ← k2 + 1

end while
k1 ← k1 + 1
k2 ← 1

end while
if search then

if nGaussold = nGauss then
reduce← false

else
k̂1 ← 1; k̂2 ← 1
nGaussold ← nGauss

end if
else
λm,k ← recompute the new parameters
λm,k̂1

← λm,k

remove λm,k̂2
nGauss← compute the number of Gaussians

end if
end while

end for
Output: reduced models λ(µ,Σ, w)

close together are created. In this step, our aim is to reduce
the number of Gaussians by merging the closest ones. We
separate two phases: (i) the computation of the distances
between Gaussians and (ii) the re-computation of the new
parameters. The computation of the distance is performed
by using the Kullback-Leibler (KL) distance, through the
following formula:

dist = log(
|Σm,k2

|
|Σm,k1

|
) + Σm,k1

Σ−1
m,k2

−D+

(µm,k2
− µm,k1)

TΣ−1
m,k1

(µm,k2
− µm,k1

)

(7)

We compare this distances with a threshold value (distthr).
If the computed distance is below the threshold, than the Gaus-
sians are considered “similar” and can be merged together. The

2548

Aggregation procedure of Gaussian Mixture Models for additive features - ICPR2016 - A. Ridi, C. Gisler, J. Hennebert

re-computation is computed through the following formula:

wm,k = wm,k1
+ wm,k2

µm,k = f1µm,k1
+ f2µm,k2

Σm,k = f1Σm,k1
+ f2Σm,k2

+ f1f2·
(µm,k1

− µm,k2
)(µm,k1

− µm,k2
)T

(8)

where: 
f1 =

wm,k1

wm,k1
+ wm,k2

f2 =
wm,k2

wm,k1
+ wm,k2

(9)

We develop two different methods for the Gaussian merging,
as respectively shown in Algorithm 3 and 4:

• Optimal solution. It consists in computing all the combi-
nations of all the Gaussians and merging the two Gaus-
sians with the minimum distance if below the threshold.
In practice in this case we compute all the distances
between the Gaussians and we select the best one.

• Suboptimal solution. In some cases the previous method
could be quite long, especially when having several
Gaussians. This approach consists in analyzing all the
combinations but greedily selecting the first occurrence
that is below the threshold. When two Gaussians are
merged, the search continues from the point in which
it has been stopped.

In both cases, we repeat the procedure until the distance
between the two closest Gaussians is over the threshold.

V. CASE OF STUDY: ELECTRICAL APPLIANCE
IDENTIFICATION

As previously said, our method can be used when additive
time series are present. We present here a case of study in the
appliance recognition field, where the electrical consumption
of appliances is usually measured in term of active and reactive
power. Given that the appliances are plugged in parallel on the
network, the time series have the additive property, meaning
that the electrical consumption of the total is equal to the sum
of the single contributions. One of the principal applications
is the Non-Intrusive Load Monitoring (NILM) or multi-signal
detection, i.e. when the measuring system, called smart meter,
is placed outside the house. By the nature of the problem,
the smart meter acquires the whole consumption of the house,
where all the appliance consumptions are added together. The
principal goal of the analysis is to detect which appliances
contribute to the total.

A. Database

Given that our method requires to build the models of the
independent classes (the appliances in this case), we use a
database where the appliances are recorded separately. In a
second step we artificially add together the independent time
series for generating the additive time series. We use ACS-
F2 database [9] as reference database for our analyses. This
database contains the electrical appliance consumption of 225

0 100 200 300
40

50

60

70

80

90

Number of Gaussians

A
cc

ur
ac

y
ra

te
(%

)

1 signals
2 signals

Fig. 2. Trend of the accuracy rate when increasing the number of Gaussians.
In red the independent classes, while in blue the combination of 2 signals.

different appliances uniformly spread among 15 categories.
The appliances are acquired two times, in the so-called ses-
sions, by using a low sampling frequency (10−1 Hz). We use
the first session as training set and the second session as test
set. We compare our method with a standard GMMs approach,
where the models of the combinations are trained from the
combinations of the time series. The training procedure is very
different for the two approaches:

• Standard GMMs. We compute all the combinations of
all the time series and we train the models using these
combinations.

• GMMs aggregation procedure. We compute the models
for the independent classes and we merge them using the
proposed approach.

The test set is the same for both the methods, consisting in
all the combinations of all the time series in the ACS-F2
test set. For a matter of computational time of the standard
approach, we limit the aggregation level to 2, having 105
different models to train.

B. GMMs aggregation procedure

The first step of our procedure consists in computing the
models of the 15 original categories. As illustrated in Figure 2,
the red line shows the trend of the accuracy when increasing
the number of Gaussians. The best case is obtained when
using 30 Gaussians, yielding an accuracy rate of 92.8%. Then,
we use the independent models for computing the models
of all the possible class combinations, as described by the
Algorithms 1, 2, 3 and 4.

In Figure 3, we show the trend of the accuracy rate when
varying the threshold for both cases. When the distance is
equal to 0, then the model simplification is not applied. As
expected, the optimal solution performs better than the sub-
optimal solution. However, this difference can be observed
only from a certain threshold. The best case is attained without
the model simplification, yielding an accuracy rate of 69.0%.

2549

Aggregation procedure of Gaussian Mixture Models for additive features - ICPR2016 - A. Ridi, C. Gisler, J. Hennebert

0 1 2 3 4 5

61

63

65

67

69

Distance threshold (distthr)

A
cc

ur
ac

y
ra

te
(%

)

optimal solution
sub-optimal solution

Fig. 3. Trend of the accuracy rate when increasing distance threshold. The
optimal and sub-optimal solutions are represented in blue and red line.

C. Standard GMMs approach

As previously said, the standard approach consists in com-
puting all the combinations of the time series for training the
models of the class combinations. By using the Formula 1,
we are able to compute the total number of combinations,
equal to 23625. By using a standard GMMs, each model is
trained using 225 time series combinations. As illustrated in
Figure 2, the blue line shows how the accuracy rate varies
when increasing the number of Gaussians. The results saturate
around 200 Gaussians, yielding an accuracy rate of 65.7%.

Even if using an aggregation level L equal to 2, the
computation takes a long time. Unfortunately, increasing the
agglomeration level generates a large number of combinations
and a large number of models. Because of the high computa-
tional time, we have to limit our comparison to an aggregation
level equal to 2.

VI. DISCUSSION

One of the strong point of the proposed procedure for
generating the models for the additive time series is the
capability to scale well when increasing the number of classes,
the number of time series per class and the aggregation level,
especially when compared to the standard approach. However,
our approach is sensitive to the number of Gaussians, given
that their number quadratically increases when increasing the
aggregation level. For that reason it is particularly important
the model simplification step, that permits to sensibility reduce
the number of Gaussians. On the other side, the model
simplification step yields a decrease of the accuracy rate, as
shown in Figure 3.

The comparison with the standard approach in term of
accuracy rate is particularly interesting. In our case of study,
we analyzed the performances of our system compared to the
standard approach with an aggregation level equal to 2. Our
approach performs better than the standard approach when
using a distance threshold smaller than 2.

VII. CONCLUSIONS

In this work we reported a new approach, called GMMs
aggregation procedure, for the classification of additive time
series. By using GMMs, we take advantage of the additive
property of the Gaussians that complies with the additive
property of the features of the additive time series. While
the standard approach consists in training the models from
additive time series, we propose a different procedure divided
in three steps: (i) the modeling of the independent classes, (ii)
the generation of the models for the class combinations and
(iii) the simplification of the generated models. In practice, the
models of the combined classes are generated by merging the
Gaussians belonging to the single models. However, given the
high number of Gaussian generated, we reduce their number
by applying two algorithms: (i) optimal and (ii) suboptimal.

We reported about a case of study in the field of the
electrical appliance recognition. In particular we compared
the GMMs aggregation procedure with the standard approach,
showing the benefits in terms of accuracy rate. In addition, we
show the trend of the two algorithms for reducing the number
of Gaussians when increasing a threshold value. A limitation
of our analysis was in the number of aggregation level, that
we had to limit to 2, because of the high computational time
of the standard GMMs approach.

The proposed approach is completely new, and it could
be potentially applied in several domains, as for instance
the financial time series. To best of our knowledge, we are
the firsts to propose a system for creating artificial models
for aggregated time series with additive features. Probably
several improvements are possible, in particular we suspect
that other methods could be more effective for merging the
Gaussians. Finally, our approach could be easily extended to
other machine learning technique, based on the estimation of
probability densities as mixture of Gaussians, as the HMMs.

REFERENCES

[1] R. J. Rossana and J. J. Seaterb, “Temporal aggregation and economic time
series,” Journal of Business & Economic Statistics, vol. 13, pp. 441–451,
1995.

[2] A. Zoha, A. Gluhak, M. Imran, and S. Rajasegarar, “Non-Intrusive Load
Monitoring Approaches for Disaggregated Energy Sensing: A Survey,”
Sensors, vol. 12, no. 12, pp. 16 838–16 866, 2012.

[3] M. Gaudry, “An aggregate time-series analysis of urban transit demand:
The montreal case,” Transportation Research, vol. 9, no. 4, pp. 249 –
258, 1975.

[4] A. Nanopoulos, R. Alcock, and Y. Manolopoulos, “Feature-based clas-
sification of time-series data,” Information processing and technology,
2001.

[5] G. Tsoumakas and I. Katakis, “Multi Label Classification: An Overview,”
International Journal of Data Warehousing and Mining, vol. 3, no. 3, pp.
1–13, 2007.

[6] M. Figueiredo, A. De Almeida, and B. Ribeiro, “Home electrical sig-
nal disaggregation for non-intrusive load monitoring (NILM) systems,”
Neurocomputing, vol. 96, pp. 66–73, 2012.

[7] M. Zaki and W. Meira, Eds., Data Mining and Analysis, Fundamental
Concepts and Algorithms. Cambridge University Press, 2014.

[8] S. Roweis and Z. Ghahramani, “Neural Computation,” Lecture Notes in
Computer Science, vol. 11, no. 2, 1998.

[9] A. Ridi, C. Gisler, and J. Hennebert, “ACS-F2 - A New Database of Ap-
pliance Consumption Analysis,” in Proceedings of the 6th International
Conference on Soft Computing and Pattern Recognition (SOCPAR), 2014,
pp. 145–150.

2550

Aggregation procedure of Gaussian Mixture Models for additive features - ICPR2016 - A. Ridi, C. Gisler, J. Hennebert

