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a b s t r a c t 

The emergence of geometric deep learning as a novel framework to deal with graph-based representa- 

tions has faded away traditional approaches in favor of completely new methodologies. In this paper, 

we propose a new framework able to combine the advances on deep metric learning with traditional 

approximations of the graph edit distance. Hence, we propose an efficient graph distance based on the 

novel field of geometric deep learning. Our method employs a message passing neural network to cap- 

ture the graph structure, and thus, leveraging this information for its use on a distance computation. The 

performance of the proposed graph distance is validated on two different scenarios. On the one hand, 

in a graph retrieval of handwritten words i.e. keyword spotting, showing its superior performance when 

compared with (approximate) graph edit distance benchmarks. On the other hand, demonstrating com- 

petitive results for graph similarity learning when compared with the current state-of-the-art on a recent 

benchmark dataset. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Graph-based representation have been widely used in several 

pplication domains such as computer vision [1] , bioinformat- 

cs [2] , computer graphics [3] or pattern recognition [4,5] . Graphs 

re powerful and flexible representations able to describe shapes, 

mages, knowledge, etc. in terms of relationships between con- 

tituent parts or primitives. In the core of any pattern recogni- 

ion application, there is the ability to compare two objects. This 

peration, which is trivial when considering feature vectors de- 

ned in R 

n , is not properly defined in the graph domain [6,7] . Due

o the inherent graph flexibility, it forces us to adopt some defi- 

itions of dissimilarity (similarity) ad hoc to particular purposes. 

orgwardt [8] formally defines such problem as follows : 

efinition 1.1 (Graph Comparison Problem) . Let g 1 = 

V 1 , E 1 , μ1 , ν1 ) and g 2 = (V 2 , E 2 , μ2 , ν2 ) be two graphs from G,

he graph comparison problem is to find a function 

 : G × G → R 

uch that d(g 1 , g 2 ) quantifies the dissimilarity (similarity) of g 1 and 

 2 . 
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Lots of efforts have been made in this direction. In the liter- 

ture, error-tolerant or inexact graph matching algorithms have 

een proposed. For instance, Zhou and de la Torre [9] proposed 

o factorize the large pairwise affinity matrix into smaller matri- 

es that encode, on the one hand, the local node structure of each 

raph, and on the other hand, the pairwise affinity between both 

odes and edges. Moreover, graph embeddings and kernels have 

een also proposed as mechanisms to compare two graphs. Graph 

mbedding refers to those techniques that aim to explicitly map 

raphs to vector spaces [10,11] . Similarly, implicit graph embedding 

r graph kernel aims at finding a function able to map the input 

raph into a Hilbert space which basically defines a way to compute 

he similarity between two graphs in terms of a dot product [8,12] . 

ne of the most popular error-tolerant graph matching methods is 

he graph edit distance (GED) [13–15] . Now, the graph comparison 

roblem is formulated in terms of finding the minimum transfor- 

ation cost in such a way that an isomorphism exists between 

he transformed graph g 1 and the second one g 2 . In addition, GED 

lgorithms, unlike most embedding and kernel methods, are able 

o cope with any type of labeled graph and any type of labels on 

odes and edges. 

The main drawback of GED techniques is that the time com- 

lexity is exponential in terms of the number of nodes of the input 

raphs. Hence, GED is unfeasible in a real scenario, where there 

ay be no constraints in terms of the graph size. Therefore, sev- 

ral algorithms have been proposed to cope with this complex- 

ty [16,17] . However, these approximate algorithms only consider 

https://doi.org/10.1016/j.patcog.2021.108132
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ery local node structures in their computation and they do not 

dapt their costs according to the problem being addressed. 

In Euclidean domains such as vectors, images or sequences, 

eep learning has been proposed as a solution to perform a huge 

ariety of tasks. In the last decade, the particular case of deep neu- 

al networks have supposed a breakthrough in computer vision, 

attern recognition and artificial intelligence [18] . However, until 

ecent years, deep learning advances were not able to process non- 

uclidean data in its framework. Lately, geometric deep learning 1 

as emerged as a generalization of deep learning methods to non- 

uclidean domains such as manifolds and graphs [19] . This field 

as arisen in the recent years allowing the developed models to 

ncode structural and relational data. Several fields have benefited 

rom this new paradigm, for instance computer vision [1] , quan- 

um chemistry [2] and computer graphics [3] among others. 

Inspired by the efficient GED approximations and the powerful 

ramework provided by the new advances in geometric deep learn- 

ng, we propose to leverage its effectiveness as a learning frame- 

ork to enhance a graph distance computation. Therefore, we are 

acing a graph metric learning problem. It can be formulated as 

 contrastive learning problem that finds contrast between similar 

nd dissimilar objects. A siamese architecture is suitable for this 

roblem. Bromley et al. [20] proposed it for signature verification. 

iamese networks make use of the same model and weights on 

wo separated branches in order to learn a representation where 

istances can be computed. Later, several approaches have ex- 

ended this idea, being the triplet loss [21] one of the most suc- 

essful methods. Recently, novel approaches have focused on ex- 

ending this concept in order to exploit groups of samples instead 

f pairs or triplets [22] . Moreover, contrastive learning has been 

sed, not only as a metric learning framework but it has also raised 

ome attention due to its astonishing improvement on unsuper- 

ised learning tasks [23] . 

In this work, we define a triplet learning framework for the 

raph metric learning problem. Our proposed distance is inspired 

y the Hausdorff Edit Distance introduced by Fischer et al. [17] as 

n efficient approximation of the real graph edit distance with key 

ifferences. In com parison, our framework has the ability to enrich 

he initial graph representation by means of message passing op- 

rations. These learned features allows to use features distances as 

ode substitution costs. Furthermore, insertion and deletion costs, 

re dynamically learned according to nodes local contexts. There- 

ore, we avoid a costly manual process on setting the edit cost op- 

rations per each specific problem. Moreover, a key difference is 

hat our model does not require any distance at the edge level as it 

s already encoded at node level during the message passing phase. 

hus, we present the first learnable extension of the Hausdorff edit 

istance. In addition, the proposed model is able to provide an in- 

erpretation in terms of the classical edit operation without explicit 

round-truth. 

The proposed approach is validated using standard graph 

atasets for keyword spotting and object classification. In this ap- 

lication scenario, the proposed approach based on a message 

assing neural network shows competitive results demonstrating 

he efficacy of our learning framework. 

This article supposes a significantly extended version of our 

revious conference paper [24] . To the best of our knowledge, it 

as the first work that introduced the idea of learning a graph 

etric by means of message passing architectures. In this work, 

e have enhanced our previous graph neural network architecture. 

pecifically, the main changes from our previous work are (i) a new 

raph neural network architecture to obtain a better node context 

epresentation; (ii) a novel graph similarity which makes use of 
1 http://geometricdeeplearning.com/ 

t

o

f

2 
earned insertions, deletions and substitutions as edit operations; 

iii) a learning approach making use of triplets of graphs with in- 

riplet hard negative mining. Finally, a thorough analysis and eval- 

ation of the involved parameters as well as a performance com- 

arison with the recent state-of-the-art literature is presented. 

The rest of this paper is organized as follows. Section 2 intro- 

uces the related work on graph neural networks. Section 3 in- 

roduce the graph edit distance algorithm along with relevant ap- 

roximations. Sections 4 and 5 proposes our learning framework 

nd learning strategy. Section 6 evaluates the proposed framework. 

inally, Section 7 draws the conclusions and future work. 

. Related work on geometric deep learning 

In the following, some basic notations, definitions and previ- 

us works are presented in the context of geometric deep learn- 

ng. As mentioned in the introduction, Geometric deep learning has 

merged as a generalization of deep learning methods to non- 

uclidean domains such as graphs and manifolds [19] . In this paper 

e will specifically focus on its application to graphs. 

A graph is as a symbolic data structure describing relations 

 edges ) between a finite set of objects ( nodes ). Graphs are formally

efined as: 

efinition 2.1 (Graph) . Let L V and L E be a finite or infinite label

ets for nodes and edges, respectively. A graph g is a 4 − tuple 

 = (V, E, μ, ν) where, V is the finite set of nodes , also known as

ertices ; E ⊆ V × V is the set of edges ; μ : V → L V is the node la-

elling function, and; ν : E → L E is the edge labelling function. 

We denote | V | and | E| as the order and size of a graph, namely,

he number of nodes and edges respectively. Moreover, the neigh- 

orhood of a given node v ∈ V in a graph g is defined as the set of

odes { v i } adjacent to v . We denote the neighborhood as N (v ) . 
Graph Neural Networks were first proposed by Gori and 

carselli [25,26] as the first attempt to generalize neural networks 

o graphs. Later, Bruna et al. [27] proposed the first formulation 

f CNNs on graphs taking advantage of the graph spectral domain. 

owever, the ability to process graph data came with a huge time 

omplexity becoming inappropriate for real scenarios. Later, some 

orks addressed these computatuinal drawbacks [28–30] . In its 

implest form, a GNN layer is defined as 

 

(k +1) = G c (h 

(k ) ) = ρ

( ∑ 

B ∈A (k ) 

Bh 

(k ) �(k ) 
B 

) 

, (1) 

here h (k ) is the node hidden state at the k th layer, ρ is a non-

iniarity such as ReLU (·) , A is a set of graph intrinsic linear op- 

rators that act locally on the graph signal and � are learnable 

arameters. The set of graph intrinsic linear operators can handle 

ulti-relational graphs, however, in most cases, A only contains 

he adjacency matrix. 

Recently, Gilmer et al. [2] proposed an approach named Message 

assing Neural Networks (MPNNs) as a general supervised learning 

ramework for graphs. This approach is able to generalize several 

NN layers to a common pipeline. They propose to define each 

ayer by means of two differentiable functions, on the one hand, a 

essage function M 

(k ) (·) which collects the information from the 

eighboring nodes and edges according to 

 

(k +1) 
v = 

∑ 

u ∈N (v ) 

M 

(k +1) (h 

(k ) 
v , h 

(k ) 
u , e v u ) , (2) 

here h (k ) 
u and h (k ) 

v are the hidden states of nodes v and u at iter-

tion k and N (v ) denotes the neighbours of v in the graph g. On

he other hand, an update function which updates the hidden state 

f the central node v according to the message m 

(k +1) 
v . The update 

unction is formally defined as h (k +1) = U 

(k +1) (h (k ) 
, m 

(k +1) ) . 
v v v 

http://geometricdeeplearning.com/
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Several important GNN layers have been proposed along the 

ast years, the most relevants for the scope of this work are the 

raph Attention Networks (GAT) [31] and the Gated Graph Neural 

etworks (GG-NN) [32] . 

The literature on graph neural networks and their applications 

s quite large, so we refer the interested readers to recent sur- 

ey papers for a comprehensive overview of these methodolo- 

ies [19,33–35] . Very recently, Dwivedi et al. [36] presented a re- 

roducible benchmarking framework. 

In the context of similarity learning, several papers have ex- 

lored the siamese neural network architecture. In its origins, 

aldi et al. [37] makes use of a siamese model for fingerprint 

ecognition. Siamese neural networks use a pair of samples to train 

ith positive and negative examples i.e. being similar or not. Later, 

everal approaches have extended this idea in order to take always 

nto account positives and a negatives examples. These approaches 

re known as triplet networks [21] . In this case, three branches 

ith shared weights are used to bring similar examples together 

nd dissimilar examples to be far apart. 

In the graph domain, Li et al. [38] presented two different mod- 

ls to solve the graph similarity problem, namely a graph embed- 

ing model, and a graph matching network. Both models can be 

rained with pairs or triplets. The Graph embedding model takes 

dvantage of siamese GNN’s to embed the given graphs into a vec- 

orial space. Then, given the pair of vectorial representations, a 

imilarity metric in the vector space can be computed by means 

f the Euclidean, cosine or Hamming similarities. Very similar ap- 

roaches have also been presented in other works, for instance 

haudhuri et al. [39] who trained a similar approach with con- 

rastive loss or the work introduced by Zhang et al. [40] which 

ses the L 2 loss to mimic the real similarity score. On the other 

and, the Graph matching networks (GMN) uses two GNNs with 

hared weights to process the input graphs. However, in this case, 

he authors propose to modify the node update module to take 

nto account not only the aggregated messages on the edges of 

ach graph, but a cross-graph message which measures how well 

he nodes match from one graph to the other. Finally, following the 

ame idea as the previous model, each graph is finally converted 

nto a vectorial representation which is later used in a similarity 

etric. 

SimGNN is another interesting approach proposed by 

ai et al. [41] . In this work, the authors proposed to combine 

raph-level embeddings and node-node similarity scores by taking 

heir histogram of features. However, as the histogram function is 

ot differentiable, this methodology still relies on the graph-level 

mbedding for computing the final similarity score. Their model is 

rained according to the real graph edit distance for small datasets 

hereas the smallest distance computed by three well-known 

pproximate algorithms is taken to handle large datasets. The 

uthors extended this work by proposing a new model named 

raphSim [42] . In this architecture, only three node-node similari- 

ies scores are used corresponding to node embeddings at different 

cales. After that, the similarity matrices are treated as images 

nd a CNN is used to process them to discover the optimal node 

atching pattern. However, to deal with the permutation invariant 

rdering of graph nodes, they propose a BFS ordering. Moreover, 

he similarity matrices are padded to max (| V 1 | , | V 2 | ) , where V 1 
nd V 2 are the node sets of the graphs involved and resized to 

eet the expected size. Finally, a precomputed similarity score is 

sed to guide the training. 

Compared to these works, our model makes use of a node-node 

istance matrix to obtain a global graph distance metric. There- 

ore, we are not obtaining a global vectorial representation of our 

raphs nor applying cross-convolution layers in our graph neural 

etwork architecture. This allows us to make use of any differen- 

iable graph or set distance, which preserves the permutation in- 
3 
ariance property, while avoiding the computational overhead of 

he cross-convolution layers. Moreover, we avoid the loss of struc- 

ural information of other approaches when obtaining a vectorial 

raph representation by explicitly dealing with the structure in the 

istance itself. 

. Related work on graph edit distance 

This section introduces the concept of Graph Edit Distance (GED) 

ointly with relevant cubic and quadratic time approximations. 

The Graph Edit Distance (GED) [14,15,43] evaluates the similarity 

f two graphs in terms of edit operations. The GED is inspired by 

he String Edit Distance (SED), also known as the Levenshtein dis- 

ance [44,45] . In this specific case, the order of the characters al- 

ows the efficient use of dynamic programming to find the string- 

o-string correspondence. However, for general graphs, the corre- 

pondence cannot rely on a specific ordering of nodes and edges. 

he idea of GED is to compute the minimum cost transformation 

rom the source graph g 1 to the target one g 2 in terms of a se-

uence of edit operations e 1 , . . . , e k . This sequence is named edit 

ath between g 1 and g 2 . Usually insertion, deletion and substitutions 

or nodes and edges are considered. GED is formally defined as 

efinition 3.1 (Graph Edit Distance) . Let g 1 = (V 1 , E 1 , μ1 , ν1 ) and

 2 = (V 2 , E 2 , μ2 , ν2 ) be the source and the target graphs respec-

ively. The graph edit distance between g 1 and g 2 is defined by 

(g 1 , g 2 ) = min 

(e 1 , ... ,e 2 ) ∈ ϒ(g 1 ,g 2 ) 

k ∑ 

i =1 

c(e i ) , 

here ϒ(g 1 , g 2 ) denotes the set of edit paths transforming g 1 into

 2 , and c(e i ) denotes the cost function measuring the strength of 

he edit operation e i . 

The GED is a known NP-complete problem (see [46] for a de- 

ailed proof), exponential with respect to the number of nodes. 

hus, in addition to exact GED algorithms, some efficient approx- 

mations have been proposed [47,48] . In the following, we review 

n detail two relevant techniques 

The Assignment Edit Distance (AED), also known as bipartite 

raph matching , proposed by Riesen et al. [16] , is a cubic time ap-

roximation of GED with respect to the number of nodes of the in- 

olved graphs. It provides an upper bound of order O 

(
(n 1 + n 2 ) 

3 
)

here n 1 = | V 1 | and n 2 = | V 2 | . 
The main idea is to transform the GED computation to an as- 

ignment problem between nodes and their local structure. This 

ethod defines a matrix of edit costs between the nodes of both 

raphs. Afterwards, the best correspondence between nodes is 

ound by a linear assignment method [49] . The matrix definition 

or the AED algorithm takes into consideration both the local struc- 

ure of the vertices and their attributes. The cost matrix C is de- 

ned as 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

c 1 , 1 . . . c 1 ,m 

c 1 ,ε . . . ∞ 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

c n, 1 . . . c n,m 

∞ . . . c n,ε 

c ε, 1 . . . ∞ 0 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

∞ . . . c ε,n 0 . . . 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

here c i, j denotes the cost of a node substitution c(u i → v j ) ; c i,ε 
enotes the cost of a node deletion c(u i → ε) ; and c ε, j denotes the

osts of a node insertion c(ε → v j ) where v i ∈ V 1 and v j ∈ V 2 . 

Other works have focused on speeding up this method in some 

articular settings. For example, Serratosa et al. [50] define an al- 

orithm able to reduce the computation time with the only con- 

train that the edit costs should define the GED as a real distance 

unction. 
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Despite obtaining a good approximation, the time complexity of 

he AED algorithm is still a problem for some applications where 

he time is an important constrain. To alleviate this issue, Fis- 

her et al. [17] proposed the Hausdorff Edit Distance (HED) which 

s a lower bound approximation of the real GED with a quadratic 

ime complexity of O ( n 1 · n 2 ) where n 1 = | V 1 | and n 2 = | V 2 | . HED

s based on the Hausdorff distance which is formally defined as 

efinition 3.2 (Hausdorff distance) . Let A and B be two non-empty 

ubsets of a metric space (M, d) . The Hausdorff distance d H (A, B ) is

efined as 

 H (A, B ) = max 

(
sup 

a ∈ A 
inf 
b∈ B 

d(a, b) , sup 

b∈ B 
inf 
a ∈ A 

d(a, b) 

)
. 

For finite sets A , B the Hausdorff distance is reformulated as 

 H (A, B ) = max 
(

max 
a ∈ A 

inf 
b∈ B 

d(a, b) , max 
b∈ B 

inf 
a ∈ A 

d(a, b) 
)
. 

By definition, the Hausdorff distance is very sensitive to out- 

iers. Hence, they propose to replace the maximum with the sum- 

ation operation, which forces the distance to take into account 

ll nearest neighbour distances and becomes more robust to noise 

han the original one. Thus, the new distance is defined as 

 ˆ H 
(A, B ) = 

∑ 

a ∈ A 
min 

b∈ B 
d(a, b) + 

∑ 

b∈ B 
min 

a ∈ A 
d(a, b) . (3) 

Until now, this distance d ˆ H 
(·) does not consider node inser- 

ions and deletions. Therefore, from Eq. (3) they define a new dis- 

ance on graphs. Given two graphs g 1 = (V 1 , E 1 , μ1 , ν1 ) and g 2 =
V 2 , E 2 , μ2 , ν2 ) and a matching cost defined as c, the HED is de-

ned as 

ED (g 1 , g 2 , c) = 

∑ 

u ∈ V 1 
min 

v ∈ V 2 ∪{ ε} 
c ∗n (u, v ) + 

∑ 

v ∈ V 2 
min 

u ∈ V 1 ∪{ ε} 
c ∗n (v , u ) , (4)

here c ∗n (u, v ) is a modified node matching cost defined as, 

 

∗
n = 

{
c n (u, v ) 

2 
, if (u → c) is a substitution 

c n (u, v ) , otherwise . 

This redefinition of the node matching cost is needed because 

ED does not enforce bidirectional substitutions. Eq. (4) is com- 

osed by a summation, hence, only if both directions are consid- 

red, the full cost will be taken into account. The same matching 

lgorithm is considered, if needed, for the edge matching. In this 

etting, the HED finds an optimal assignment per node instead of 

 global optimal assignment as pretended by the real GED. 

A typical drawback of GED approximation algorithm is that it 

nly relies on local edge structures rather than global information. 

ome effort s have been made to improve the performance by in- 

reasing the node context at matching time [51] . However, obtain- 

ng a better knowledge on the relation of each node within the 

raph is still an open issue that we aim to address by the new

dvances on graph neural networks. 

. The learned graph distance framework 

This section presents our proposed learning framework for 

raph distance inspired by the Hausdorff edit distance [17] . As a 

earning setting, the proposed architecture can be trained either 

ith pairs or triplets of graphs. Hence, as ground-truth, only the 

nformation on whether or not two graphs belong to the same 

lass is required. Note, that in our proposed approach, we do not 

equire the node correspondence information nor the real graph 

dit distance. Instead, the node assignment, i.e.the edit costs for in- 

ertions, deletions and substitution, is implicitly learned. Therefore, 

e do not require to manually tune these parameters following the 

raditional pipeline. Although our framework can be trained using 
4 
airs, in this work we will focus on the triplet setting. Hence, we 

se three GNN with shared weights. 

Fig. 1 shows a graphical outline of the proposed approach. Our 

ipeline can be divided in two stages. First, a graph neural network 

(·) is used to obtain a node-level embedding which codifies the 

ocal context information, in terms of structure, for each node. Sec- 

nd, a novel graph similarity algorithm based on the Hausdorff edit 

istance is proposed as a technique to compare two graphs d θ (·) . 
bserve that d θ (·) can be replaced by any differentiable graph dis- 

ance approach. Each stage is carefully described next. First, the 

NN architecture is explained in detail. Afterwards, the proposed 

raph similarity is developed. 

.1. Learning node embeddings 

The first stage of our framework is a graph neural network ar- 

hitecture φ(·) able to learn a new graph representation in terms 

f node embeddings. Our architecture consists of K propagation 

ayers that map the input graph to an enriched representation. 

hus, each propagation layer takes a set of node representations 

t layer k , { h (k ) 
i 

} i ∈ V and maps it to a new node representation

 h (k +1) 
i 

} i ∈ V at layer k + 1 . We evaluate the following two different

rchitectures according to two different message passing strategies. 

GAT-based model This model uses graph attention networks 

GAT), introduced by Velikovi et al. [31] . A GAT layer is formally 

efined as 

 

(k +1) 
v = 

∑ 

u ∈N (v ) 

αv u W 

(k ) h 

(k ) 
u , (5) 

here αv u is the attention score between node v and node u , W 

(k ) 

re the learned weights and h (k ) 
v is the hidden state of node v , 

oth, at layer k . The attention score αv u is learned by 

(k ) 
v u = softmax v (e l v u ) 

 

(k ) 
v u = LeakyReLU 

(
�
 a t [ W 

(k ) h 

(k ) 
v ‖ W 

(k ) h 

(k ) 
u ] 

)
, 

(6) 

here � a and W 

(k ) are a vector and a matrix of learned weights. 

oreover, a multi-head attention can be used to enrich the model 

apacity and to stabilize the learning process. 

In our setting, we use these layers with residual connections, 

our attention heads and BatchNorm layers [52] with the excep- 

ion of the last layer. The attention heads are concatenated at the 

ntermediary layers and averaged for the final layer. 

GRU-based model This architecture is based on the gated graph 

eural networks (GG-NN) proposed by Li et al. [32] . Originally, 

he message function is formulated as M(h (k ) 
v , h (k ) 

u , e v u ) = A e v u h 
(k ) 
u ,

here A e v u is a learned matrix for each possible edge label. Note 

hat we are restricted to a discrete set of labels. In order to over- 

ome this constrain, Gilmer et al. [2] proposed to use a modified 

essage function defined as M(h (k ) 
v , h (k ) 

u , e v u ) = A (e v u ) h 
(k ) 
u , where

 (e v u ) is a neural network which maps the edge vector to a ma-

rix d × d. This modification allows the use of non-discrete infor- 

ation as edge attributes. Finally, the update function is defined 

s U(h (k ) 
v , m 

(k ) 
v ) = GRU (h (k ) 

v , m 

(k ) 
v ) , where GRU is the Gated Recur-

ent Unit [53] . In its original formulation, the first node hidden 

tate is padded with zeros to meet the size defined by the GRU , 

owever, we propose to use a fully-connected layer as a first node 

mbedding. Moreover, we propose to incorporate edge features ac- 

ording to the source and destination node according to, e v u = 

LP (| h (1) 
v − h (1) 

u | ) as proposed in Garcia and Bruna [54] . There,

LP stands for multi-layer perceptron and the absolute value is 

sed to preserve the simmetry of the edge direction. 

.2. Graph distance or similarity 

Following the idea of HED defined in Eq. (4) , we propose to 

ynamically adapt the insertions and deletion costs according to 
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Fig. 1. Overview of our learning framework. Given a triplet of graphs (g a , g + , g −) as the anchor, positive and negative samples respectively, the GNN φ(·) learns a graph 

representation per each one (φ(g a ) , φ(g + ) , φ(g −)) , which can be matched by means of a learned distance d θ (·) . 
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he application domain. With this aim, we introduce two learn- 

ble costs c(ε → v ) and c(u → ε) for the insertion and deletion of

odes. Thus, taking advantage of the computed node embeddings, 

ur nodes are enriched with information aggregated from their lo- 

al context and, therefore, its importance within the graph. Thus, 

e propose to take advantage of this in order to define two neural 

etworks ϕ i (·) and ϕ d (·) , defined as ϕ ∗ : R 

n → R 

+ , able to decide

he corresponding cost of this operation. In our experiments, ϕ i (·) 
nd ϕ d (·) are the same network with shared weights as we con- 

ider the insertion and deletion operations to be symmetric. More- 

ver, we take the absolute value as the insertion and deletion costs 

ust be positive. 

Therefore, we define the distance between two graphs g 1 = 

V 1 , E 1 , μ1 , ν1 ) and g 2 = (V 2 , E 2 , μ2 , ν2 ) as 

 θ (g 1 , g 2 ) = 

1 
| V 1 | + | V 2 | 

(∑ 

u ∈ V 1 ∪{ ε} min v ∈ V 2 ∪{ ε} c θ (u, v ) 
+ 

∑ 

v ∈ V 2 ∪{ ε} min u ∈ V 1 ∪{ ε} c θ (u, v ) 
)
, 

(7) 

here θ are learnable parameters and c θ (·, ·) is the corresponding 

earnable cost function defined as 

 θ (u, v ) = 

{ 

ϕ d (u ; θ ) if (u → ε) is a deletion, 
ϕ i (v ; θ ) if (ε → v ) is an insertion, 
d(u, v ) 

2 
otherwise. 

(8) 

In our scenario, the edges are not taken into account as we con- 

ider the local structures to be already encoded during the mes- 

age passing phase. However, edges can be incorporated to Eq. (8) , 

onsidering the adjacent edges as nodes and applying the same 

istance d θ (·) with different learned weights. 

Observe that an important aspect of the proposed distance is 

he fact that the node correspondence might not be symmetric. 

ig. 2 illustrates this issue, moreover, we also show the effect of 

onsidering insertions and deletions as a ε node in Fig. 2 (b). Note 

hat not considering ε nodes as proposed in Riba et al. [24] and 
5 
llustrated in Fig. 2 (a), can limit the learning capabilities of the 

ramework. 

A limitation of our approach is that in some scenarios it might 

ose some node feature information in favor of encoding the local 

ode structure. As a solution, we optionally combine the original 

raph information into Eq. (8) , that can be redefined as, 

 θ (u, v ) = 

{ 

τd + ϕ d (u ; θ ) if (u → ε) is a deletion, 
τi + ϕ i (v ; θ ) if (ε → v ) is an insertion, 
d (u, v )+ d ′ (u, v ) 

2 
otherwise, 

(9) 

here τd , τi > 0 are user-defined parameters to fix the minimum 

ost for node deletion and insertion respectively; d ′ (·, ·) corre- 

ponds to the distance computed on the original node attributes. 

e find this setting helpful to avoid incorrect matchings between 

odes that share structurally similar neighborhoods. 

. Training setting and learning objective 

In this work, we follow the idea of triplet networks to exploit 

he ranking properties of the desired metric. Thus, we use three 

NN models with shared weights following the architecture illus- 

rated in Fig. 1 . Our model is trained in a supervised manner, so 

e know which pairs of graphs belong to the same class. Com- 

ared to other approaches, we do not require node assignments 

or a pre-computed similarity score. 

The objective function is the triplet loss, also known as mar- 

in ranking loss. This learning objective receives three samples in 

hich we already know its ranking, i.e. which pair should have 

 higher similarity score or distance. Let { g a , g + , g −} be a triplet

raining sample where, g a is the anchor graph, g + is a positive 

raph sample i.e. a sample different from g a but belonging to the 

ame class and g − is a negative graph example i.e. a sample be- 
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Fig. 2. Assignment problem according to the proposed distance. (a) only substitutions are considered, (b) insertions and deletions are included as an extra epsilon node. 

Fig. 3. Illustration of the triplet learning objective. The anchor graph illustrated as a star should be close to its positive pair, in blue, and farther than a margin μ to its 

negative counterpart. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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onging to a different class. Then, the triplet loss is defined as 

 (δ+ , δ−) = max (0 , μ + δ+ − δ−) , (10) 

here μ is a fixed margin parameter, δ+ = d θ (φ(g a ) , φ(g + )) 
s the distance with respect to the positive sample and δ− = 

 θ (φ(g a ) , φ(g −)) is the distance with respect to the negative sam- 

le. Fig. 3 illustrates how this loss performs. Note that positive 

airs are pushed to be close each other whereas negative samples 

re separated at least by the predefined margin μ. 

Moreover, following the idea introduced in Balntas et al. [55] , 

e apply an in-triplet hard negative mining which means that the 

nchor and positive samples can be swapped in case the posi- 

ive sample is harder than the anchor one. Hence, we define δ′ − = 

 θ (φ(a ) , φ(n )) and δ∗ = min (δ−, δ′ −) . Finally, the new loss with

he anchor swap is defined as 

 (δ+ , δ∗) = max (0 , μ + δ+ − δ∗) . (11) 

Algorithm 1 presents our training strategy. (·) denotes the 

lgorithm 1 Training algorithm for our proposed model. 

equire: Input data G; max training iterations T 

nsure: Networks parameters � = { �φ, θ} . 
1: repeat 

2: Sample triplet mini-batches { g a , g + , g −} N B 
i =1 

3: L ← Eq. 11 

4: � ← � − (∇ �L ) 

5: until Convergence or max training iterations T 

ptimizer function. All models are trained using the Adam opti- 

izer [56] with weight decay i.e. L 2 regularization. The learning 

ate of 0.001 is multiplied by 0.95 every 5 epochs to decrease its 
6 
alue, and we applied early stopping to finish our training process. 

egarding the edit cost operation described in Eq. (9) , we exper- 

mentally set the parameters τi and τd to 0.5. If not specified, all 

he models used K = 3 GNN layers. In addition, both the final node 

mbedding and the hidden state of each layer has a size of 32. 

oreover, in the case of the GAT-based model, 4 attention heads 

ave been used whereas in the case of the GRU-based model, (i) 

he node embedding is a simple linear layer that maps our initial 

ode features to a tensor of size 32; (ii) the edge features e v u uses

wo linear layers with ReLU activation functions; (iii) the neural 

etwork A (e eu ) is defined as two linear layers with a ReLU activa- 

ion in between that generates a matrix of the hidden state dimen- 

ion ( 32 × 32 ). 

. Experimental validation 

For validating our approach, a keyword spotting application in 

istorical manuscripts has been considered as our main application 

cenario. Moreover, a final experiment on a classical mesh graph 

ataset is conducted. Our empirical evaluation demonstrate that 

he proposed approach provides competitive results when com- 

ared to the state-of-the-art. All the code is available at github. 

om/priba/graph _ metric.pytorch . 

.1. Historical keyword spotting 

In Document Image Analysis and recognition, Keyword Spotting 

KWS), also known as word spotting, has emerged as an alternative 

o handwritten text recognition for documents in which the tran- 

cription performance is not satisfactory. Therefore, KWS is formu- 

ated as a content-based image retrieval strategy which relies upon 

http://github.com/priba/graph_metric.pytorch
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Fig. 4. Pre-processed word examples of the four datasets. 
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Table 1 

Dataset overview in terms of number of keywords and 

word images for training, validating and testing respec- 

tively. 

Dataset Keywords Train Validation Test 

GW 105 2447 1224 1224 

PAR 1217 11,468 4621 6869 

BOT 150 1684 – 3380 

AK 200 1849 – 3734 

t

t

t

o

m

[

s

n

b

btaining a robust word image representation and a subsequent re- 

rieval scheme. 

.1.1. Dataset description 

The HistoGraph dataset [57,58] is a graph database for historical 

eyword spotting evaluation. 2 It consists of different well known 

anuscripts. 

George Washington (GW) [59] : This database is based on 

andwritten letters written in English by George Washington and 

is associates during the American Revolutionary War in 1755. 3 It 

onsists of 20 pages with a total of 4894 handwritten words. Even 

ough several writers were involved, it presents small variations in 

tyle and only minor signs of degradation. 

Parzival (PAR) [59] : This collection consists of 45 handwritten 

ages written by the German poet Wolfgang Von Eschenbach in 

he 13th century. The manuscript is written in Middle High Ger- 

an with a total of 23,478 handwritten words. Similarly to GW, 

he variations caused by the writing style are low, however, there 

re remarkable variations caused by degradation. 

Alvermann Konzilsprotokolle (AK) [60] : It consists of German 

andwritten minutes of formal meetings held by the central ad- 

inistration of the University of Greifswald in the period of 1794 

o 1797. In total 18,0 0 0 pages were used with small variations in

tyle and only minor signs of degradation. 

Botany (BOT) [60] : It consists of more than 100 different botan- 

cal records made by the government in British India during the 

eriod of 1800 to 1850. The records are written in English and con- 

ain certain signs of degradation and especially fading. The varia- 

ions in the writing style are noticeable especially with respect to 

caling and intra-word variations. 

Fig. 4 provides some examples of pre-processed word images 

rom which the graphs are created. Observe that the word segmen- 
2 Available at http://www.histograph.ch/ 
3 George Washington Papers at the Library of Congress from 1741 to 1799, Se- 

ies 2, Letterbook 1, pages 270–279 and 300–309, https://www.loc.gov/collections/ 

eorge-washington-papers/about-this-collection/ 

6

m

p

7 
ation of AK and BOT datasets is imperfect [60] . Moreover, these 

wo datasets do not provide a validation set. So, some images from 

he training set have been used for validation. Table 1 provides an 

verview of the dataset in terms of number of words. 

To obtain a graph for each word in these datasets, the two 

ost promising graph constructions introduced in Stauffer et al. 

58] have been used: 

• Keypoint : Characteristic points are extracted from the skele- 

tonized word image. Moreover between the connected char- 

acteristic points, equidistant nodes are inserted on top of the 

word skeleton. 
• Projection : An adaptative grid is generated according to the 

vertical and horizontal projection profiles. Then, nodes are in- 

serted in the corresponding center of mass of each grid cell. 

Moreover, undirected edges are inserted if nodes are directly 

connected by a stroke. 

All the datasets presented in this work only contain spatial and 

tructural information. This means that nodes are labelled with its 

ormalized ( x , y )-position on the image and that edges are unla- 

elled. 

.1.2. Experimental protocol 

Following the evaluation schemes of previous word spotting 

ethodologies, we performed our experiments on two evaluation 

rotocols. 

http://www.histograph.ch/
https://www.loc.gov/collections/george-washington-papers/about-this-collection/
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Table 2 

Study on the GNN model and margin parameter of the proposed model. Mean average precision (mAP) and standard devia- 

tion (average on four runs) for graph-based KWS system on George Washington (GW), Parzival (PAR) Alvermann Konzilspro- 

tokolle (AK) and Botany (BOT) datasets. 

Model μ GW PAR AK BOT 

mAP ± mAP ± mAP ± mAP ±
Keypoint GAT 1 72.49 1.169 66.46 3.162 62.90 1.325 39.86 0.396 

10 76.92 2.309 73.14 0.973 62.72 1.783 41.52 0.782 

GRU 1 72.86 3.331 67.27 1.281 64.42 1.003 39.69 0.532 

10 68.45 2.715 48.59 9.571 60.84 1.127 38.22 0.778 

Projection GAT 1 67.86 2.379 70.77 1.906 63.44 1.233 39.12 2.037 

10 70.25 3.431 75.19 0.755 62.72 1.518 38.83 2.801 

GRU 1 68.09 1.234 71.07 1.933 65.04 1.226 42.83 0.568 

10 63.39 4.222 52.32 1.298 60.51 1.451 37.59 0.778 
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Table 3 

State-of-the-art on graph-based KWS techniques. Mean average precision (mAP) 

for graph-based KWS system on GW, PAR, AK and BOT datasets. 

Distance Representation GW PAR AK BOT 

AED [16] Keypoint [61] 68.42 55.03 77.24 50.94 

Projection [61] 60.83 63.35 76.02 50.49 

Ensemble [58] min 70.56 67.90 82.75 65.19 

max 62.58 67.57 82.09 67.57 

mean 69.16 79.38 84.25 68.88 

sum α 68.44 74.51 84.77 68.77 

sum map 70.20 76.80 84.25 68.88 

HED [17] Keypoint [61] 69.28 69.23 79.72 51.74 

Projection [61] 66.71 72.82 81.06 51.69 

Ours Keypoint 78.48 79.29 78.64 51.90 

Projection 73.03 79.95 79.55 52.83 

Table 4 

Comparison against non-graph learning based systems. 

Mean average precision (mAP) for graph-based KWS 

system on AK and BOT datasets. 

Method Representation AK BOT 

CVCDAG [64] – 77.91 75.77 

PHOCNet [63] – 96.05 89.69 

QTOB [65] – 82.15 54.95 

Ours Keypoint 64.42 41.52 

Projection 65.04 42.83 
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• Individual : Each query image follows the traditional retrieval 

pipeline. Thus, queries are matched against the elements in the 

gallery and each ranking is evaluated independently. 
• Combined : A query can consist of a set of graphs Q = 

{ q 1 , . . . , q t } where all the instances q ∈ Q represent the same

keyword. In this case, we consider the minimal distance 

achieved on all t query graphs. This second evaluation pro- 

tocol was adopted in some previous graph-based word spot- 

ting works [58,61] . The motivation of this setting is to mitigate 

the structural bias provided by the query instance, i.e. different 

handwriting styles can provide extremely different graphs, so, 

in terms of graph distances, it is unrealistic to consider them 

from the same class. 

For the evaluation, we use the mean Average Precision (mAP), a 

lassic information retrieval metric [62] . First, let us define Average 

recision (AP) as 

P = 

∑ | ret | 
n =1 

P @ n × r(n ) 

| rel | , (12) 

here P @ n is the precision at n and r(n ) is a binary function on

he relevance of the n th item in the returned ranked list. Then, the 

AP is defined as: 

AP = 

∑ Q 
q =1 AP (q ) 

Q 

, (13) 

here Q is the number of queries. 

.1.3. Ablation study 

We first empirically investigate the influence of the margin pa- 

ameter μ to each model, as well as the importance of the GNN 

ayers choice. Table 2 presents a comparison of the different set- 

ings, providing the averaged mAP of 4 runs and its correspond- 

ng standard deviation. This evaluation has been done for all the 

atasets and for both graph representations viz. Keypoint and Pro- 

ection. The evaluation protocol in this experiment is Individual as 

e believe that it is the natural experimental setting for this prob- 

ems. 

From these results, we observe that GRU-based models are 

lightly better, allowing a higher degree of deformations between 

ords from the same class. Note that both datasets AK and BOT do 

ontain imperfect word segmentations. In addition, these datasets 

ontain samples written with a more artistic calligraphic style as 

hown in Fig. 4 . Thus, the artistic strokes are drivers of a higher

egree of complexity. Observe that the performance drop in BOT 

ataset can be also explained by the artistic nature of the dataset. 

Additionally, the Keypoint representation performs the best on 

he GW dataset, since the strokes are simpler and its structure in 

erms of the binary image skeleton is more relevant for a proper 

etrieval. Finally, we observe that a higher margin μ is more ade- 

uate for the GAT-based models whereas it’s harmful for the GRU- 

ased one. 
8 
.1.4. Results and discussion 

Table 3 compares with graph-based methodologies. In this 

etting we follow the Combined evaluation protocol reported 

y Stauffer et al. [58] , Ameri et al. [61] . For each dataset and

raph representation, we use the best model reported in the pre- 

ious section. Observe that, for a fair comparison, that is, using 

he same graph representation, we outperform both AED [16] and 

ED [17] on all the datasets but AK, where we obtain very similar 

esults. However, the ensemble methods reported in Stauffer et al. 

58] are able to obtain a better performance on the datasets with 

ore variability. Note that these ensembles combine, in different 

ays, the graph distances computed on different graph represen- 

ations of the same images. Therefore, we do not consider it a fair 

omparison but a remarkable fact that the performance of our sys- 

em is able to outperform them in two of the datasets while ob- 

aining competitive results on the other two. 

Table 4 shows a comparison with non-graph based approaches. 

n particular, we compare against three state-of-the-art learning- 

ased reference systems of the ICFHR2016 competition [60] . In 

his case, the evaluation of these learning-based frameworks fol- 

ows the protocol described in the competition. Thus, queries of 

he same query keyword are considered to be independent. Note 

hat, due to this query protocol, the learning-based frameworks are 

ot directly comparable to the state-of-the-art graph-based KWS 
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Fig. 5. Visualization of the learned node correspondence. First row, shows the node matching from top to bottom; the second row of the figure shows de opposite. (a)–(d) 

“Letters”–“Letters”; (b)–(d) “send”–“Letters”. 

Table 5 

Median and maximum number of nodes, mean runtime per graph pair in millisec- 

onds for AED, HED and the two proposed architectures on the George Washington 

(GW) dataset. 

Representation Statistics GED Ours 

| V | med | V | max T AED T HED T GAT T GRU 

Keypoint 81 366 303.0 3.2 17.33 7.77 

Projection 80 391 344.1 3.9 17.28 7.81 
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esults that we have reported above. In this table, we can observe 

he superiority of learning methods working directly on the image 

omain. In particular, PHOCNet [63] leads to stunning accuracies 

or this task. However, the proposed graph-based approach is able 

o provide a new step towards closing the gap between structural 

nd statistical methodologies on this kind of tasks. In addition, the 

roposed approach is able to deal with the noise introduced by the 

raph construction. 

Table 5 shows the inference time of both models, GAT and GRU 

n the GW dataset. Even though we have to take into account the 

ifferent environment conditions such as the programming lan- 

uage, or GPU vs CPU; we observe that despite being significantly 

lower than the plain HED we are able to obtain 39x speed up 

n comparison to the AED. From the theoretical perspective, our 

istance formulation has a quadratic time complexity O ( n 1 · n 2 ) 
here n 1 = | V 1 | and n 2 = | V 2 | , following the HED previously dis-

ussed. In addition, the GNN used to enhance our graph represen- 

ation has a huge impact in temrs of time. As reported in Gilmer 

t al. [2] , the complexity of each message-passing phase for a 

ense graph is O 

(| V | 2 d 2 ) where d are the dimension of the node 

mbeddings. Note that the GAT-based model has an over-head due 

o its attention heads. In their work, when computing d’ features 

hey report a time complexity of O 

(| V | d d ′ + | E| d ′ ). 

Finally, Fig. 5 provides qualitative examples of our matching 

ramework for a positive and negative sample. The first row pro- 

ides the top to bottom matching whereas the second row shows 

he opposite, from the bottom to the top. Notice that in the pos- 
9 
tive sample case, both directions are much more consistent than 

n the negative sample case. 

.2. Experimental comparison to GMN 

Among the graph metric learning approaches in the literature, 

he graph matching networks (GMN) work [38] is the most promi- 

ent one. In this section, we propose an extra experiment to com- 

are with their work. 

.2.1. Dataset description 

The IAM Graph Database Repository [66] provides several 

raph datasets covering a wide spectrum of different applica- 

ions. In particular, we focused on the COIL-DEL dataset. The COIL- 

00 [67] consists of 100 object images at different poses. In order 

o construct the COIL-DEL dataset, these images were converted 

nto mesh graphs by means of the Harris corner detection algo- 

ithm followed by a Delaunay triangulation. COIL-DEL is divided 

n 240 0, 50 0 and 10 0 0 graphs for training, validation and test re-

pectively. In average these graphs have 21.5 nodes and 54.2 edges. 

hus, they are rather small graphs. 

.2.2. Experimental protocol 

In these experiments, we followed the same experimental pro- 

ocol introduced by Li et al. [38] , so we evaluated our method on 

wo different metrics: 

• pair AUC : The area under the ROC curve for classifying pairs of 

graphs as similar or not on a fixed set of 10 0 0 pairs. 
• triplet accuracy : The accuracy of correctly assigning a higher 

similarity to the positive pair than a negative pair on a fixed 

set of 10 0 0 triplets. 

Note that the fixed pairs and triplets are not the same from 

he original paper. We performed a random selection of these pairs 

nd triplets while trying to balance the number of examples per 

lass. 



P. Riba, A. Fischer, J. Lladós et al. Pattern Recognition 120 (2021) 108132 

Table 6 

Performance comparison on the COIL-DEL dataset against the method- 

ologies introduced in Li et al. [38] . We studied the effect of the proposed 

GAT and GRU models, as well as, the number of layers and margin pa- 

rameter μ. 

Model # Layers ( K) μ Pair AUC Triplet Acc 

GCN [38] – – 94.80 94.95 

Siamese-GCN [38] – – 95.90 96.10 

GNN [38] – – 98.58 98.70 

Siamese-GNN [38] – – 98.76 98.55 

GMN [38] – – 98.97 98.80 

Our GAT 3 1 97.82 96.74 

10 96.22 96.94 

5 1 97.85 96.94 

10 97.70 97.54 

GRU 3 1 98.08 97.50 

10 96.25 95.69 

5 1 97.56 97.60 

10 95.36 96.07 
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.2.3. Results and discussion 

Table 6 presents a comparison with the state-of-the-art in 

raph metric learning. In particular, we compare with the differ- 

nt architectures proposed in Li et al. [38] . 

It is not surprising that their GMN technique outperforms our 

roposed model as they do incorporate cross-graph connections 

ollowing an attention paradigm. Therefore, the correspondence is 

earned end-to-end in a much robust way. However, this is only 

easible in rather small datasets as it incorporates a huge compu- 

ational overhead. Notice also, that their GNN and Siamese-GNN 

odels just obtain a slightly better performance than our proposed 

pproach. However, when dealing with such small graphs it is hard 

o compare against embedding based approaches as they are able 

o encode the graph characteristic features without a huge loss of 

nformation. 

In this extra experiment, we have also evaluated the effect on 

he choice of GNN models, the number of layers and the margin 

arameter μ. From this table, we conclude that the GRU-based 

odels are drivers of a better performance on these experiments. 

oreover, we find important to set our margin parameter to 1. The 

umber of layers has not proven to bring a boost on performance 

n this particular dataset. Overall, our best model is able to obtain 

omparable results against GMN in this small dataset. 

. Conclusions and future work 

In this paper, we have proposed a triplet GNN architecture for 

earning graph distances. Our architecture is able to learn node 

mbeddings based on structural information of nodes local con- 

exts. These learned features lead to an enriched graph represen- 

ation which is later used in the distance computation. Moreover, 

e extended the graph edit distance approximation viz. Hausdorff

dit distance, to the new learning framework in order to learn its 

peration costs within an end-to-end fashion. We have validated 

ur proposed architecture on a graph retrieval scenario, in partic- 

lar, we faced a keyword spotting task for handwritten words. Fi- 

ally, we demonstrated competitive results against state-of-the-art, 

earning-based methods for graph distance learning. 

Several future research lines emerge taking our proposed 

ramework as starting point. For instance, our framework does not 

xploit the edge structure at matching time as we considered it 

mplicitly encoded as node features. However, leveraging the edges 

nformation at this stage might lead to better results. Another 

romising line of research relates to the use of different graph 

ooling layers for reducing the size of large graphs before com- 

uting the learned Hausdorff edit distance. 
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