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Abstract—Text detection in videos is a challenging problem 
due to variety of text specificities, presence of complex 
background and anti-aliasing/compression artifacts. In this 
paper, we present an approach for horizontally aligned 
artificial text detection in Arabic news video. The novelty of 
this method revolves around the combination of two 
techniques: an adapted version of the Stroke Width Transform 
(SWT) algorithm and a convolutional auto-encoder (CAE). 
First, the SWT extracts text candidates’ components. They are 
then filtered and grouped using geometric constraints and 
Stroke Width information. Second, the CAE is used as an 
unsupervised feature learning method to discriminate the 
obtained textline candidates as text or non-text. We assess the 
proposed approach on the public Arabic-Text-in-Video 
database (AcTiV-DB) using different evaluation protocols 
including data from several TV channels. Experiments indicate 
that the use of learned features significantly improves the text 
detection results. 

Keywords- Arabic text detection; SWT operator; CAE; 
AcTiV-DB 

I. INTRODUCTION

TV news are important sources of information for most 
people. They allow to better understanding of the social, 
cultural and political events punctuating our daily lives. 

Today, thanks to the rapid progress in mass storage 
technology, we can archive big amounts of digital news 
videos. As the archive size grows considerably, the manual 
annotation of all video sequences becomes impractical. This 
entails an urgent need to fast as well as effective information 
retrieval systems to ensure easy access to the relevant 
information contained in large news video archives.     

Texts embedded in videos, especially captions, are one of 
the most important high-level information of the video 
content. They can be used as powerful semantic cues in 
multimedia content retrieval. Mainly, there are two kinds of 
text in videos, namely scene and artificial text. Compared 
with scene text, the artificial text provides brief and direct 
description of video content such as subtitles, speaker’s 
name, place, event information, etc. Thus, we mainly focus 
on artificial Arabic text detection in videos. 

Recognizing text in video sequences, often called Video 
Optical Character Recognition (Video-OCR), is an essential 
task in many applications like content-based multimedia 
retrieval, automatic broadcast annotation, large archive 
managing, etc. Therefore, the field has gained increasing 
attention of the researchers in the last decades [10, 12, 13]. A 
preliminary step to Video-OCR processing is to detect the 
text area in video frames. However, text detection is a 
challenging problem due to variety of text specificities 
(positions, fonts, sizes, etc.), presence of complex 
background with various objects resembling text characters 
and anti-aliasing/compression artifacts.  

Major contributions have already been made in the field 
of Arabic OCR [1]. However, few attempts have yet been 
made on the development of detection/ recognition systems 
for embedded text in Arabic videos. Special characteristics 
of Arabic script include non-uniform intra/inter word 
distances, diacritics, cursive nature of the script, etc.  

In this paper, we propose a novel text detection approach 
combining two main techniques: an adapted version of the 
original SWT algorithm [2] that enables efficient text 
candidate’s localization and a deep learning-based textline 
verification method. We aim to stand out from the dominant 
methodology, based on so-called hand-crafted features [3, 4 , 
6, 8, 10, 12]. This is done by automating the feature 
extraction process, i.e. an unsupervised feature learning 
method based on a convolutional auto-encoder (CAE) 
scheme. Then, a SVM classifier uses the CAE features to 
discriminate textline candidates as text or non-text. To the 
best of our knowledge, our approach is the first which 
combines CAE and SWT in a system specifically designed 
for detecting embedded Arabic texts in video. 

To evaluate our text detector, we have conducted 
extensive experiments on the public AcTiV-DB [11] dataset 
under different evaluation protocols. The rest of the paper is 
organized as follows.  Section II reviews related works on 
text detection. Section III presents our text detection method. 
Section IV illustrates our experiments. Finally, Section V 
draws conclusions and future work. 
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II. RELATED WORKS

Text detection methods in the literature can be grouped 
into texture-based, connected component-based and hybrid 
methods. Texture-based algorithms scan the image using 
generally multi-scale sliding windows to extract different 
texture proprieties and classify image areas as text or non-
text based on texture-like features. Some widely used texture 
features include Histograms of Gradients (HOGs) [10], 
Wavelets [4] and Local Binary Patterns (LBP) [6, 8]. The 
technique introduced by Yang et al. in [3] applies an edge-
based multi-scale text detector to identify text candidates that 
are then refined using an image entropy-based filter. Support 
Vector Machine (SVM) is applied as verification procedure 
to eliminate false alarms. Texture-based approaches are good 
for detecting text from complex background. But, they are 
very time consuming as all scales are exhaustively scanned.  

Connected component based methods work in a bottom-
up fashion by grouping neighboring pixels into connected 
components (CC) based on region properties between text 
and background, such as edge, size, color, stroke width and 
gradient information. The CCs are then filtered and grouped 
into words and textlines. Shivakumara et al. [4] extract CCs 
based on K-means clustering in the Fourier-Laplacian 
domain, and eliminate false alarms using edge density, text 
straightness and proximity. Zhuge et al. [5] present a CC-
based algorithm which employs Maximally Stable Extremal 
Regions (MSER) as basic character candidates. Text CCs are 
then grouped into text lines using geometric information, and 
non-text CCs are excluded based on corner detection, multi-
frame verification and some heuristic rules.  

Literature can also be divided into heuristic-based 
approaches versus machine learning-based approaches [8], or 
spatial methods versus temporal methods [6, 14]. 

The hybrid methods can be a mixture of texture-based 
and CC-based methods, or a combination of heuristic-based 
and machine learning-based methods. In [6] Anthimopoulos 
et al. present a hybrid method combining a machine learning 
texture-based technique with a heuristic region-based 
refinement. Text blocks are firstly detected based on the edge 
map analysis. After that, dilation, opening, projection 
profiles and SVMs are introduced for refinements.  

All the mentioned methods so far are dedicated to Latin 
or Chinese text detection. Only few researches are dedicated 
to Arabic texts. Ben Halima et al. [7] firstly use Multi Frame 
Integration (MFI) method to decrease background variations. 
Raws and columns, that contain text candidates, are then 
extracted using projection profiles. Finally, a three-layer 
perceptron is applied to refine the previous obtained 
textblocks. Youssfi et al. [8] propose three machine learning 
texture-based approaches to detect texts. The first one 
collects features from Multi-Block LBP representation and 
classifies text candidates using the Gentleboost Algorithm.  
The two other methods are based on a multiexit asymmetric 
boosting cascade using Haar-like features. Jamil et al. [9] 
present an edge-based method to detect Urdu (similar to 
Arabic script) text in video frames. The average gradient in 

the neighborhood of each pixel is firstly computed and the 
horizontally aligned gradients are merged together. An edge 
density filter is then applied to eliminate non-text regions 
followed by the application of some geometrical constraints. 
Unfortunately, all these methods are tested on private 
datasets with non-uniform evaluation protocols that make 
direct comparison and scientific benchmarking rather 
impractical. Comprehensive surveys can be found in [10, 12, 
13]. 

III. PROPOSED TEXT DETECTION METHOD

Our system consists of two main stages i.e., CC-based 
heuristic algorithm and machine learning classification, as 
shown in Figure 1. The first stage extracts, filters and groups 
CC text candidates using SWT operator, geometrical 
constraints as well as textline formation method. The second 
stage uses convolutional autoencoders, to produce 
automatically features that have been learned from 
previously obtained unlabeled textline candidates. A SVM 
classifier receives as input these features for discriminating 
textlines from non-text ones.  

Figure 1. The flowchart of the proposed text detection  method 

A. Component Extraction by SWT 
The SWT algorithm [2] is used to extract CCs from an 

input frame. 

Figure 2. Example of SWT processing. 

This operator detects stroke pixels by shooting a search 
ray from an edge pixel p to its opposite edge pixel q along 
the gradient direction dg. If these two edge pixels have 
nearly opposite gradient orientations, the ray is considered 
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valid. All pixels inside this ray are labeled by the distance 
between p and q (as shown in Figure 2).  In order to reduce 
the noises of incorrect connections produced by the SWT 
(like those in Figure 3(a)), we propose to discard the false 
rays whose length are higher than a predefined empirical 
threshold Tr.

(a)   (b)
Figure 3. Results of the original SWT (a) and our modified version (b). 

The neighboring pixels in the resulting SWT image are 
then grouped into CCs. In order to allow smoothly varying 
SWs in a letter, we keep the same SW ratio, which is 3, as in 
[2]. In Arabic script a single character may consist of several 
strokes and, subsequently, several labels. Considering this, 
we modified the original CC-labelling operation of [2] using 
a two-pass algorithm.   

B. Component Analysis and textline formation 
Coarse filtering: At this step, we apply a set of heuristic 

rules based on statistical and geometric proprieties of the 
components, to filter out CCs that are unlikely parts of texts.  
First, we remove components with very large and very small 
aspect ratio under a conservative threshold so that characters 
like Alif " " are not discarded. Then we discard objects with 
unusual sizes by limiting the length and width of the 
component. In addition, objects located at the border of the 
image are also discarded from further processes.   

Vertical merging: Different from Latin script, an Arabic 
character may consist of several diacritic marks such as 
Hamza above/below Alif “ ” or dots. Among the previously 
obtained candidate CCs, some of them are parts of a 
character, which need to be merged into a single bounding 
box. We design a small set of rules to group these CCs:  

• The CCs should have similar SW (ratio between the 
median SW values has to be less than 2.0). 

• The vertical distance between two CCs should not 
exceed an empirical predefined threshold Tvd.

Textline formation: In order to form the larger context 
of textual information, given the obtained character/subword 
candidates, we develop a textline grouping method. 
Specifically, we define an upper triangular probability matrix 
M given by (1), where mi,j is the matching probability 
corresponding to a pair of text candidates (Ci, Cj).

       (1)

In order to compute mi,j for a given pair of components, 
we firstly calculate the following probability functions:  

• Ov(Ci, Cj): probability based on spatial overlap 
between their corresponding rectangles i.e., Ri, Rj,
respectively. 

• Ds(Ci, Cj): probability based on the proximity of Ri
and Rj. the closer Ri and Rj are, the more important 
Ds(Ci, Cj) is. 

• Al(Ci, Cj) increases depending on components’ 
alignment, since text always appears in the form of 
horizontally aligned lines.  

• Sw(Ci, Cj): probability based on SW similarity. 
The probability matrix M is then calculated as follows: 

      (2)

Where

       (3)

and Tov, Tds, Tal and Tsw are thresholds for, respectively, the 
overlap ratio, distance, alignment and stroke width scores. 
Text lines formation process consists finally in pairing Ci and 
Cj when mi,j= max(M) with respect to a minimum matching 
probability threshold Tm. The process ends when no 
components can be grouped. 

C. Features Learning Process 
As the previous step produces text lines and areas 

erroneously recognized as text lines, we then use a machine 
learning method for classifying them as text and non-text. 
Machine learning methods take as input features giving 
information about the data and return as output a class label. 
There are various ways to extract features from data, for 
example by hard-coding mathematical or morphological 
operators. In this work, we aimed at automatizing this task; 
therefore we used an autoencoder as feature extractor. 

Auto-encoders (AE) are artificial neural networks which 
are trained to encode and decode data. They usually learn 
either to encode the inputs with fewer dimensions 
(compression) or with a higher dimensionality (sparse 
representation). Convolutional auto-encoders are stacked 
autoencoders in which layers, excepted for the top, are 
convolved. This allows covering a larger area while keeping 
the number of weights of the neural network small enough to 
have an acceptable training time. The output of a CAE, 
which is used as features during the classification, is the 
encoded values, not the result of the reconstruction, as the 
latest is used only during the training phase. 
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Figure 4. Illustration of a single-layer autoencoder. 

We used the CAE introduced in [15]. Each of its layers is 
composed of a convolved artificial neural network that has 
two neuron layers, one for encoding and one for decoding. A 
single layer autoencoder is illustrated in Figure 4. The first 
neural layer encodes the inputs, and the second neural layer, 
which is used only during the training phase, reconstructs the 
inputs from the encoded values. In case of stacked 
autoencoders, the first layer of the CAE takes raw pixel data 
as input; the other layers take as input the output of the 
previous layer. 

Our AE encodes an input x of dimension n to an output y
of dimension m as follows: 

     (4)

Where be
i is a bias and wi j are the weights used for 

encoding. Decoding an output y to reconstruct the input is 
done in a similar way: 

     (5)
          
Where  is an approximation of the x vector encoded by 

y, bj a bias, and wd weights used for decoding. This means 
that the AE has to learn m x (n + 1) + n x (m + 1) weights 
during its training. For this reason, it is more time-efficient to 
use a convolution of small AEs rather than training a single 
one covering a large patch.   

The convolutions are created as follows. First, an AE 
covering W1 x H1 pixels and having m1 outputs is trained. 
Then, we create W2 x H2 copies of it, and put them in a grid, 
with an offset of O1x x O1y pixels. This grid covers then ((O1x
. (W2    1) +W1) x (O1y . (H2   1) + H1)) pixels. The output of 
the AEs in this grid can be seen as an array composed of W2
x H2 x m1 values, which can then be given to a second level 
AE. When creating a convolution of the second level AE, in 
order to add a third level, the convolution of the first level 
AE must be redimensioned accordingly. 

The layers of the CAE are trained one after another with 
standard back-propagation and gradient descent in their two-
layers neural network, the goal being to minimize the 
reconstruction error (  –x)2. The layers of the AE must learn 
to encode and decode their own input. If we back-propagated 
the reconstruction error of the top-layer to the previous 
layers, then the top layer would “ask” through back-
propagation the previous layers to have easy-to-reconstruct 
values (e.g. constants). This would lead to a degeneration of 
the weights, making the AE useless.  For this reason, we add 
a new layer to the network only when its current top-layer is 
sufficiently trained. 

The i-th feature learned by a CAE can be displayed by 
setting manually the CAE’s outputs to zero, excepted for yi
which is set to 1, and then decoding it layer after layer until 
the pixel-level is reached. Figure 5 shows some features 
which were learned automatically by the CAE on our data. 
We can see that the learned patterns are more complex when 
there are more layers. 

       
 (a) First layer   (b) Second layer

Figure 5. Illustration of features learned by two layers 

While the CAE can be trained in an unsupervised way, its 
topology has to be manually defined: number of layers, size 
of the convolutions, offset and number of features. 

D. SVM-based classification 
We train a SVM classifier with the features of extracted 

patches from obtained textline candidates. We selected 
roughly as many patches from text candidates than from non-
text ones in order to have a balanced training data. 

Figure 6. Principles of textline classification based on majority voting 
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In the prediction step, we classify patches located along 
the vertical center of the candidate. Other locations such as 
the bottom or the top of the candidate area might contain no 
text despite belonging to a text area. After that, a majority 
voting procedure is applied to classify the candidate textlines 
areas, as illustrated in Figure 6.  

IV. EXPERIMENTAL RESULTS

A. AcTiV Dataset 
We evaluate the performance of our approach on a sub-

dataset of the AcTiV-DB [11]. AcTiV-DB is the first 
publicly accessible annotated dataset designed to assess the 
performance of Arabic VIDEO OCR systems. The 
challenges that are addressed by AcTiV-DB are in text 
patterns variability (colors, fonts, sizes, position, etc.) and 
presence of complex background with various text-like 
objects.

AcTiV-D (D for Detection) represents a sub-dataset of 
non-redundant frames collected from the AcTiV-DB and 
used to measure the performance of our proposed systems to 
localize text regions in still HD/SD frames. AcTiV-D
consists of 1843 frames (5133 textlines) distributed on four 
sets (one set per channel). Every set includes two sub-sets: 
trainingFiles and testFiles. Detection ground-truth is 
provided at the line level for each frame. We evaluate our 
work, specifically, in two protocols proposed by Zayene et 
al. in [11]. More details are in table I.  

TABLE I. EVALUATION PROTOCOLS

Resolution Channel Training
textlines

Test
textlines

Protocol 1 HD
(1920x1080)

AljazeeraHD 803 226 

Protocol 4 SD
(720x576)

4.1 France 24 960 224 

4.2 Russia Today 1302 317 

4.3 ElWataniya 1 1068 233 

B. Parameter settings  
In all these tests, the parameters of the first stage (Section 

III-A & III-B) were set empirically as follows. In the 
components extraction module: the maximum ray length 
value Tr = 60 px.  In the coarse filtering module: maximum 
character/subword height hmax = 40 px, character/subword 
width limit wmax= 120 px and max aspect ratio rmax = 5.  In 
the vertical merging module: maximum relative vertical 
distance Tvd = 3 px. Note that these values concern SD 
channels. In case of HD channels, they should be doubled. 
The probability thresholds, in the textline formation 
procedure, were set at these values: Tov=0.75, Tds=0.35,
Tal=0.35, Tsw=0.24 and Tm=0.5.

A fundamental part in our experiments consisted in 
optimizing the settings of the CAE, particularly its topology. 
We started with a single-layer autoencoder and a topology 
which was estimated as a good starting point: an input patch 
of a size slightly larger than the strokes of the text, and 
enough neurons for having a relatively good looking 

reconstruction. Then, we tried to optimize the topology by 
improving iteratively the number of features and the input 
patch size with regard to the classification accuracy. The 
optimal topologies found are given in Table II. It is 
interesting to notice first that the dimensions of the first layer 
input patch for the HD channel are twice larger than for the 
SD channels, and secondly that the optimal number of 
features does not change. The first is due to the difference of 
resolution (roughly twice higher for the HD channel), and the 
second can be explained by the fact that despite differences 
of resolution, the content of the inputs is similar and 
therefore requires a similar number of features. 

The second layer of an autoencoder is more efficient 
when it receives as input useful data. Therefore, we used 
settings for the first layer which were optimal for the 
classification, as their outputs are certainly better for the 
classification task than when using other topologies. For this 
reason, when we started to create two-layer autoencoders, we 
used for the first layer the previously obtained settings, and 
optimized only the second layer. 

We trained the CAEs on the obtained textline candidates. 
Thus, their features are trained to describe the kind of 
content that the autoencoders will have to deal with during 
the classification phase. For this training, we used between 
2153 textline candidates (for France24 TV channel) and 
3924 textline candidates (for ElWataniya1 TV channel), and 
used patches randomly placed on them for training the 
CAEs.   

TABLE II. OPTIMAL CAE TOPOLOGY FOR HD/SD CHANNELS

C. Results   
To evaluate the proposed method, we compared it with 

two other systems. The results are given in Tables III and IV 
in terms of precision, recall and F-measure. The first method 
which we tried is Epshtein’s [2]. The second, called here 
“System A”, is a fully heuristic method, combining the first 
part of the workflow presented in Figure 1, and a refinement 
step using projection profiles, aspect ratio and contrast 
information [11]. We obtained results roughly 50% higher 
than Epshtein’s method; however the high error rate could 
still be much decreased by the proposed system which 
replaces the refinement step by a machine learning 
approach; as shown in Table III and IV. For the protocol 1, 
the proposed system increased the F-measure by 10.5%. For 
the protocols 4.1, 4.2 and 4.3 (SD channels), the results are 
higher, with gains of respectively 15.6%, 21.7% and 14.5%. 

HD SD 
Layer

1
Layer

2
Layer

1
Layer

2
Input patch size     10*10 20*20 5*5 11*11 

Convolution 3*3 - 3*3 - 

Offsets 5*5 - 3*3 - 

No. features 12 15 12 15 
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TABLE III. EVALUATION RESULTS IN PROTOCOL 1

Protocol  Method Recall Precision F-measure 

1

Epshtein [2] 0.53 0.36 0.45 

System A [11] 0.76 0.77 0.76 

Proposed System 0.83 0.85 0.84 

TABLE IV. EVALUATION RESULTS IN PROTOCOL 4

Protocol Method Recall Precision F-measure 

4.1
Epshtein [2] 0.5 0.3 0.4 

System A [11] 0.6 0.69 0.64 

Proposed System 0.73 0.75 0.74 

4.2
Epshtein [2] 0.42 0.36 0.39 

System A [11] 0.55 0.66 0.6 

Proposed System 0.73 0.73 0.73 

4.3
Epshtein [2] 0.47 0.35 0.41 

System A [11] 0.71 0.68 0.69 

Proposed System 0.83 0.76 0.79 

Figure 7 gives some examples of detection results using 
the proposed system. Figures 7–a and 7–c show the outputs 
of the first stage (before classification). Figures 7–b and 7–d 
show the final results.   

(a)    (b)

(c)      (d)

Figure 7. Some detection results from two different SD channels  

V. CONCLUSION

This paper presents a new method for artificial Arabic 
text detection in video frames. The presented method is a 
combination of a CC-based heuristic approach using SWT 
and a machine learning approach based on CAE as features 
extractor and SVM as classifier.  

While using machine learning for filtering the results 
given by the SWT increases much the accuracy, there is still 

much room for improvements. In the future, we would like 
to replace the combination of CAE and SVM by stacking a 
neural network on top of the autoencoder, thus having the 
possibility to fine-tune the features for the classification task. 
We also intend to investigate the possibility of directly 
classifying individual pixels as belonging to text or non-text, 
as we have shown in this work that the classifier is able to 
learn to distinguish these classes. 
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