
Text Detection in Arabic news Video Based on SWT
Operator and Convolutional Auto-encoders

Oussama Zayene1, 2, Mathias Seuret1, Sameh M.Touj2, Jean Hennebert1, 3, Rolf Ingold1 and Najoua E. Ben Amara2

1 DIVA group, Department of Informatics, University of Fribourg, Fribourg, Switzerland
{firstname.lastname}@unifr.ch

2 SAGE group, National Engineering School of Sousse, Sousse, Tunisia
najoua.benamara@eniso.rnu.tn
samehmasmouditouj@yahoo.fr

3 Institute of Complex Systems HES-SO, University of Applied Science Western Switzerland

Abstract—Text detection in videos is a challenging problem
due to variety of text specificities, presence of complex
background and anti-aliasing/compression artifacts. In this
paper, we present an approach for horizontally aligned
artificial text detection in Arabic news video. The novelty of
this method revolves around the combination of two
techniques: an adapted version of the Stroke Width Transform
(SWT) algorithm and a convolutional auto-encoder (CAE).
First, the SWT extracts text candidates’ components. They are
then filtered and grouped using geometric constraints and
Stroke Width information. Second, the CAE is used as an
unsupervised feature learning method to discriminate the
obtained textline candidates as text or non-text. We assess the
proposed approach on the public Arabic-Text-in-Video
database (AcTiV-DB) using different evaluation protocols
including data from several TV channels. Experiments indicate
that the use of learned features significantly improves the text
detection results.

Keywords- Arabic text detection; SWT operator; CAE;
AcTiV-DB

I. INTRODUCTION

TV news are important sources of information for most
people. They allow to better understanding of the social,
cultural and political events punctuating our daily lives.

Today, thanks to the rapid progress in mass storage
technology, we can archive big amounts of digital news
videos. As the archive size grows considerably, the manual
annotation of all video sequences becomes impractical. This
entails an urgent need to fast as well as effective information
retrieval systems to ensure easy access to the relevant
information contained in large news video archives.

Texts embedded in videos, especially captions, are one of
the most important high-level information of the video
content. They can be used as powerful semantic cues in
multimedia content retrieval. Mainly, there are two kinds of
text in videos, namely scene and artificial text. Compared
with scene text, the artificial text provides brief and direct
description of video content such as subtitles, speaker’s
name, place, event information, etc. Thus, we mainly focus
on artificial Arabic text detection in videos.

Recognizing text in video sequences, often called Video
Optical Character Recognition (Video-OCR), is an essential
task in many applications like content-based multimedia
retrieval, automatic broadcast annotation, large archive
managing, etc. Therefore, the field has gained increasing
attention of the researchers in the last decades [10, 12, 13]. A
preliminary step to Video-OCR processing is to detect the
text area in video frames. However, text detection is a
challenging problem due to variety of text specificities
(positions, fonts, sizes, etc.), presence of complex
background with various objects resembling text characters
and anti-aliasing/compression artifacts.

Major contributions have already been made in the field
of Arabic OCR [1]. However, few attempts have yet been
made on the development of detection/ recognition systems
for embedded text in Arabic videos. Special characteristics
of Arabic script include non-uniform intra/inter word
distances, diacritics, cursive nature of the script, etc.

In this paper, we propose a novel text detection approach
combining two main techniques: an adapted version of the
original SWT algorithm [2] that enables efficient text
candidate’s localization and a deep learning-based textline
verification method. We aim to stand out from the dominant
methodology, based on so-called hand-crafted features [3, 4 ,
6, 8, 10, 12]. This is done by automating the feature
extraction process, i.e. an unsupervised feature learning
method based on a convolutional auto-encoder (CAE)
scheme. Then, a SVM classifier uses the CAE features to
discriminate textline candidates as text or non-text. To the
best of our knowledge, our approach is the first which
combines CAE and SWT in a system specifically designed
for detecting embedded Arabic texts in video.

To evaluate our text detector, we have conducted
extensive experiments on the public AcTiV-DB [11] dataset
under different evaluation protocols. The rest of the paper is
organized as follows. Section II reviews related works on
text detection. Section III presents our text detection method.
Section IV illustrates our experiments. Finally, Section V
draws conclusions and future work.

2016 12th IAPR Workshop on Document Analysis Systems

978-1-5090-1792-8/16 $31.00 © 2016 IEEE

DOI 10.1109/DAS.2016.80

13

II. RELATED WORKS

Text detection methods in the literature can be grouped
into texture-based, connected component-based and hybrid
methods. Texture-based algorithms scan the image using
generally multi-scale sliding windows to extract different
texture proprieties and classify image areas as text or non-
text based on texture-like features. Some widely used texture
features include Histograms of Gradients (HOGs) [10],
Wavelets [4] and Local Binary Patterns (LBP) [6, 8]. The
technique introduced by Yang et al. in [3] applies an edge-
based multi-scale text detector to identify text candidates that
are then refined using an image entropy-based filter. Support
Vector Machine (SVM) is applied as verification procedure
to eliminate false alarms. Texture-based approaches are good
for detecting text from complex background. But, they are
very time consuming as all scales are exhaustively scanned.

Connected component based methods work in a bottom-
up fashion by grouping neighboring pixels into connected
components (CC) based on region properties between text
and background, such as edge, size, color, stroke width and
gradient information. The CCs are then filtered and grouped
into words and textlines. Shivakumara et al. [4] extract CCs
based on K-means clustering in the Fourier-Laplacian
domain, and eliminate false alarms using edge density, text
straightness and proximity. Zhuge et al. [5] present a CC-
based algorithm which employs Maximally Stable Extremal
Regions (MSER) as basic character candidates. Text CCs are
then grouped into text lines using geometric information, and
non-text CCs are excluded based on corner detection, multi-
frame verification and some heuristic rules.

Literature can also be divided into heuristic-based
approaches versus machine learning-based approaches [8], or
spatial methods versus temporal methods [6, 14].

The hybrid methods can be a mixture of texture-based
and CC-based methods, or a combination of heuristic-based
and machine learning-based methods. In [6] Anthimopoulos
et al. present a hybrid method combining a machine learning
texture-based technique with a heuristic region-based
refinement. Text blocks are firstly detected based on the edge
map analysis. After that, dilation, opening, projection
profiles and SVMs are introduced for refinements.

All the mentioned methods so far are dedicated to Latin
or Chinese text detection. Only few researches are dedicated
to Arabic texts. Ben Halima et al. [7] firstly use Multi Frame
Integration (MFI) method to decrease background variations.
Raws and columns, that contain text candidates, are then
extracted using projection profiles. Finally, a three-layer
perceptron is applied to refine the previous obtained
textblocks. Youssfi et al. [8] propose three machine learning
texture-based approaches to detect texts. The first one
collects features from Multi-Block LBP representation and
classifies text candidates using the Gentleboost Algorithm.
The two other methods are based on a multiexit asymmetric
boosting cascade using Haar-like features. Jamil et al. [9]
present an edge-based method to detect Urdu (similar to
Arabic script) text in video frames. The average gradient in

the neighborhood of each pixel is firstly computed and the
horizontally aligned gradients are merged together. An edge
density filter is then applied to eliminate non-text regions
followed by the application of some geometrical constraints.
Unfortunately, all these methods are tested on private
datasets with non-uniform evaluation protocols that make
direct comparison and scientific benchmarking rather
impractical. Comprehensive surveys can be found in [10, 12,
13].

III. PROPOSED TEXT DETECTION METHOD

Our system consists of two main stages i.e., CC-based
heuristic algorithm and machine learning classification, as
shown in Figure 1. The first stage extracts, filters and groups
CC text candidates using SWT operator, geometrical
constraints as well as textline formation method. The second
stage uses convolutional autoencoders, to produce
automatically features that have been learned from
previously obtained unlabeled textline candidates. A SVM
classifier receives as input these features for discriminating
textlines from non-text ones.

Figure 1. The flowchart of the proposed text detection method

A. Component Extraction by SWT
The SWT algorithm [2] is used to extract CCs from an

input frame.

Figure 2. Example of SWT processing.

This operator detects stroke pixels by shooting a search
ray from an edge pixel p to its opposite edge pixel q along
the gradient direction dg. If these two edge pixels have
nearly opposite gradient orientations, the ray is considered

14

valid. All pixels inside this ray are labeled by the distance
between p and q (as shown in Figure 2). In order to reduce
the noises of incorrect connections produced by the SWT
(like those in Figure 3(a)), we propose to discard the false
rays whose length are higher than a predefined empirical
threshold Tr.

(a) (b)
Figure 3. Results of the original SWT (a) and our modified version (b).

The neighboring pixels in the resulting SWT image are
then grouped into CCs. In order to allow smoothly varying
SWs in a letter, we keep the same SW ratio, which is 3, as in
[2]. In Arabic script a single character may consist of several
strokes and, subsequently, several labels. Considering this,
we modified the original CC-labelling operation of [2] using
a two-pass algorithm.

B. Component Analysis and textline formation
Coarse filtering: At this step, we apply a set of heuristic

rules based on statistical and geometric proprieties of the
components, to filter out CCs that are unlikely parts of texts.
First, we remove components with very large and very small
aspect ratio under a conservative threshold so that characters
like Alif " " are not discarded. Then we discard objects with
unusual sizes by limiting the length and width of the
component. In addition, objects located at the border of the
image are also discarded from further processes.

Vertical merging: Different from Latin script, an Arabic
character may consist of several diacritic marks such as
Hamza above/below Alif “ ” or dots. Among the previously
obtained candidate CCs, some of them are parts of a
character, which need to be merged into a single bounding
box. We design a small set of rules to group these CCs:

• The CCs should have similar SW (ratio between the
median SW values has to be less than 2.0).

• The vertical distance between two CCs should not
exceed an empirical predefined threshold Tvd.

Textline formation: In order to form the larger context
of textual information, given the obtained character/subword
candidates, we develop a textline grouping method.
Specifically, we define an upper triangular probability matrix
M given by (1), where mi,j is the matching probability
corresponding to a pair of text candidates (Ci, Cj).

 (1)

In order to compute mi,j for a given pair of components,
we firstly calculate the following probability functions:

• Ov(Ci, Cj): probability based on spatial overlap
between their corresponding rectangles i.e., Ri, Rj,
respectively.

• Ds(Ci, Cj): probability based on the proximity of Ri
and Rj. the closer Ri and Rj are, the more important
Ds(Ci, Cj) is.

• Al(Ci, Cj) increases depending on components’
alignment, since text always appears in the form of
horizontally aligned lines.

• Sw(Ci, Cj): probability based on SW similarity.
The probability matrix M is then calculated as follows:

 (2)

Where

 (3)

and Tov, Tds, Tal and Tsw are thresholds for, respectively, the
overlap ratio, distance, alignment and stroke width scores.
Text lines formation process consists finally in pairing Ci and
Cj when mi,j= max(M) with respect to a minimum matching
probability threshold Tm. The process ends when no
components can be grouped.

C. Features Learning Process
As the previous step produces text lines and areas

erroneously recognized as text lines, we then use a machine
learning method for classifying them as text and non-text.
Machine learning methods take as input features giving
information about the data and return as output a class label.
There are various ways to extract features from data, for
example by hard-coding mathematical or morphological
operators. In this work, we aimed at automatizing this task;
therefore we used an autoencoder as feature extractor.

Auto-encoders (AE) are artificial neural networks which
are trained to encode and decode data. They usually learn
either to encode the inputs with fewer dimensions
(compression) or with a higher dimensionality (sparse
representation). Convolutional auto-encoders are stacked
autoencoders in which layers, excepted for the top, are
convolved. This allows covering a larger area while keeping
the number of weights of the neural network small enough to
have an acceptable training time. The output of a CAE,
which is used as features during the classification, is the
encoded values, not the result of the reconstruction, as the
latest is used only during the training phase.

15

Figure 4. Illustration of a single-layer autoencoder.

We used the CAE introduced in [15]. Each of its layers is
composed of a convolved artificial neural network that has
two neuron layers, one for encoding and one for decoding. A
single layer autoencoder is illustrated in Figure 4. The first
neural layer encodes the inputs, and the second neural layer,
which is used only during the training phase, reconstructs the
inputs from the encoded values. In case of stacked
autoencoders, the first layer of the CAE takes raw pixel data
as input; the other layers take as input the output of the
previous layer.

Our AE encodes an input x of dimension n to an output y
of dimension m as follows:

 (4)

Where be
i is a bias and wi j are the weights used for

encoding. Decoding an output y to reconstruct the input is
done in a similar way:

 (5)

Where is an approximation of the x vector encoded by

y, bj a bias, and wd weights used for decoding. This means
that the AE has to learn m x (n + 1) + n x (m + 1) weights
during its training. For this reason, it is more time-efficient to
use a convolution of small AEs rather than training a single
one covering a large patch.

The convolutions are created as follows. First, an AE
covering W1 x H1 pixels and having m1 outputs is trained.
Then, we create W2 x H2 copies of it, and put them in a grid,
with an offset of O1x x O1y pixels. This grid covers then ((O1x
. (W2 1) +W1) x (O1y . (H2 1) + H1)) pixels. The output of
the AEs in this grid can be seen as an array composed of W2
x H2 x m1 values, which can then be given to a second level
AE. When creating a convolution of the second level AE, in
order to add a third level, the convolution of the first level
AE must be redimensioned accordingly.

The layers of the CAE are trained one after another with
standard back-propagation and gradient descent in their two-
layers neural network, the goal being to minimize the
reconstruction error (–x)2. The layers of the AE must learn
to encode and decode their own input. If we back-propagated
the reconstruction error of the top-layer to the previous
layers, then the top layer would “ask” through back-
propagation the previous layers to have easy-to-reconstruct
values (e.g. constants). This would lead to a degeneration of
the weights, making the AE useless. For this reason, we add
a new layer to the network only when its current top-layer is
sufficiently trained.

The i-th feature learned by a CAE can be displayed by
setting manually the CAE’s outputs to zero, excepted for yi
which is set to 1, and then decoding it layer after layer until
the pixel-level is reached. Figure 5 shows some features
which were learned automatically by the CAE on our data.
We can see that the learned patterns are more complex when
there are more layers.

 (a) First layer (b) Second layer

Figure 5. Illustration of features learned by two layers

While the CAE can be trained in an unsupervised way, its
topology has to be manually defined: number of layers, size
of the convolutions, offset and number of features.

D. SVM-based classification
We train a SVM classifier with the features of extracted

patches from obtained textline candidates. We selected
roughly as many patches from text candidates than from non-
text ones in order to have a balanced training data.

Figure 6. Principles of textline classification based on majority voting

16

In the prediction step, we classify patches located along
the vertical center of the candidate. Other locations such as
the bottom or the top of the candidate area might contain no
text despite belonging to a text area. After that, a majority
voting procedure is applied to classify the candidate textlines
areas, as illustrated in Figure 6.

IV. EXPERIMENTAL RESULTS

A. AcTiV Dataset
We evaluate the performance of our approach on a sub-

dataset of the AcTiV-DB [11]. AcTiV-DB is the first
publicly accessible annotated dataset designed to assess the
performance of Arabic VIDEO OCR systems. The
challenges that are addressed by AcTiV-DB are in text
patterns variability (colors, fonts, sizes, position, etc.) and
presence of complex background with various text-like
objects.

AcTiV-D (D for Detection) represents a sub-dataset of
non-redundant frames collected from the AcTiV-DB and
used to measure the performance of our proposed systems to
localize text regions in still HD/SD frames. AcTiV-D
consists of 1843 frames (5133 textlines) distributed on four
sets (one set per channel). Every set includes two sub-sets:
trainingFiles and testFiles. Detection ground-truth is
provided at the line level for each frame. We evaluate our
work, specifically, in two protocols proposed by Zayene et
al. in [11]. More details are in table I.

TABLE I. EVALUATION PROTOCOLS

Resolution Channel Training
textlines

Test
textlines

Protocol 1 HD
(1920x1080)

AljazeeraHD 803 226

Protocol 4 SD
(720x576)

4.1 France 24 960 224

4.2 Russia Today 1302 317

4.3 ElWataniya 1 1068 233

B. Parameter settings
In all these tests, the parameters of the first stage (Section

III-A & III-B) were set empirically as follows. In the
components extraction module: the maximum ray length
value Tr = 60 px. In the coarse filtering module: maximum
character/subword height hmax = 40 px, character/subword
width limit wmax= 120 px and max aspect ratio rmax = 5. In
the vertical merging module: maximum relative vertical
distance Tvd = 3 px. Note that these values concern SD
channels. In case of HD channels, they should be doubled.
The probability thresholds, in the textline formation
procedure, were set at these values: Tov=0.75, Tds=0.35,
Tal=0.35, Tsw=0.24 and Tm=0.5.

A fundamental part in our experiments consisted in
optimizing the settings of the CAE, particularly its topology.
We started with a single-layer autoencoder and a topology
which was estimated as a good starting point: an input patch
of a size slightly larger than the strokes of the text, and
enough neurons for having a relatively good looking

reconstruction. Then, we tried to optimize the topology by
improving iteratively the number of features and the input
patch size with regard to the classification accuracy. The
optimal topologies found are given in Table II. It is
interesting to notice first that the dimensions of the first layer
input patch for the HD channel are twice larger than for the
SD channels, and secondly that the optimal number of
features does not change. The first is due to the difference of
resolution (roughly twice higher for the HD channel), and the
second can be explained by the fact that despite differences
of resolution, the content of the inputs is similar and
therefore requires a similar number of features.

The second layer of an autoencoder is more efficient
when it receives as input useful data. Therefore, we used
settings for the first layer which were optimal for the
classification, as their outputs are certainly better for the
classification task than when using other topologies. For this
reason, when we started to create two-layer autoencoders, we
used for the first layer the previously obtained settings, and
optimized only the second layer.

We trained the CAEs on the obtained textline candidates.
Thus, their features are trained to describe the kind of
content that the autoencoders will have to deal with during
the classification phase. For this training, we used between
2153 textline candidates (for France24 TV channel) and
3924 textline candidates (for ElWataniya1 TV channel), and
used patches randomly placed on them for training the
CAEs.

TABLE II. OPTIMAL CAE TOPOLOGY FOR HD/SD CHANNELS

C. Results
To evaluate the proposed method, we compared it with

two other systems. The results are given in Tables III and IV
in terms of precision, recall and F-measure. The first method
which we tried is Epshtein’s [2]. The second, called here
“System A”, is a fully heuristic method, combining the first
part of the workflow presented in Figure 1, and a refinement
step using projection profiles, aspect ratio and contrast
information [11]. We obtained results roughly 50% higher
than Epshtein’s method; however the high error rate could
still be much decreased by the proposed system which
replaces the refinement step by a machine learning
approach; as shown in Table III and IV. For the protocol 1,
the proposed system increased the F-measure by 10.5%. For
the protocols 4.1, 4.2 and 4.3 (SD channels), the results are
higher, with gains of respectively 15.6%, 21.7% and 14.5%.

HD SD
Layer

1
Layer

2
Layer

1
Layer

2
Input patch size 10*10 20*20 5*5 11*11

Convolution 3*3 - 3*3 -

Offsets 5*5 - 3*3 -

No. features 12 15 12 15

17

TABLE III. EVALUATION RESULTS IN PROTOCOL 1

Protocol Method Recall Precision F-measure

1

Epshtein [2] 0.53 0.36 0.45

System A [11] 0.76 0.77 0.76

Proposed System 0.83 0.85 0.84

TABLE IV. EVALUATION RESULTS IN PROTOCOL 4

Protocol Method Recall Precision F-measure

4.1
Epshtein [2] 0.5 0.3 0.4

System A [11] 0.6 0.69 0.64

Proposed System 0.73 0.75 0.74

4.2
Epshtein [2] 0.42 0.36 0.39

System A [11] 0.55 0.66 0.6

Proposed System 0.73 0.73 0.73

4.3
Epshtein [2] 0.47 0.35 0.41

System A [11] 0.71 0.68 0.69

Proposed System 0.83 0.76 0.79

Figure 7 gives some examples of detection results using
the proposed system. Figures 7–a and 7–c show the outputs
of the first stage (before classification). Figures 7–b and 7–d
show the final results.

(a) (b)

(c) (d)

Figure 7. Some detection results from two different SD channels

V. CONCLUSION

This paper presents a new method for artificial Arabic
text detection in video frames. The presented method is a
combination of a CC-based heuristic approach using SWT
and a machine learning approach based on CAE as features
extractor and SVM as classifier.

While using machine learning for filtering the results
given by the SWT increases much the accuracy, there is still

much room for improvements. In the future, we would like
to replace the combination of CAE and SVM by stacking a
neural network on top of the autoencoder, thus having the
possibility to fine-tune the features for the classification task.
We also intend to investigate the possibility of directly
classifying individual pixels as belonging to text or non-text,
as we have shown in this work that the classifier is able to
learn to distinguish these classes.

REFERENCES

[1] V. Märgner and H. El Abed, “Guide to OCR for Arabic Scripts”
(book), Springer, 2012.

[2] B. Epshtein, E. Ofek, and Y.Wexler, “Detecting text in natural scenes
with stroke width transform”, In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2010.

[3] H. Yang, B. Quehl and H. Sack, “A Framework for Improved Video
Text Detection and Recognition”, International Journal of Multimedia
Tools and Applications (MTAP), pp. 217–245, October 2012.

[4] P. Shivakumara, T. Q. Phan and C. L.Tan, “New Fourier-Statistical
Features in RGB Space for Video Text Detection”, IEEE transactions
on Circuits and Systems for Video technology (CSV), pp.1520–1532,
November 2010.

[5] YZ. Zhuge and HC. Lu, “Robust video text detection with
morphological filtering enhanced MSER”, Journal of Computer
science and Technology, pp. 353–363, March 2015.

[6] M. Anthimopoulos, B. Gatos, I. Pratikakis, “Detection of Artificial
and Scene Text in Images and Video Frames”, Pattern Analysis and
Applications, pp.1-16, 2011.

[7] M. Ben Halima, A.M. Alimi, H. Karray and A. Fernandez Vila, “Nf-
savo: Neuro-fuzzy system for arabic video ocr”, Int. Journal of
Advanced Computer Science and Applications, pp. 128–136,
November 2012.

[8] S. Yousfi, S.Berrani, C. Garcia, “Arabic text detection in videos using
neural and boosting-based approaches: Application to video
indexing”, In Proceedings of the IEEE International Conference on
Image Processing (ICIP), France, October 2014.

[9] A. Jamil, I.Siddiqi, F. Arif and A. Raza, “Edge-based Features for
Localization of Artificial Urdu Text in Video Images”, In Proc. Of
the International Conference on Document Analysis and Recognition
(ICDAR), Beijing, China, September 2011.

[10] Tong L., Shivakumara P., Chew Lim T. and Wenyin Li., “Video Text
Detection” (book), Advances in Computer Vision and Pattern
Recognition (ACVPR), 2014.

[11] O. Zayene, J. Hennebert, S. M. Touj, R. Ingold, and N. E. BenAmara,
“A dataset for arabic text detection, tracking and recognition in news
videos- AcTiV”, in Proc. of (ICDAR), Nancy, France, August 2015.

[12] N. Sharma, U. Pal, M. Blumenstein, “Recent advances in video based
document processing: a review”, in Proc. of the IAPR International
Workshop on Document Analysis Systems (DAS), CA, USA, March
2012.

[13] Q. Ye and D. Doermann. “Text detection and recognition in imagery:
A survey”. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), November 2014.

[14] L. Wu, P. Shivakumara, T. Lu and C. L. Tan, “Text Detection using
Delaunay Triangulation in Video Sequence”, in Proc. of (DAS),
Tours, France, April 2014.

[15] M. Seuret, A. Fischer, A. Garz, M. Liwicki and R. Ingold, “Clustering
Historical Documents Based on the Reconstruction Error of
Autoencoders”, in Proc. of the International Workshop on Historical
Document Imaging and Processing (HIP), Nancy, France, August
2015.

18

