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Abstract. Fifth generation mobile networks (5G) will rather supplement than
replace current 4G networks by dramatically improving their bandwidth,
capacity and reliability. This way, much more demanding use cases that simply
are not achievable with today’s networks will become reality - from home
entertainment, to product manufacturing and healthcare. However, many of
them rely on Internet of Things (IoT) devices equipped with low-cost trans-
mitters and sensors that generate enormous amount of data about their envi-
ronment. Therefore, due to large scale of 5G systems, combined with their
inherent complexity and heterogeneity, Big Data and analysis techniques are
considered as one of the main enablers of future mobile networks. In this work,
we recognize 5G use cases from various application domains and list the basic
requirements for their development and realization.
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1 Introduction

The vision of 5G is becoming clearer as we move closer to the end of this decade. The
5G will feature increased network speed, and machines, cars, city infrastructure beside
people will be connected. It is expected that 5G networks will have always-on capa-
bilities and to be energy efficient, which require new protocols and access technologies.
The 5G network represents highly complex and heterogeneous network that integrates
massive amount of sensor nodes and diversity of devices such as macro and small cells
with different radio access technologies such as GSM, WCDMA, LTE, and Wi-Fi that
coexist with one another. Such network vision is expected to lead to traffic volume of
tens of exabytes per month that further demands networks capacity 1000 times higher
than now [1, 2]. Such traffic volume is not supported with nowadays cellular networks.
Thus, practical deployment of 5G networking systems, in addition to traditional
technology drivers, needs some new critical issues to be resolved on different areas
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such as: (1) coordination mechanism [3], (2) power consumption [4], (3) networking
behavior prediction [5], (4) positioning and location-awareness [6] etc. Some operators
already start their deployments and the standards process forward.

5G will be built upon the existing 4G LTE networks with features available as part
of the LTE - Advanced standard. Some features will include carrier aggregation that
enable using of existing spectrum efficiently with network capacity increase and higher
throughput rates. Self-organizing networks will play key role as well as technologies
such as coordinated multipoint that will enable operators to simultaneously transmit
and process signals from multiple sites. Software-defined networks (SDN) and network
functions virtualization (NFV) will be very important for operators in order to scale
their networks quickly in migration from 4G to 5G [7]. SDN will play key role for
carving virtual sub-networks, which can be used for huge bandwidth applications,
which for example include video with requirement in speed of 10 Gb/s as well as lower
bandwidth applications, which for example connect different user equipment that are
less demanding on the network.

The 5G architecture and deployment will depend upon how the network is used.
For example, applications such as streaming video, video conferencing and virtual
reality require high speed with growth in the video traffic. In order to achieve this
requirement, the network needs a lot of small cell coverage and higher bandwidth
spectrum. Further, 5G will be the network for Internet of Things (IoT) with support for
a lot of devices [8]. Such IoT network should be efficient in low-bandwidth trans-
missions with enhanced coverage. Because of the high scale of 5G systems combined
with their inherent complexity and heterogeneity, Big Data techniques and analysis will
be one of the main enablers of the new 5G critical issues.

Big Data refers to large data sets whose size is growing at enormous speed making
it difficult to handle and manage them using the traditional techniques and software
tools. It is a step forward from traditional data analysis, considering the following
aspects (so-called five “five Vs”) [9]: quantity of data (volume), different types of semi-
structured and unstructured data (variety), the rate with which data is changing or how
often it is created (velocity), the importance of results extracted from data (value), data
quality, including trust, credibility and integrity (veracity). Taking into account the
prediction that the number of connected devices will increase 10–100 by the time when
5G will be commercially used [10], it can be concluded that Big Data techniques will
play an important role, as all the considered usage scenarios are based on extracting
knowledge from the enormous amount of heterogeneous data generated by connected
devices in order to support the decisioning and other mechanisms in future 5G
networks.

In this chapter, we identify use cases and scenarios that could benefit from new
capabilities provided by 5G network in synergy with Big Data technologies, list basic
requirements for their application development, and consider some future challenges
addressing positioning challenges and semantic-based solutions. The researcher com-
munity and service providers (business stakeholders) could benefit from this chapter.
From one side, it provides an insight of recent trends in 5G research and development,
while, from the other side, it discusses how the research outcomes could be used for
development of future services to satisfy customer demands.

Big Data in 5G Distributed Applications 139



Section 2 of this chapter gives list 5G use cases requirements, while Sect. 3 gives
identified 5g use case with short description of each. Section 4 gives future challenges
targeting positioning systems, semantic based approaches, 5G security etc. Section 5
concludes the chapter.

2 5G Use Cases Requirements

The introduction of big data techniques in 5G distributed applications poses a chal-
lenge, as these techniques usually require huge computational resources. In general,
there is a need for high performance computing infrastructure. This infrastructure
would typically be available as a private or public cloud or grid. Cloud or grid
resources will allow for consuming, storing and processing huge amounts of data. This
data shall be prepared for consumption from the edge network. Depending on the
nature of the data needed by end-users, we can envision two kinds of data processing
methods: online and offline. Offline methods are easier to handle as the processing can
be performed in the cloud or grid. This are supposed to be processes that are not
critical. Online processing is used when a response is needed in a given amount of time,
and therefore both the time required to give a response and the latency would have high
impact on the set of use cases that will be available for 5G.

For online processing, in those cases where common off-the-shelf hardware is
available at the edge, general Big Data solutions can be run on top of this commodity
hardware, assuming that the constrained resources available are enough.

In general, we identify following requirements needed for 5G use cases:

• Network requirements: Network with 5G capabilities; faster and higher-capacity
networks, which can deliver video and other content-rich services; massive con-
nectivity of devices based on different technologies, etc.

• Application requirements: Consistent process mining over Big Data triple store;
Network capability measurement module; Reasoning module; Learning and Pre-
diction module (for example, Neural Network); Optimization module; Corre-
sponding domain and application Ontologies; etc.

• Storage requirements: Big Data triple store; Possibility to handles large amounts (a
petabyte or more) of data; Distributed redundant data storage; Massively parallel
processing; Provides Semantic Big Data processing capabilities; Centrally managed
and orchestrated.

Even though the 5G networks are primarily designed for enhanced communication
purposes, high-accuracy positioning has been considered as one of the key features in
5G. Moreover, the standardization organization third generation partnership project
(3GPP) has already published several technical reports and specifications regarding
positioning in future 5G networks [11–14]. However, since the 5G specifications are
still under development, detailed descriptions of different positioning approaches and
related positioning protocols are yet unavailable. Despite this, in order to facilitate
development of various future 5G-enabled use cases, 3GPP has introduced the first set
of performance requirements considering different types of position-reliant use cases
presented in [13]. For each use case, a specific positioning accuracy, including both
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horizontal and vertical directions, has been given according to the type of the area of
interest and its 5G service characteristics. For certain use cases, when applicable, also
accuracy requirements for velocity estimation and device bearing estimation are
provided.

Similar to common 5G guidelines, besides focusing only on maximizing the
positioning accuracy, also other important positioning service aspects have been
considered in the existing reports given in [13]. One of the key performance indicators
is positioning availability, which defines in which percent of the time the positioning
method provides estimates with the specified accuracy level. Another important posi-
tioning performance indicator is latency, which indicates the elapsed time between
triggering the positioning process and finally obtaining the position estimates. More-
over, the latency of the first position estimate at the initialization stage of the posi-
tioning process, referred to as the time-to-first-fix, has been separately specified
typically with reduced performance requirements compared to the latency in general.

In addition to the above-described 5G positioning requirements, there are various
other aspects, which have not yet been appropriately addressed in the reports and
specifications, but should be considered according to the needs of users, operators and
3rd parties. Such aspects include, for example, energy consumption, security and
privacy, estimation reliability and related confidence levels, and possible regulatory
requirements (e.g., positioning during emergency calls) [12–14].

Mobile-network-based positioning approaches can be divided into two fundamental
categories, which are network-centric positioning and user-centric positioning. In
network-centric positioning, the position estimates are obtained at the network side
based on the signals transmitted by the user device. In this approach, all heavy com-
putational load is located at the network side, which reduces the power consumption of
the user device, and thus, increases the valuable battery life of the device. Moreover,
when the positioning is done at the network side, all positioning related information,
such as network BS locations, are already available for the positioning algorithms
without introducing additional overhead from signaling the information over the radio
interface. The fact that the position information is fundamentally located at the network
side is especially useful for achieving the future targets of the 5G networks, as it
facilitates numerous 5G-enabled mission-critical use cases where the latency and
reliability of the position estimates are in a crucial role. In the user-centric positioning
approach, where the user device performs the positioning based on the signals trans-
mitted by the network nodes, the position information is not directly available at the
network side. This approach increases user security and privacy, but on the other hand,
it requires additional signaling overhead in order to utilize the device positions jointly
as part of new 5G-enabled infrastructures such as traffic control and ITS, for instance.

3 5G Use Cases

In this section, we analyze how the current advances in 5G and related concepts can be
leveraged in order to provide novel use cases that were not possible before or improve
the existing services and solutions.
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3.1 5G Coordination Mechanisms

The 5G network indicates the need for coexistence of multiple wireless technologies in
the same environment [3, 15, 16]. The problem that raises in such environments is
mutual interference among multiple wireless networks, which is consequence of an
overlapping in usage of the same set of resources. Typically, such case happens when
same radio frequencies are used for multiple communication channels that are based on
different radio technologies [3, 15]. Coordination protocols defined by the technology
standards traditionally address the problem when networks use same technology. New
coordination concepts are needed in the case of co-existing networks based on
heterogeneous technologies [16, 17].

We identify the following possible scenario. In a Home Network setting, a typical
home can have several rooms each equipped with WiFi enabled HDTV set and a
number of streaming audio appliances. At the same time and in the same building, a
sensor network is used for home automation including presence detection, temperature
and lighting regulation, doorbell indication and security and safety monitoring. Most
homes also have at least one microwave oven and a number of Bluetooth Low Energy
gadgets. During the typical evening, all of these devices are active and have to be
actively coordinated in order to provide satisfactory level of service.

3.2 Power Consumption

A number of recently finished as well as currently on-going 5G related EU projects
confirm a diversity of usage and applications of power consumption, efficiency and
reliability in WSNs. These projects delivered a number of algorithms and protocols for
reducing energy consumption that show the importance of the power consumption.
Further, the design of the 5G wireless networks has to consider energy efficiency as
very important pillar in order to optimize economic, operational, and environmental
concerns [1, 18]. In presence of enormous high traffic volume, data-driven techniques
such as intelligent distribution of frequently accessed content over the network nodes
and content caching can result in relevant energy consumption reductions and prolong
the lifetime of nodes that are low on battery energy.

3.3 Networking Behavior Prediction

Big Data Analytics solutions can predict how the needs in resources use change among
places and throughout the time within a complex large-scale system. A 5G network that
adopt such solution would have ability to learn from the previous situations and states
and intelligently adopt to new demands [5, 19]. Particularly, using appropriate learning
techniques the system will enable devices to learn from past observations in their
surroundings.

For example, we identify the following use case scenario: (a) In a Smart City, traffic
lights and pedestrian crossings (i.e. various presence detectors) are IEEE 802.15.4
technology equipped while community WiFi network is mounted on a number of light
posts lining the same street. During rush hours, there is a high demand for WiFi traffic
due to a large number of people using personal devices potentially impacting traffic
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management system; (b) Mobile users consume images, videos and music, which
increase in volume over time. In such a case, network congestion is a consequence of
the high dynamics in demands that exceeds the system potential for adaptability.

3.4 Positioning and Location-Awareness in Future 5G Networks

The world is changing rapidly. New services are needed and many of those new
services require location-awareness. Autonomous vehicles, transportation, traffic con-
trol need this kind of service. If we consider the problem from the point of view of the
smart city we notice that there are many new user groups, such as pedestrians, cleaning
and maintenance services, management and administration. There are several approa-
ches to help with positioning. One started with Long Range Positioning systems like
Decca and LORAN and continued with Global Positioning System (GPS) that is a
positioning system based on Medium Earth Orbit satellites. GPS is a part of Global
Navigation Satellite System (GNSS) [20]. GNSS also includes, for example European
Galileo and Russian GLONASS. However, satellites are not solving the positioning
problem totally. In many regions positioning needs help from mobile communication
networks that is called assisted GPS (A-GPS). The high latitudes in North and in South
and cities with skyscrapers are for examples problematic regions.

In contrast to the earlier and existing mobile generations, where positioning has
been only an add-on feature, future 5G radio networks will allow for highly accurate
positioning not only for personal navigation purposes but also for unforeseen location-
aware services and applications like robotics, intelligent transportation systems (ITSs),
and drones, just to name few. While seeking to meet the demanding communication
requirements of 5G, e.g., in terms of capacity and data-rates, 5G networks will exploit
large bandwidths and massive antenna arrays, which together with even denser base
station (BS) deployments create also a convenient environment for 5G-based radio
positioning. Hence, it is widely expected that future 5G networks should enable and
even improve indoor and outdoor positioning techniques embedded to a radio access
network (RAN) [11] as well as the ones that utilizes RAN-external measurements from
GNSS or sensors.

3.5 Ultra/High Definition Live Video Streaming in Wireless Networks

In recent years, video streaming, both on-demand and live has become an important
part of our everyday lives – from social networks, content delivery platforms to
industrial, robotic and experimentation systems. Due to rise of processor power and
camera sensor resolution of consumer devices, such as smartphones, the image quality
criteria perceived by consumers has dramatically increased. High Definition video is
becoming a must for all the use cases where video streaming is involved. Not only that,
but also new video formats are emerging, such as stereoscopic 3D, 360-degree video
and Ultra High Definition Video which contain even more data that has to be trans-
mitted. Therefore, Internet service providers, mobile carriers and content providers are
encountering many issues, as transmission of such content requires significantly larger
bandwidth. Additionally, the issues become even more challenging due to device
mobility, which can affect the Quality of Service and Quality of Experience, especially
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when it comes to live video broadcast in varying network conditions [21]. Here, we
identify a potential use case of novel networking paradigms – SDN and VNF, in
combination with Big Data technologies. Large amount of network equipment and
status data is analyzed. The results of data analysis are semantically annotated and
stored into RDF triple store, so semantic reasoning can be performed in order to draw
new conclusions which could lead to re-deployment of virtual networking assets,
generation of SDN rules, parameter tuning or other optimizations with objective to
satisfy user-defined QoS parameters and maintain the quality of high definition live
video streaming in varying network conditions, where devices are moving intensively
(such as mobile robotic and experimentation systems).

In several publications so far, this topic has been discussed, problems identified and
several solutions proposed. However, in most cases, these solutions suffer from low
quality, large end-to-end latency in live streaming and frequent freezes in the video
playout due to sudden drops of the available bandwidth [22]. In [22], it was shown
network-based prioritization introduced by an OpenFlow, SDN-enabled controller can
reduce video freezes caused by network congestion. Therefore, the utilization of SDN
technologies in this case seems promising. In [23], results confirm that it is now
possible to realize a short-range THz wireless communication system for commercial
applications where Ultra HD video streaming is needed. However, it is not suitable for
use cases like experimentation and mobile robot where long-range wireless commu-
nication is of utmost importance.

We can conclude that there are still many open questions in case of ultra/high
definition live video streaming using wireless networks, which makes it suitable for
future research and application of next generation networking in synergy with Big Data
and semantic technologies.

3.6 Multi-party Trust Based on Blockchain for Process Monitoring

IoT and smart objects are key-enabler technologies for monitoring of complex business
processes [24], especially in logistics domain and industrial production systems [25].
However, most of these processes involve multiple parties. In absence of central
authority, the trust between these parties becomes an important issue [25, 26]. Despite
the fact that artifact-driven monitoring enables to effectively keep track of the execution
of processes where multiple organizations are involved, it does not fully solve the
problem of trust among them. As the devices involved in monitoring process might
belong to different organizations, there is still a possibility that one of the parties can
misconfigure its devices in order to achieve some own goal in an illegal way, with
possibility to disrupt the process execution itself, affecting the final outcome.

Blockchain technology is recognized as a solution for issues related to trust in
multi-party process monitoring systems [25–27]. Blockchain provides a shared
immutable ledger, which guarantees that the information can be accessed and validated
by all the participants of a process both during its execution and after it is completed,
which builds the trust among them.

This use case represents a potential area where we can make use of synergy of
various novel technologies and paradigms, such as IoT, Big Data and next generation
networking together with blockchain.
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3.7 Trusted Friend Computing

With the advent of 5G networks, an increasing number of devices will be connected
permanently and at high speed to the Internet and to each other. While many appli-
cations will benefit from this new connectivity by being able to interact more quickly
with data providers, such as the cloud or other resources, there is also a growing need
for privacy-conscious data sharing. This is particularly the case in the context of Big
Data, which also includes the issue of moving large amounts of private data. One
possible approach to this problem is to move calculations close to the data and provide
access to both data and local computing resources.

The Trusted Friend Computing (TFC) concept aims to enable a community of users
to securely share their IT resources without a central organization collecting and storing
information. It is a distributed, resource-centered paradigm where data, computing
power, software or the network can be shared reliably and resiliently. This paradigm
defines an original IT architecture built around the notion of a community of users
(called friends) of a given software application. Instead of using the traditional
approach where the IT architecture is middleware-centric to share resources, the TFC
approach focuses on the software application used by the community. One of the
important advantages of this approach is to avoid heavy executable codes transfers
since all friends already possess the calculation modules useful for the community.
Inspired by the social network model and using a concept similar to virtual private
networks (VPNs), the idea is to allow friends to invite other users of the software to
join the community to share their resources. The community is therefore built by
individual cooptation and is, by nature, distributed, decentralized and elastic.

To achieve this objective, several major technical challenges must be addressed.
We can, among other things, mention:

• Clearly define a security model for sharing IT resources in the context of TFC
applications;

• The definition of community management and accounting needs;
• The development of a platform to enable and facilitate the implementation of

applications that comply with the TFC model.

Finally, a user community focused on using a specific application must be identified
and the application must be enhanced with TFC features. One of these communities is
that of physicians involved in the diagnosis of genetic diseases and using the Gen-
searchNGS tool [28]. This Java software analyzes next-generation sequencing data
(NGS) to detect changes in DNA sequences for the diagnosis of genetic diseases [29,
30]. In order to be able to easily integrate into any Java software, including Gen-
searchNGS, TFC capabilities the POP-Java tool [31, 32] was used. This tool has been
improved to support the different functionalities required for TFC-compatible appli-
cations [33].

TFC’s security model is based on the notion of a “confidence link” as presented in
[34]. A confidence link is a two-way channel that allows two friends to communicate
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safely at any time. The confidence link also authenticates users with a security cer-
tificate, ensuring the identification of communicating partners. Each member of a
network can extend the network by creating additional confidence links with other
friends, thus adding new members to the network. All friends as well as all confidence
links form a connected graph where the nodes are friends and the arcs are the confi-
dence links. We call such a graph a “community of trusted friends” or more simply a
“community”. None of the friends in the community have a global view of the
infrastructure. Each friend only knows his direct friends, i.e. the users with whom he
has established a confidence link.

Applications can publish resources on a network of friends or search and access the
resources of other network members. When publishing a resource, specific access
rights can be given to limit access to the resource, for example by differentiating
between direct and indirect friends in a network.

The model also includes the ability to record the use of each member’s resources,
which allows the use of resources to be billed based on their utilization rate, thereby
encouraging members to share their resources.

Today, and certainly even more so tomorrow, the use of mobile networks for
professional applications will be a reality. These applications are less and less confined
to work desktops but are now used outside the enterprise environment for efficiency
and ease of use. A concept such as TFC can truly benefit from a high-performance
mobile communications network such as 5G networks to provide professional com-
munities with secure access, anytime, anywhere, to vast computing and data resources.

3.8 Virtual and Augmented Reality Applications

Virtual (VR) and augmented reality (AR) applications are not exceptions when it
comes to potential use cases where utilization of 5G networks could be highly bene-
ficial. The arrival of next-generation of mobile network will unlock the full potential of
VR and AR technology, which is still limited by current network characteristics. The
complex graphically-rich scenes and sophisticated input mechanisms that are used to
create the VR and AR experiences require a large amount of data that has to be
processed [35]. Lag, stutter, and stalls are unacceptable for user experience and comfort
[36]. This is not a huge problem for local applications, but is quite challenging when
done remotely, if the user is on the move and not using the fixed network connection
[35]. In this case, the quality of VR and AR experience is heavily dependent on three
network components: high capacity, low latency and uniform experience. This way,
many novel services and applications that involve the usage of augmented and virtual
reality would see lights of the day, such as immersive movies, video games, live shows,
concerts, sport events, immersive education platforms, immersive social interactions,
immersive professional project collaboration and many others [35–37]. To sum up,
these services would affect the way that people play, learn and communicate [36].
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4 Current Solutions and Future Challenges

4.1 5G Positioning

Possible Error Sources State of the Art
When considering the 5G positioning aspect, ultra-dense BS deployments, increased
transmission bandwidths, and large antenna arrays enable efficient utilization of both
ranging-based (e.g., time-of-arrival (ToA) and time-difference-of-arrival (TDoA)), and
angle-based (e.g., direction-of-arrival (DoA)) positioning measurements. However, in
order to exploit these types of measurements for positioning, specific prior knowledge
about the network and user device is often assumed available. In case of temporal
measurements, the clocks of the user device and network nodes are often assumed to be
synchronized. More specifically, with ToA measurements, all clocks in the network,
including the user device and the BSs, are typically assumed to be synchronized among
each other, whereas with TDoA measurements, only the BS clocks are assumed to be
synchronized. Nonetheless, clock synchronization errors can result in large inaccura-
cies in ranging measurements, and thus, has to be carefully considered in a practical
positioning system implementation. Besides the aforementioned clock errors, the
ranging measurements as well as angle-based measurements can be deteriorated by the
errors related to BSs’ locations. In addition to the inaccurate BSs’ location information,
uncertainties in the orientation of the BS antennas and/or the user device antennas may
cause significant error to the positioning results when utilizing angle-based measure-
ments like DoA measurements for positioning.

Whereas the BS position and antenna orientation error can be typically considered
time-invariant, the clock errors are often time-variant with certain time-drifting
behavior. However, it is appropriate to assume that the time-variant behavior of the BS
clocks can be sufficiently small, and thus, there can be only a possible constant clock
offset between the BS clocks. Nonetheless, any unknown (or uncertain) system
parameter, such as clock offset, BS positions and antenna orientation, can be estimated
using classical simultaneous localization and mapping (SLAM) approaches, where the
user device position and the unknown system parameters are estimated simultaneously
while the user device is moving within the network coverage area.

Since the 5G specifications are still under development and 5G networks are only
beginning to emerge to the market, the state-of-the-art 5G positioning studies rely on
high computational load computer simulations using realistic radio wave propagation
models with extensive 3D ray tracing algorithms. In [38], a network-centric positioning
approach was studied by considering asynchronous clocks in the user device and in the
network BSs. It was shown that regardless of the clock errors, sub-meter positioning
accuracy was achieved by using the ToA and DoA measurements. Moreover, while the
user device was moving in the network, the network BSs were synchronized similar to
the well-known SLAM principle. This type of approach was later used in [39] for
investigating location-aware communications, including applications for proactive
radio resource management and location-based geometric beamforming.

A user-centric positioning approach based on signals from a single BS was studied
in [40]. In this case, by utilizing only a single BS for the positioning, requirements for
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the clock synchronization can be considerably alleviated. Based on the ToA and angle-
of-arrival (AoA) measurements, the user device position was estimated with sub-meter
accuracy and the antenna orientation of the user device with sub-degree accuracy.
Moreover, the developed estimation algorithm was also designed to exploit reflected
(or scattered) radio wave components, and therefore, it was able to provide position
estimates also for the reflection locations. This type of utilization of non-line-of-sight
radio paths introduces various new communications aspects from advanced beam-
forming techniques to environment-aware interference management. The user-centric
positioning approach was also studied in [41] for a high-speed train scenario utilizing
5G-specified downlink synchronization signal blocks for positioning purposes. Again,
despite of the challenging BS geometry of the train scenario, sub-meter positioning
accuracy was achieved by jointly using the ToA and AoA measurements.

The network-centric positioning with uncertain BS antenna orientations was
studied in [42], where the positioning was based on type of signals used in conven-
tional beam training procedures. By using beam-wise received signal power mea-
surements the user device position and the unknown BS antenna orientations were
jointly estimated achieving a sub-meter positioning error and a sub-degree antenna
orientation error.

Semantic Analysis of Network Topology and Sensor Data for High-Precision
Localization in 5G Networks Challenges
High-accuracy positioning has been considered as one of the key features of future
generation network and still an open question in many areas, such as robotics, drone-
based experimentation and exploration, autonomous vehicles and intelligent trans-
portation systems.

This task becomes quite challenging in these cases, especially when it comes to
indoor localization [43] and outdoor localization of fast-moving aerial devices [44] in
varying network conditions (drones).

Mobile-network-based positioning can be divided in two categories: user-centric
and network-centric. There are various positioning methods which perform with dif-
ferent values of accuracy, latency and time-to-fix in certain conditions.

It is identified that current research in 5G localization is going towards cooperation
[45, 46]. Therefore, the semantic coordination of both user and network operator
devices could be used for determining the precise location, taking into account two
factors:

1. Network topology: how the devices are arranged in space within the network, such
as distance, frequency band at which the device is operating etc. The information
about network topology can be semantically annotated leveraging some domain-
specific language as a representation.

2. Service utilization and sensor data: a large amount of service utilization and sensor
data is collected from both the customer and network operator devices (such as
monitoring and status). It can be analyzed leveraging various data analysis tech-
nique. Furthermore, the data can be semantically annotated according to the results
obtained as output of data analysis techniques.
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For this purpose, we define domain-specific ontologies and rules which are used to
perform semantic reasoning about the precise location leveraging the semantic
annotations about both the network topology and service utilization/sensor data,
taking into account the user-defined performance metrics and QoS parameters, such
as accuracy, latency and time-to-fix (Fig. 1).

4.2 Infrastructure Design of Semantic Driven Big Data in 5G Networking

Semantic Driven Big Data State of the Art
Problems of 5G coordination, power consumption and network behavior prediction
feature smart adoption of high-volume data processing results by the system that we
propose to address using semantics. In particular, core of the proposed infrastructure is
a server, centralized or distributed, that collects relevant knowledge in the given
environment and uses the knowledge to make necessary informative decisions, for
example about network coordination, network sensors power consumption etc. The
server collects networking data and interprets data semantically. For the knowledge
representation, the server uses ontology framework approach. The first version of the
framework has been previously successfully applied in the case of coordination of
technologies that operate in the same unlicensed frequency band [17, 47]. The

Fig. 1. Semantic analysis of network topology and sensor data for high-precision localization in
5G networks.
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coordination and spectrum sensing is modelled as an interactive process, where system
nodes communicate and share knowledge about relevant spectrum conditions.
Semantic channels are established within the system for the interaction between par-
ticipating communication devices. The ontology framework could be extended for
different cases such as solution presented in [48] that could give further directions for
management of semantic Big Data for intelligence.

System that incorporates sensors and 5G user equipment acquire large collection of
data. Collecting, storing, analyzing and retrieving data from industrial sensors or other
machinery connected to the Internet of Things has become of increasing importance, as
a growing number of organizations is looking to take advantage of available data.

One possible semantic framework approach has been successfully proven in many
cases. In [17], the case of semantic LTE-U coordination is presented. The coordination
and spectrum sensing is modelled as an interactive process, where system nodes
communicate and share knowledge about relevant spectrum conditions. Ontologies are
used for knowledge representation as bases for automatic reasoning about optimal
channel allocations and for coordination. Moreover, in [49] the semantic technology
was used for the implementation of network intelligence on top of the FIESTA-IoT
platform by using reasoning for the network state estimation in order to perform the
spectrum coordination. On the other side, in [50, 51], a semantic-driven approach for
unmanned vehicle mission coordination in robotic experimentation testbeds is pre-
sented. In this case, the ontologies are used to represent the knowledge about device
capabilities, constraints, domain expert knowledge and both the design-time (mission
code) and run-time (sensor data) aspects that are taken into account during the gen-
eration of the coordinated device missions. Furthermore, in the paper [52] is presented
the novel semantic-based approach and algorithm for automatic code generation with
huge potential with its extension to 5G applications.

Semantic Driven 5G System Architecture Challenges
The challenge is to exploit semantic technologies at the backend as a flexible foun-
dation for advanced frontend data processing tasks. Possible system architecture con-
sists of five modules given in Fig. 2 and described in more details in the following.

(1) Data Acquisition Module (DAM): Redis is an in-memory database with option of
persistence on disk, so it represents a tradeoff where very high write and read
speed is achieved at the price of the limitation of data sets that can’t be larger than
memory [53–55]. We assume data sources at the order of million data series with
about million measurements annually for few tens of years with several bytes of a
data item size. Hence, size of the total data load could be estimated at the order of
a petabyte (PB). The row data has low information density, and as such it is very
susceptible for compression. Hence, it can be expected that a 100 times com-
pression rate can be achieved easily (e.g. simple run-length encoding). Big Data
technologies can be used for ultra-large scale data sets processing. Distributed
storage and processing frameworks are used for that, such as the open source
Apache Hadoop Framework [56]. Apache Hadoop enables distributed data pro-
cessing across clusters of computers. Popular MapReduce distributed data-
processing model, Hadoop Distributed File System (HDFS), and distributed table
store HBase [57] are Hadoop components.
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(2) The Pre-Processing Module (PPM) identifies instability intervals that are
semantically annotated, stored, and retrieved later on during search by end user.
Anomaly detection is an important problem that has been under extensive research
in diverse application domains. We distinguish two basic types of approaches with
respect to domain specification as well as online or offline processing. These
approaches are not mutually exclusive but, in opposite, they can be used together
to achieve a synergy effect. Results obtained in such a way can be used for instant
reaction but also for longer term planning activities. They can provide users a
valuable information, which can be used proactively, further improve system

Fig. 2. System architecture for Semantic Driven Big Data in 5G networking.
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efficiency and give competitive advantages. In most cases a refining of input data
is needed as a first step. Anomaly detection in time series data obtained by sensors
[58] is a very demanding task but really important in the same time.
A simple low-complexity algorithm for instability intervals detection is envi-
sioned. The process complexity shall be encapsulated into a separate instability
parameters construction module that would extract the parameters from data series
in an independent batch-processing manner. Semantic description of the insta-
bility interval may be more or less complex depending on the end user application
requirements. However, it contains pointer to the corresponding row data record
that are stored separately such that semantic search may retrieve row data also. We
estimate no more than 250 potential instability intervals within one series annually
with average 1% of sensors detecting the instability at one measurement time
instant, resulting in 250 � 0.01 � 4M = 10M instability intervals annually. If we
assume semantic annotation of the intervals of 10 triplets per interval, it totals to
100M triplets. This data size is proven to be practically successfully implemented
on a off-the-shelf single server hardware with 64 GB of RAM. Note that the
system is easily scalable by simple multiplication of the servers assuming fed-
erated queries are implemented.

(3) Semantics Module (SM) is based on a platform for scalable linked data semantic
datasets management. The platform is envisioned to feature advanced Web based
collaborative ontology editor and to be flexible with respect to the used triplestore.
By default, we assume a triplestore that is based on Jena [59] as one of the most
proven Open Source semantic technologies on the market. Semantic data is
represented in standard RDF/OWL formats [60] and manipulated by semantic
queries written in the standard SPARQL query language [61]. In this way, the
technology would allow different reasoners to be adopted. The expected data
processing and storage efficiency is based on the effective use of semantic
descriptions of physical characteristics of sensors, their organization and place-
ment, price, type of measurement units, etc. For the purpose a number of standard
ontologies may be loaded into the system and used, such as time ontology,
measurements ontology, etc. For application specific purposes an online collab-
orative ontology editor will be used to allow end-user to adjust existing ontologies
and develop new ones.
When we have sensor data, attention on the ontologies for sensor data and
metadata should be put. The most corresponding is the Semantic Sensor Network
(SSN) ontology. Systems that adopt the SSN ontology are built on an RDF
database - triple store. Big volume of sensor data collected are challenging to
triple stores, because the evaluation of SPARQL queries becomes expensive.
Triple stores are not optimized to evaluate time series interval queries. Emrooz is
good solution for such case. Emrooz is open source and scalable database capable
of consuming SSN observations represented in RDF and evaluating SPARQL
queries for SSN observations [62]. Emrooz can be implemented on Apache
Cassandra and Sesame [62, 63].
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(4) End-User Web Application Module (WAM) is envisioned to be implemented as
an advanced Ajax front-end that communicates with back-end using RESTful
service API and SPARQL queries. It should consist of the following sub-modules:
(a) NLP Sub-Module: user enters search query in simplified English, such that low

cognitive load for end user is required while in the same time certain domain
language specifics are exploited in order to lower complexity of the language
use and processing. The input is then processed and converted to SPARQL
query for semantic search over the semantically annotated data. Data prepro-
cessing algorithms can then be used to retrieve intervals of unstable states, with
recorded date and time of the start and end of the data sequence. Every time
series is semantically annotated also: name of the physical property, type of the
measurement unit, name of the subsystem (and/or machine and/or location…),
attached sensor, etc. Semantic descriptions of data are automatically generated
during preprocessing and are later used for making autocomplete recommen-
dations to the user, to help him easily search the time series descriptions. Then,
key segments are identified related to the given search query, where each of the
segments can describe date, time, abnormality in measured physical unit (on
some sensor with some features), and all/some unstable data overlapping with
an extracted instability interval [64]. In this way, we are able to make more
effective and user friendly queries.

(b) Reporting & Analytics Sub-Module: Results of the data analysis are visually
presented by means of visually appealing charts, graphs, tables, etc. Semantic
filtering is applied for powerful faceted search and browsing through the
search results. Also, data analysts are able to reconfigure online data pre-
sentation into simple web applications that could be instantly used by the
other team members.
Semantic similarity between the input query and annotations of the instability
intervals is used as the indicator of coincidence between data sets and the search
query. Multilingual support can be provided by existing features defined in the
standard RDF/XML language support. As a consequence of the NLP module
that is based on representing concepts by the supporting ontologies, multilin-
gualism is supported naturally. Though, some additional effort would be
required depending on the type and number of additional languages.
Additional features: Different characterizations and taxonomies of the insta-
bility intervals are possible including for example classification of the
abnormal events as low, middle, high or critical. We can also specify the
intensity of the abnormality as a percentage of the deviation of maximal
measured value in the instability interval from the target value. For example,
we may define abnormality as “deviation between 7% and 20%”. Estimation
of conditional probability of overlapping of two or more instability intervals
will be based on simple analytics algorithms such as counting (“x of y” or
“x/y”, 6 of 9 or 7/10, in searching results indicate overlapping of the insta-
bility intervals). Advanced user-friendly simplified English based search for
causality chains for identification of the root cause is possible. Similarly, a set
of intervals rooted by a specified interval can be determined as well.
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(5) Reasoning and Predicting Module (RPM) is envisioned to be implemented as an
advanced neural network. Neural networks can be adopted for learning compo-
nent of the RPM. Neural networks have been proven effective in interference
detection and classification within wireless networks [65, 66] as well as in time-
series prediction tasks [67] that are crucial for coordination.

4.3 5G Security Challenges

Security solutions for 5G can be divided into five groups: Software Defined Network
(SDN), Network Function Virtualization (NFV), Mobile Cloud (MC), communication
channels and privacy policies [68]. Primary focuses with target technologies described
in [68] are: security of centralized control points (SDN, NFV); flow rules verification in
SDN switches (SDN); control access to SDN and core network elements (SDN, NFV,
MC); isolation for VNFs and virtual slices (NFV); security of control channels (SDN
and channels themselves); user identity verification for roaming and clouds services
(privacy policies); security of users identity and location (privacy policies); encryption
and anti-malware technologies (privacy policies); security of data, storage systems and
web services in clouds (MC); service-based access control security for clouds (MC).

Each of this target and security technologies are deeply investigated in [68].
Security of 5G will be a big challenge because it will connect branches of critical

infrastructures. However, to make 5G a safe technology, security solutions will con-
sider not only this integrated critical infrastructure but also society as a whole, [68].
The basic challenges mentioned in [68] and [69] are:

• High network traffic - a huge number of IoT devices.
• Security of radio communications.
• Cryptographic integrity of user data plane.
• Roaming Security - updating security parameters between operators of networks.
• Denial of Service and Distributed Denial of Service attacks on infrastructure and

end devices.
• Coordination of distributed control systems (like Non-Access Stratum layers of

3GPP protocols).
• Eavesdropping. This attack may lead to intercepting messages by an attacked

receiver and is very hard to detect.
• Jamming. This attack may lead to disrupting a communication between legitimate

users or block access to radio resources. Very often is realized via an infected
receiver.

• Man in The Middle attack. Attacker takes control over communication between
legitimate users.

• Basic requirements like authentication, authorization, availability or data confi-
dentiality. Some of the current technologies fulfilling these requirements may be not
effective enough in 5G context.
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4.4 5G Simulations

A very popular method of finding problems, predicting behavior and developing
improvements in system is analyzing the simulation of this system. In 5G cellular
communication new simulation systems have to be developed because of a huge
number of new services, applications requirements, and performance indicators, [70].
There are three basic types of simulations: link-level, system-level, and network-level.
Authors in [70] describe the following challenges connected to all of these three types
of simulation:

• Variety of application, technologies, environments and performance indicators.
• Complexity of simulation and simulators. It is caused by growing memory demands

and time of simulation which is a result of huge MIMO and complexity of channels.
• Integration of all these three types of simulations. Integration of link-level and

system-level simulation may be useful in the evaluation of nonlinear operations
(like NOMA) in complex environments. Integration of system-level and network-
level simulation is useful in the evaluation of the end to-end performance of all
network.

Other challenges, like reusability, scalability, flexibility, multiple levels of abstraction
or parallel processing are deeply investigated in [70].

4.5 Radio-Access Research and Propagation Issues

One of the expectations for 5G is to ensure prospective radio-access technologies
which will be integrated and will allow creating a long-term networked society [71].
Seven main challenges in this field mentioned in [71] are multi-hop communication,
device-to-device communication, cooperative devices, ultra-reliable communication,
massive machine-type communication, inter-vehicular/vehicular-to-road communica-
tion, and ultra-dense deployments.

The principals of propagation of centimeter waves are very similar to millimeter
waves but have different characteristic [72]. The most important differences in those
characteristics are free space path loss, diffraction, reflection and scattering, material
penetration. These problems can be solved by deploying a Multi Input Single Output
System described in [72]. OFDM can be used as a base for developing a new system of
encoding digital data on multiple carrier frequencies [72]. OFDM will allow to avoid
multipath effect, gain spectral efficiency, and simplify equalization (in comparison with
Single-Carrier Systems) [72].

4.6 Millimeter Waves and 5G Standardization

Millimeter waves have a bigger spectrum in cellular frequency bands then centimeters
waves [71]. This provides new radio-design opportunities and challenges, like [71]:

• Very high capacity and data rates.
• “Short wavelengths necessitating large array antenna solutions to maintain useful

link budgets”.
• Antenna sizes will be smaller (design challenges).
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Standardization of 5G is a still on-going process. However, some decisions have been
already made. The World Radio Communication Conference promoted bands lower
than 6 GHz or between 24–84 GHz in 2015 [71]. A Third Generation Partnership
Project (3GPP) completed first 5G specification in 2018. Below 6 GHz bandwidth
requirements regarding cellular network did not change because of similarity of
propagation conditions in new and existing bands [71]. More technical information
about higher bands and accepted by 3GPP standards can be found in [71] and [73].

4.7 5G Modulation Schemes

Extreme data rates, a huge number of IoT devices, high-speed high resolution
streaming videos - this are only examples what 5G will be used for. The main challenge
is to support very fast entry to the network, even for transferring trivial data, [74]. To
achieve this goal proper modulation scheme have to be chosen.

Orthogonal Frequency Division Multiplexing is a classic modulation scheme based
on dividing available bandwidth into several parallel sub-channels. Each of these sub-
channels (called also sub-carriers) can transmit independent data. Multiplexing in time
and frequency is possible. However, authors in [74] proposed three modulations
schemes, with better Peak to Average Power Ratio and better spectrum efficiency.
These modulations schemes are, [74]:

• Filter Bank Multi-carrier (FBMC) - each sub-carrier is filtered independently. Cycle
prefix is not used. Offset-QAM is used for orthogonality.

• Generalized Frequency Division Multiplexing (GFDM) adaptable multiple carrier
transmission methods. Each sub-carrier is filtered independently. There is no
orthogonality. Available spectrum is spread into segments.

• Filtered Orthogonal Frequency Division Multiplexing (F-OFDM) - an extension of
classic OFDM. Bandwidth is divided into sub-bands depending on the application.
Each sub-band provide proper service. The spectrum is accommodating a range of
services which optimize its usage.

Comparison of all these modulation schemes, results and conclusions can be found
in [63].

4.8 Machine Learning in Software Defined Networks

The 5G technology entails a significant increase in the amount of processed data. The
continuous collection and analysis of such data leads to a Big Data problems that are
caused by the volume, variety and velocity properties [75].

However, a key aspect of the operation of each network is its management and
control. Recently, most of a network functions (e.g. routing, switching, firewalling,
conversion of protocols etc.) were realized by dedicated hardware. The complexity of a
network infrastructure increases a number of challenges in organizing, managing and
optimizing network operations. The popular idea for solving these problems is Soft-
ware Defined Networking (SDN) paradigm. SDN allows to migrate many of network
functions from the devices to the software-defined networking controllers. The SDN
controller manages flow control, analyses network traffic and routes packets according
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to forwarding policies. Consequently, SDN controller serves as a sort of operating
system for the network.

Taking into account aforementioned challenges and problem of processing large
data sets, there is a need for developing efficient and much more complex management
methods. Such management methods require making decisions in the real time. There
are a lot of known data processing methods. However, many of them cannot be directly
applied for effective processing and management of large data sets in modern envi-
ronments, such as 5G networks. Modern solutions require complex decision making
techniques that analyze historical, temporal and frequency network data [76].

One of the possible solutions could be the application of Machine Learning
(ML) methods, which are successfully used in the processing of Big Data [77–80]. The
capabilities of SDN (e.g. centralized control, global view of the network, software-based
network analysis, and dynamic forwarding policies) may fit well to the application of
Machine Learning techniques [81]. These possibilities are included in the FCAPS
(Fault, Configuration, Accounting, Performance, Security) management ISO standard
[82]. In each of the following areas of application one can find intelligent methods [78]:

In the fault management area, ML methods allow not only detection, but also solving
the causes of failures in networks. Automation dealing with failures will allow for min-
imization of downtime and human intervention and, as a result, minimization of losses.

Machine Learning can play important role also in configuration management.
Networks such as 5G are characterized by frequent topological changes. This requires
modifications in the configuration, which can be prone to errors and difficult to opti-
mize. Considering the multiplicity of configuration parameters, analyses of ML can
help to automate this process, e.g. by dynamic resources allocation or services con-
figuration. Appropriate methods can also allow verification of the used configuration
and its possible withdrawal and rollback.

Accounting management is tightly connected with monitoring of network resources
and pricing plans. ML methods can help identify fraud and dishonest activities of
network users. It is also possible to analyze the use of resources and create new service
packages. Smart solutions can also significantly improve the QoS level.

An important area of management is performance management. Guaranteeing
adequate level of performance is a key factor for efficient network. The use of ML
methods can result in traffic load prediction, and, in result, proactive and adaptive
network performance management.

Security Management has become crucial issue in networks. Modern security
approaches consist of tools for identifying threats and vulnerabilities. The use of ML
methods can help in detection of anomalies finding and abuses verification in the
network. However, this approach has a high risk of blocking the correct network traffic
(high false positive rate). Identifying the nature of the cyber-attack is crucial to
choosing appropriate remedies allowed returning to the proper functioning of the
network.

The aforementioned opportunities show a wide field for applying ML methods in
Software Defined Networking paradigm. Machine Learning can play the major role in
autonomous network management for 5G networks. Some of the available solutions,
such as IBM’s MAPE-K or CogNet, are successfully supported by Machine Learning
methods [76, 78].
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5 Conclusion

Use case opportunities will increase enormously with 5G networks deployment. Not
only that the existing applications and solutions will be enhanced, but many novel use
cases and scenarios will become feasible. The potential for further 5G use cases in
future services and applications is huge in industries and national priorities including
domains from entertainment and telecommunication services, to healthcare, smart
cities, remote industrial machine operation, virtual sports attendance and many others.

However, the future scenarios will place much more diverse requirements on the
system that need to be explored and analyzed. It is identified that the main enablers of
future 5G networks are Internet of Things (IoT), Big Data technologies, together with
novel networking paradigms – Software-Defined Networking (SDN) and Network
Functions Virtualization (NFV). New architectures will rely on large number of con-
nected smart devices generating enormous amount of data each moment. The generated
data needs to be analyzed in order to make the right decision as soon as possible,
almost in real time. On the other side, the increased flexibility of network infrastructure
management and fine-grained control is also required, which is enabled by NFV and
SDN. Furthermore, there is a need for evolution of the current architectures by adding
the additional network intelligence layer that would enable more complex scenarios,
such as device coordination. The possible approaches for embedding the network
intelligence are either using the semantic technology or machine learning techniques.

The future may seem far ahead but the phase for defining the requirements is now.
Any new technology or system that we design for 5G needs to be deployed and
evaluated, and it is expected to last at least until the end of the next decade.
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