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Abstract: Synthetic time series generation is an emerging field of study in the broad spectrum of data
science, addressing critical needs in diverse fields such as finance, meteorology, and healthcare. In
recent years, diffusion methods have shown impressive results for image synthesis thanks to models
such as Stable Diffusion and DALL·E, defining the new state-of-the-art methods. In time series
generation, their potential exists but remains largely unexplored. In this work, we demonstrate the
applicability and suitability of diffusion methods for time series generation on several datasets with a
rigorous evaluation procedure. Our proposal, inspired from an existing diffusion model, obtained a
better performance than a reference model based on generative adversarial networks (GANs). We also
propose a modification of the model to allow for guiding the generation with respect to conditioning
variables. This conditioned generation is successfully demonstrated on meteorological data.

Keywords: time series; diffusion; model; generation

1. Introduction

In data science, time series data are particularly widespread and play a crucial role in a
variety of fields, such as finance, meteorology, and health. Their analysis underpins various
applications, including forecasting, data imputation, and anomaly detection. The gener-
ation of synthetic time series is a relatively new subject, but one that is gaining growing
interest in the community of generative artificial intelligence. Indeed, time series generation
finds several applications such as pre-training machine learning models, testing deployed
data pipelines, and graphical illustrations [1]. The pre-training use case is particularly
important when there are a lack of real data, when the data are of poor quality, or in case of
data confidentiality.

In the field of image synthesis, diffusion methods have already proven their worth
and are now considered state-of-the-art methods. Examples include Stable Diffusion [2],
DALLE·3 [3], and Midjourney [4], all of which are based on diffusion methods conditioned
by textual description to generate realistic, high-quality synthetic images. Diffusion meth-
ods have been successfully applied to time series, but their applications are mainly limited
to imputation and forecasting tasks and do not include the conditioning aspect [5]. To our
knowledge, the generation of synthetic time series using diffusion methods and including
conditioning remains under-explored, yet possesses promising potential.

Diffusion methods involve gradually perturbing data with noise until they have
completely lost their initial structure, and then gradually denoising them to recover the
original data. Respectively, these two processes are called the forward process and the
backward process. The backward process is learned by a neural network, which, once trained,
is able to generate new synthetic data.
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Our work aims to study the suitability and applicability of diffusion methods to the
generation of time series. The goal is to create a generative time series model, based on the
diffusion principle, which can be conditioned on additional information, and to discuss
this performance using an adequate evaluation procedure. More specifically, this work
aims to answer the following three research questions (RQs):

RQ1. Are diffusion methods suitable for generating synthetic time series?
RQ2. How can we evaluate the quality of the generated time series?
RQ3. Can the generation of time series be conditioned without degrading the quality of

the generated time series?

In the following, we present our methodology and main results that are split into three
different experiments. Finally, the results obtained are presented and discussed.

2. Materials and Methods
2.1. Selected Models

Different approaches can be used for time series generation. The TimeGAN model,
based on a generative adversarial network, is well established in the state-of-the-art [6],
and therefore, we selected it as baseline for our experiments on unconditioned generation.

Other models also use diffusion for tasks such as forecasting, imputation, and genera-
tion, for instance, TimeDiff from Shen and Kwok, SSSD from Alcaraz and Strodthoff, or
Guided-DiffTime from Coletta et al., all of which have been compared in a recent review by
Lin et al. [7–10].

To our knowledge, the TSDiff model introduced by Biloš et al. is the only work
based on a diffusion model for time series generation where its source code has been
published [11]. We are also able to envision how to modify the proposed TSDiff architecture
to allow for the injection of conditioning. For these reasons, we selected TSDiff for our
experiments with the objective to benchmark it against TimeGAN for unconditional genera-
tion and to adapt it for conditional generation. We also designed pipelines for reproducible
experimentation using diverse evaluation metrics and datasets. Figures 1 and 2 present the
pipelines for the training and evaluation of the generators, respectively, for unconditioned
and conditioned generation.

2.2. Datasets

We used several datasets to evaluate the generation capabilities on different time
series characteristics.

Stocks: This first dataset contains Google share prices from 2004 to 2019. Due to its
nature, these data fluctuate widely and are therefore aperiodic. The data consist of six
correlated features, such as volume or opening and closing prices [12].
Energy: The UCI Appliances energy prediction dataset contains data recorded by
several sensors in a house, over a period of four and a half months. These data are
characterized by higher dimensionality, somewhat noisy periodicity, and correlated
characteristics such as temperature and humidity in different rooms [13].
MeteoSwiss: This last dataset contains real meteorological data recorded from 2020
to 2022, by 33 weather stations in Switzerland, that have been collected through
the IDAweb portal provided by MeteoSwiss [14]. These periodic data contain nine
correlated characteristics, such as temperature, atmospheric pressure, and humidity.
This dataset is particularly important in this study as it is accompanied by metadata
describing the location of weather stations for the conditional generation experiments
to be carried out.
Sine: Finally, we also generated synthetic multivariate sinusoidal time sequences of a
certain length to evaluate the performance of our model on periodic data, where each
feature is independent of the others.
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Figure 1. Data pipelines for unconditional generation, where squared blocks represent train/test/
generated data, models, or scores, and rounded blocks represent processes. The pipeline to train
and use the generator is illustrated on the top (white), while the pipelines for evaluation are on the
bottom (yellow for DS and red for PS).

2.3. Evaluation Procedures

The evaluation of the quality of a generated time series, especially when they are
multivariate, is not as straightforward for a human as its equivalent for a generated image.
To cope with this difficulty, different methods are typically used, including visual, statistical,
and model-based.

For the visual representation of the generated time series, PCA and t-SNE projec-
tions are usually used. They allow us to project high-dimensional generated samples
on 2D plots. Such projections provide a qualitative assessment, mostly useful during
model development.

Regarding statistical evaluation, the Mean Distribution Difference (MDD) and Auto-
correlation Difference (ACD) are typically used. The MDD assesses how closely the distri-
butions of the real and generated data are. The ACD measures how well the generation
model has captured the temporal dependencies of the data.

Model-based methods aim at computing quantitative metrics to benchmark the quality
of the generation. We opted for the following:

Discriminative Score (DS): The principle is to train a classifier to discriminate between
true and generated samples. A perfect generation model would produce signals that
are indistinguishable from the true one, leading to a discriminative score of around 0.5.
Predictive Score (PS): This method involves the training of a regression model using
the generated data. The model is then tested on a predictive task using real data as
input. A good regression score (R2, MSE, etc.) means that the generative model was
able to capture and reproduce the characteristics of the time series to allow for the
training of predictive models in a similar way as if using real data.
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Conditional Predictive Score (CPS): This method aims at training a model to predict
again the conditioning values, taking as input the generated data. A low prediction
error indicates that the generated data indeed include features associated to the
conditioning. As in the previous method, a “Train on Synthetic, Test on Real” (TSTR)
approach is used to train and test the CPS model.

For DS, PS, and CPS, Recurrent Neural Networks composed of two GRU layers
were used.
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Figure 2. Data pipelines for conditional generation and evaluation procedures. The conventions are
similar as in Figure 1.

2.4. Unconditional Generation

We compared the TimeGAN generative adversarial network model [6] and the TSDiff
diffusion model [11]. The generation task is here unconditioned, i.e., no further information
is injected in the generator. The training and evaluation of TimeGAN and TSDiff are
performed on the same datasets, but only with a length of 24 (i.e., one day with one sample
per hour), as TimeGAN was designed to handle this length.

The default TimeGAN configuration is used, as described in the original article and in
TimeGAN’s Supplementary Materials. Our evaluations are performed by computing the
DS, PS, MDD, and ACD, and by visualizing the distribution of the data by projecting them
into a two-dimensional space using mainly the t-SNE algorithm.

2.5. Conditional Generation

We modified the architecture of TSDiff to allow for the injection of conditional signals
by appending a conditioning vector to the time series in the forward pass of the model.

The ability of the TSDiff model to generate time series conditionally is then evaluated
using the MeteoSwiss dataset. We selected this dataset as conditioning variables could
easily be crafted for such tasks:

Statistical Conditioning: Simple statistical properties (mean, std, min, max, median)
of the original sequences are used as conditioning variables. Then, an evaluation
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of the performance of the model on this new created dataset is performed. This
showcases the model’s ability to generate sequences conditionally, as generated
sequences’ statistics can be directly compared with the ones they were conditioned on
(i.e., the original sequences’ statistics).
Generalized Prediction: The performance on the MeteoSwiss data is evaluated on a
random selection of days used for training and testing. The conditioning variables
are the longitude, latitude, altitude, and the day of the year. CPS and MAE metrics
between generated and ground-truth time series are used to evaluate the performance
of the model. This allows us to measure how well the model can "fill in the gaps"
when data for some days are not available.
Station Interpolation: The performance on the MeteoSwiss data is evaluated on
stations being specifically selected for training and testing. The conditioning variables
are the longitude, latitude, altitude, and the day of the year. The CPS and MAE
metrics are used to evaluate the performance of the model. This allows us to measure
how well the model can interpolate data for stations that are not available in the
training set.
Future Meteorological Scenarios: The model is trained on MeteoSwiss data of tem-
perature values from a specific station to predict typical days until the year 2050.
The conditioning variables used are the day of the year and the year only. This allows
us to measure whether the model is capable of modeling global warming with an
interesting insight for the future.

The metrics used to evaluate model performance on unconditioned generation are
also used to evaluate model performance on conditioned generation. In this way, it ensures
that conditioning does not adversely affect model performance.

3. Results
3.1. Unconditional Generation Performance

In this section, the performances of the proposed diffusion model on an unconditional
generation task are presented. Table 1 presents the quantitative results on the different
datasets. The discriminative and predictor scores (DS and PS) are obtained by training four
times the models and averaging the results. The standard deviation of the scores is also
reported, thus measuring the variability of the results across the different runs.

Table 1. Comparison of the results obtained with the diffusion model (TSDiff) and TimeGAN. The
best results are in bold.

Dataset Model DS PS

Stocks TSDiff 0.173 ± 0.002 0.002 ± 0.000
TimeGAN 0.348 ± 0.015 0.014 ± 0.001

Energy TSDiff 0.428 ± 0.004 0.021 ± 0.000
TimeGAN 0.498 ± 0.000 0.081 ± 0.001

Sine TSDiff 0.244 ± 0.020 0.105 ± 0.001
TimeGAN 0.301 ± 0.079 0.138 ± 0.002

MeteoSwiss TSDiff 0.267 ± 0.009 0.057 ± 0.004
TimeGAN 0.468 ± 0.010 0.094 ± 0.001

Overall, the results on real datasets are consistent with the expectations. In particular,
the model achieves good results on the Stocks dataset, which is the least complex of the
three. It has more difficulty on the Energy dataset, which is characterized by 28 features, par-
ticularly in terms of the DS. As the DS on the MeteoSwiss is relatively high as well, it seems
more difficult for the model to generate realistic sequences from more complex datasets.

In addition to these quantitative results, Figure 3 presents the t-SNE visualizations for
all datasets. These visualizations enable us to compare the distribution of real data with
the one generated by the model.
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(a) Stocks (b) Energy (c) Sine (d) MeteoSwiss

Figure 3. t-SNE visualizations of the real and generated data for the considered datasets, showing the
distribution of the data in a 2D space.

3.2. Conditional Generation
3.2.1. Statistical Conditioning

First, the model performances are evaluated when conditioned on basic statistical
properties, using the MeteoSwiss dataset to compare generated sequences against real ones.
The model successfully retained the conditioned statistical properties for the most part
but struggles with capturing extreme values, particularly minimum and maximum values,
indicating a potential limitation in dealing with outliers. Generated sequences closely
match real ones in terms of mean values, confirming the model’s efficacy in generating
statistically coherent sequences. This assessment reinforces the model’s capability to
generate meteorologically relevant sequences based on a variety of conditioning inputs,
despite challenges in capturing extremities.

3.2.2. Generalized Prediction

This section evaluates the diffusion model’s ability to generate meteorological se-
quences with omitted days in the training set, examining its performance through the
Conditional Predictive Score (CPS) per variable, as presented in Table 2, and Mean Abso-
lute Error (MAE) across different features, as presented in Table 3.

Table 2. CPS score for each conditioning variable, obtained by training and evaluating the model on
the MeteoSwiss dataset, along with the standard deviation. A lower value is better.

Variable CPS

longit 0.27 ± 0.24
latitd 0.61 ± 0.47
altitd 41.56 ± 37.32

dayofy_sin 0.30 ± 0.31
dayofy_cos 0.14 ± 0.13

Table 3. MAE for each feature, obtained by comparing the generated sequences to the real ones on
the MeteoSwiss dataset. The sequence length is 24.

Variable Gen. Pred. Station Interp.

ctempr 4.68 ± 3.71 4.85 ± 3.80
radiat 90.49 ± 142.86 88.00 ± 140.52
pressr 7.72 ± 6.40 8.66 ± 7.25
temprt 4.29 ± 3.33 4.56 ± 3.53
precip 0.22 ± 1.76 0.21 ± 1.30
humidt 17.03 ± 13.34 16.75 ± 12.97
sunshn 13.12 ± 19.78 13.10 ± 19.81
winspd 6.86 ± 6.68 6.54 ± 6.65

windir_sin 0.79 ± 0.59 0.77 ± 0.55
windir_cos 0.79 ± 0.58 0.83 ± 0.62
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The results indicate that while the model effectively generates sequences retaining the
conditioning information, it has difficulties regarding the coordinate variables, suggesting
that some features influence generation more than others. Errors in sunshine duration
suggest a higher challenge in capturing abrupt changes. Also, the model struggles with
predicting wind direction components, thus suggesting a limitation in capturing high
variability within meteorological sequences.

3.2.3. Station Interpolation

This section discusses the diffusion model’s performance on station interpolation,
using data from stations excluded during training. The task proved to be more chal-
lenging than generalized prediction as seen on Table 3, with generally increased errors
across features.

Interpolation accuracy varied among stations, with noticeable discrepancies in tem-
perature predictions, particularly during warmer months, indicating an overestimation of
temperatures by the model. The consistent results across different stations suggest a need
for additional conditioning variables to better capture underlying phenomena and improve
interpolation accuracy. The overall difficulty emphasizes the complexity of the task rather
than the model’s limitations.

3.2.4. Future Meteorological Scenarios

This last experiment gives an insight of the influence of global warming on typical
days in Switzerland until 2050. The Figure 4 shows that in terms of temperature, the model
predicts increasingly hotter days by 2050. Temperature data from the year 1990 to 2020 are
the real values, while those from the year 2030 to 2050 are generated by the model. We
can observe that the model has indeed, to some extent, captured the drift of temperature
over the years. Here, we need to note that the predicted increase of approximately +1.6 °C
on average between 2020 and 2040 is quite large and is therefore more related to an
interpolation effect on past data than from any underlying physical model. Although the
generation in this experiment should certainly take other phenomena into account, it
shows that the diffusion model can be used as a kind of forecaster by conditioning it on
temporal data.
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Figure 4. Averaged daily temperature in Bern (Switzerland) until the year 2050. Solid lines are
ground-truth values, while dashed lines are data generated by the diffusion model.

4. Discussion and Conclusions

The results obtained demonstrate the effectiveness of the modified TSDiff model in
generating both unconditioned and conditioned time series, with comprehensive validation
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through sanity checks, quantitative and qualitative measurements, and comparison with
an existing reference method.

Experiments specifically carried out on conditional generation reveal the model’s
ability to incorporate specific input conditions into the generated series, although with
varying degrees of success in different scenarios. This indicates the influence of task
complexity and the importance of relevant conditioning information.

Further analysis highlights the model’s ability to adhere to the statistical properties of
the data, with some limitations in capturing extreme values. In this regard, a few examples
are plotted in Figure 5. Overall, the results confirm the potential of diffusion models in
time series generation, although some improvements should be considered.

Figure 5. Averaged generated sequences on a selection of features, compared to the real sequences.
Standard deviation is represented by the shaded area.
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