
1

Pattern Recognition Letters
journal homepage: www.elsevier.com

Combining Graph Edit Distance and Triplet Networks for Offline Signature Verification

Paul Maergnera,∗∗, Vinaychandran Pondenkandatha, Michele Albertia, Marcus Liwickib, Kaspar Riesenc, Rolf Ingolda, Andreas
Fischera,d

aUniversity of Fribourg, Department of Informatics, DIVA Group, 1700 Fribourg, Switzerland
bLuleå University of Technology, EISLAB Machine Learning, 971 87 Luleå, Sweden
cUniversity of Applied Sciences and Arts Northwestern Switzerland, Institute for Information Systems, 4600 Olten, Switzerland
dUniversity of Applied Sciences and Arts Western Switzerland, Institute of Complex Systems, 1700 Fribourg, Switzerland

ABSTRACT

Offline signature verification is a challenging pattern recognition task where a writer model is inferred
using only a small number of genuine signatures. A combination of complementary writer models can
make it more difficult for an attacker to deceive the verification system. In this work, we propose to
combine a recent structural approach based on graph edit distance with a statistical approach based
on deep triplet networks. The combination of the structural and statistical models achieve significant
improvements in performance on four publicly available benchmark datasets, highlighting their com-
plementary perspectives.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Handwritten signatures remain a widely used and accepted
mean of biometric authentication even in the modern world.
Hence, there is an interest in verifying the genuineness of sig-
natures. To this day, automatic signature verification remains
an active field of research (Diaz et al., 2019; Hafemann et al.,
2017b) and the levels of accuracy achieved by state-of-the-art
systems is similar to that of other biometric verification sys-
tems (Impedovo and Pirlo, 2008). The pattern recognition com-
munity is distinguishing between two cases of signature verifi-
cation: the offline case, where only static images of the signa-
tures are available, and the online case, where dynamic infor-
mation like the velocity and pressure is additionally available.

The majority of current state-of-the-art approaches to of-
fline signature verification use statistical pattern recognition,
i.e. fixed-size feature vectors are used to represent signatures.
In the past, these vector representations have been generated us-
ing handcrafted feature extractors, which leverage either local
information, e.g. histogram of oriented gradients, local binary
patterns, or Gaussian grid features taken from signature con-
tours (Yilmaz et al., 2011), or global information, such as num-
ber of branches in the skeleton, number of holes, geometrical
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features like Fourier descriptors, position of barycenter, mo-
ments, projections, distributions, tortuosities, directions, cur-
vatures and chain codes (Impedovo and Pirlo, 2008; Plamon-
don and Lorette, 1989). In recent years, however, with the
rise of deep learning, the state of the art shifts toward learn-
ing features directly from fixed-size signature images using
neural networks (Diaz et al., 2019; Hafemann et al., 2017b).
These networks rely on convolutional neural network architec-
tures (CNN) of various kinds (Hafemann et al., 2017a; Rantzsch
et al., 2016; Zhang et al., 2016).

Structural pattern recognition using graphs for pattern rep-
resentation offers another way of approaching signature veri-
fication. Graphs provide a powerful representation formalism
that can be beneficial for signature verification. For example,
graphs could use nodes to represent local information and edges
to model the nodes’ relation in the global structure.

The problem of graph dissimilarity computation is often
solved via error-tolerant graph matching algorithm (Conte
et al., 2004; Foggia et al., 2014). One approach is to find a map-
ping that minimizes a given cost function. However, the prob-
lem of optimizing this cost is known to be NP-complete (Zeng
et al., 2009). This means that the run time may be intractable
even for rather small graphs, which may be one of the main rea-
sons why graphs have rarely been used for signature verification
in the past.

In recent years, however, several approximate, or suboptimal,
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Fig. 1: Proposed structural and statistical signature image representations

algorithms for graph matching have been proposed (Zeng et al.,
2009; Boeres et al., 2004; Justice and Hero, 2006; Riesen and
Bunke, 2009). These algorithms offer polynomial, rather than
exponential, run times. Yet, they do not guarantee to find the
global minimum of the matching cost, but only a local one.

Two alternative families of error-tolerant graph matching that
differ in their basis from more traditional approaches, are graph
embeddings and graph kernels. An important class of graph
embedding are Spectral methods (Xiao et al., 2009, 2010).
However, there are many other graph embedding methods, for
example, methods based on entropy computations (Han et al.,
2015). Graph kernels provide an implicit graph embedding. An
important group are Random walk kernels that measure the sim-
ilarity of two graphs by the number of random walks in both
graphs that have all or some labels in common (Bai et al., 2017).

Some early works using graphs for signature verification
are representations based on stroke primitives (Sabourin et al.,
1994), a modular graph matching approach (Bansal et al.,
2009), and basic concepts of graph theory (Fotak et al., 2011).
More recently, a general signature verification framework based
on the graph edit distance between labeled graphs has been in-
troduced by Maergner et al. (2017). In that work, the compu-
tational complexity of graph-based pattern analysis is reduced
by employing the bipartite approximation framework proposed
by Riesen and Bunke (2009). This approach has been com-
bined with a complementary structural approach called inkball
models in Maergner et al. (2018a).

In the present paper, we present an extension of the work
published in Maergner et al. (2018b). The original work in-
vestigated whether structural and statistical signature models
have complimentary strength and hence work well together in
a multiple classifier system (see Fig. 1). This has been done by
combining an approach based on graph edit distance with a con-
volutional neural network using the triplet loss function (Hoffer
and Ailon, 2015). We aim at further investigating this combina-
tion in this journal extension. The focus hereby is the practical
application of the combined structural and statistical approach
on a challenging real-world problem and a more comprehensive
evaluation. Furthermore, we investigate possible improvements
in neural network architecture and training.

Compared to the original publication, we utilized a more
powerful network architecture, named DenseNet-121 (Huang
et al., 2017), to compare against the previously used architec-
ture, ResNet-18 (He et al., 2016). The reason behind this choice
is the particular nature of the DenseNet architecture, which al-

lows features from lower layers to be propagated directly to the
higher layers of the network. This is known to work well in
natural images and in this work, we aim to find out whether this
generalizes to the signature verification domain. Furthermore,
we investigate an additional pretraining step for the neural net-
works in which we train for classification before training for
similarity. This pretraining step has been shown to increase
the network performances especially when for each class, there
is little amount of labeled data available (Pondenkandath et al.,
2018). Finally, we are using two more test sets and more evalu-
ation metrics to compare our framework against more published
results in our experimental evaluation. That is, our evaluation
is now performed on four publicly available datasets.

This paper is structured as follows. The graph-based ap-
proach is reviewed in Section 2 and the neural-network-based
approach is described in Section 3. Eventually, the signature
verification system using both approaches is detailed in Sec-
tion 4. Finally, we present and discuss our experimental results
in Section 5 and deduce our conclusions in Section 6.

2. Structural Graph-Based Approach

Our structural approach for signature verification has been
proposed in Maergner et al. (2017) and is based on graph edit
distance. That is, the dissimilarity of two signatures is mea-
sured by comparing two keypoint graphs that are created from
the corresponding signature images. In order to compute the
graph edit distance, a suboptimal algorithm (Riesen and Bunke,
2009) is actually employed. The individual steps, viz. the graph
extraction and graph comparison, are briefly described in the
following two subsections. A more detailed description can be
found in Maergner et al. (2017).

2.1. Keypoint Graphs

Formally, a labeled graph is defined as a four-tuple
g = (V, E, µ, ν), where V is the finite set of nodes, E ⊆ V × V is
the set of edges, µ : V → LV is the node labeling function, and
ν : E → LE is the edge labeling function.

Keypoint graphs are labeled graphs created from points ex-
tracted from an image of handwriting. Specifically, the nodes
represent points on the skeleton of the handwriting and they are
labeled with their coordinates. These points include end- and
junction-points of the skeleton as well as points sampled be-
tween these keypoints in equidistant intervals of length D. The
nodes that are actually connected on the skeleton are linked
with unlabeled and undirected edges. The node labels are fi-
nally normalized by subtracting the average of all node labels
of the respective graph so that the new average node label is
(0, 0). Fig. 1 contains an example of a keypoint graph.

2.2. Graph Edit Distance

Graph edit distance (GED) is one of the most flexible graph
matching approaches since it can compare any kind of labeled
graph given an appropriate cost function. GED determines the
lowest-cost edit path that transforms graph g1 = (V1, E1, µ1, ν1)
into graph g2 = (V2, E2, µ2, ν2). Hereby, an edit path is a se-
quence of edit operations. Generally, these edit operations are
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substitutions, deletions, and insertions of nodes and edges. A
cost function assigns a cost to each of these edit operations. The
major disadvantage is that GED is part of the group of NP-hard
problems and its computational complexity is exponential in the
number of nodes in the two graphs, O(|V1|

|V2 |).
To lower the computational complexity, we leverage the

bipartite approximation framework proposed by Riesen and
Bunke (2009). This approximation reformulates the computa-
tion of GED to an instance of a linear sum assignment problem
with cubic complexity, O

(
(V1 + V2)3). We are using the lower

bound of the GED as introduced in Riesen et al. (2014).
For our particular signature verification task, the following

cost function is used. The node substitution cost is set to the Eu-
clidean distance between the respective node labels. The node
deletion and insertion cost is set to a constant value Cnode. The
edge substitution cost is zero and the edge deletion and inser-
tion cost is fixed to a constant value Cedge.

Lastly, the graph-based dissimilarity score dGED is obtained
by dividing the actual GED by the maximum GED, which is
the cost of deleting all nodes and edge in the first graph and in-
serting all nodes and edges of the second graph. This ensures
that the dissimilarity score dGED lies in the interval [0, 1] regard-
less the size of the graphs. Formally, we define the graph-based
dissimilarity of two signature images as:

dGED(r, t) =
GED(gr, gt)

GEDmax(gr, gt)
, (1)

where r and t are two signature images, gr and gt are the cor-
responding keypoint graphs, GED(gr, gt) is the lower bound of
the GED between gr and gt, and GEDmax(gr, gt) is the maxi-
mum GED between gr and gt.

3. Statistical Neural Network-Based Approach

In the last decade, convolutional neural networks (CNN)
have become state of the art in a large variety of applications,
especially in computer-vision tasks. In fact, already back in
2012 CNNs have been proven to be suited to work with im-
ages (Krizhevsky et al., 2012). Over the years there have
been many developments and improvements and nowadays,
CNNs represent the backbone of most vision-based applica-
tions. The idea of our neural network-based approach is to
train a deep CNN to embed images of signatures into a high-
dimensional vector space where the distance of two signatures
reflect their similarity, i.e. two maps of signatures of the same
user should be close together and signature maps from different
users should be in different areas of the vector space. This is
achieved by employing a triplet-based learning method. In re-
cent years, several image matching problems were tackled us-
ing this approach with promising success (Balntas et al., 2016;
Hoffer and Ailon, 2015; Zagoruyko and Komodakis, 2015). As
we do have images of signatures, we can formulate the signa-
ture verification task as an image matching problem and pro-
ceed to train our network with the triplet-based method. A vi-
sualization of a vector space created by triplet training can be
seen in Fig. 1, where points of the same class are clustered to-
gether.

3.1. Network Architecture
We are considering two state-of-the-art CNN architectures:

• ResNet-18 proposed by He et al. (2016), which is the
18 layer deep variant of a CNN that uses skip connections
between layers to tackle the vanishing gradient problem.

• DenseNet-121 introduced by Huang et al. (2017), which
is an 121 layer deep variant of a CNN that contains four
so-called dense blocks. In these dense blocks, each layer
is connected with each following layer through skip con-
nections.

These networks have been chosen for their wide-spread suc-
cessful applications in different computer-vision problems i.e,
they both set new milestones in the ImageNet challenge (Rus-
sakovsky et al., 2015) and influenced the research and develop-
ment of the most recent architectures.

3.2. Transfer Learning
It is common knowledge in the computer vision community

that using transfer learning reduces training time and improves
performance, especially when limited training data is avail-
able (He et al., 2018; Tan et al., 2018). In our scenario, we do
transfer learning from ImageNet (Jia Deng et al., 2009) which
is a well-known large-scale dataset of natural images. In prac-
tice, we use the weights provided by PyTorch1 and use them as
initial values for the subsequent classification pretraining (see
Section 3.3).

3.3. Classification Pretraining
In this work we are considering the classification pretraining

introduced by Pondenkandath et al. (2018). In this classifica-
tion pretraining step, the neural network is trained for classifi-
cation with cross-entropy loss on the same training set before
training for similarity. Thus, we first train the network to dis-
tinguish (and classify) specific users and only after train it for
user-agnostic similarity with triplet learning. The premise is
that this classification pretraining procedure is beneficial espe-
cially in cases where there is limited classification ground truth
available. In Table 5 we present the numerical measurements
of its effects and which are then discussed in Section 5.4.2.

3.4. Triplet-Based Learning
We follow a triplet-based learning method (Hoffer and Ailon,

2015). A triplet is a tuple of three signatures {a, p, n} where a
is the anchor (a signature), p is the positive sample (another
signature from the same user) and n is the negative sample (a
signature from a different user). Given a large number of these
triplets, the neural network is trained to minimize the following
loss function:

L(δ+, δ−) = max(δ+ − δ− + µ, 0), (2)

where δ+ and δ− are the Euclidean distances between anchor-
positive and anchor-negative pairs in the feature space and µ is
the margin used.

1https://github.com/pytorch/vision/tree/master/

torchvision/models
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3.5. Signature Image Matching
The neural network is represented as a function f that em-

beds the image of a signature into a latent space as previously
described. We define the dissimilarity of two signature images
r and t as the Euclidean distance of their embedding vectors.
Formally,

dneural(r, t) = ‖ f (r) − f (t)‖2. (3)

4. Combined Signature Verification System

A signature verification system calculates a dissimilary score
between reference signatures of the claimed user and an unseen
signature. If this dissimilarity score (see Eq. 6 or 7) is below
a certain threshold the signature is accepted as genuine, other-
wise, the signature is rejected as a forgery.

4.1. User-based Normalization
Each user has an individual intra-user variability in their sig-

natures. We counter this by normalizing each dissimilarity
score using the average dissimilarity score between the refer-
ence signatures of the current user as suggested in Maergner
et al. (2017). Formally,

d̂(r, t) =
d(r, t)
δ(R)

, (4)

where t is a questioned signature image, r ∈ R is a reference
signature image, R is the set of all reference signature images
of the current user, and

δ(R) =
1
|R|

∑
r∈R

min
s∈R\r

d(r, s). (5)

4.2. Signature Verification Score
The final signature verification score is the minimum dissim-

ilarity over all reference signatures R of the claimed user to the
questioned signature t. Formally,

d(R, t) = min
r∈R

d̂(r, t) (6)

4.3. Multiple Classifier System
In order to combine the graph-based dissimilarity and the

neural network based dissimilarity, we define a multiple clas-
sifier system (MCS) as the sum of the two dissimilarities. Be-
fore the combination is carried out, each dissimilarity score is
normalized using a Z-score computed on all reference signature
images in the dataset. Formally, we define

dMCS(R, t) = min
r∈R

(
d̂∗GED(r, t) + d̂∗neural(r, t)

)
, (7)

where d̂∗ refers to the Z-score normalized dissimilarity scores.

5. Experimental Evaluation

In this section, the experimental evaluation of our signa-
ture verification system is introduced. We describe the used
datasets, the employed evaluation metrics, the training process,
and finally, the results on four publicly available datasets are
compared against the state of the art.

5.1. Datasets

We evaluate the performance of our two methods individu-
ally and combined on four publicly available datasets.

GPDSsynthetic-Offline is a large synthetic dataset (Ferrer
et al., 2015) that replaces the popular GPDS-960 dataset and
earlier variants, which are no longer available (see GPDS web-
site (Ferrer, 2016)). The dataset contains 4,000 synthetic users
with 24 genuine signatures and 30 simulated forgeries each.
Different modeled pens have been used to generate the signa-
tures. The simulated resolution of the images is 600 dpi. We
employ five subsets of this dataset:

• GPDS-last10: last 10 user (3991 to 4000).

• GPDS-last100: last 100 user (3901 to 4000).

• GPDS-last1000: last 1000 user (3001 to 4000).

• GPDS-last3925: last 3925 user (76 to 4000).

• GPDS-75: first 75 user (1 to 75).

GPDS-last10, GPDS-last100, GPDS-last1000, and GPDS-
last3925 are used for training and tuning, while GPDS-75 is
exclusively used for testing and comparing against the state of
the art.

MCYT-75 is part of the MCYT baseline corpus (Ortega-
Garcia et al., 2003; Fierrez-Aguilar et al., 2004). It contains
75 users with 15 genuine signatures and 15 forgeries each. The
signatures have been scanned at 600 dpi. This dataset is used
exclusively for testing and comparing against state of the art.

The UTSig dataset is a relatively new Persian signature
dataset (Soleimani et al., 2016c). It contains 115 users
and 27 genuine signatures, 3 opposite-hand signatures2, and
42 forgeries for each user. The users signed in 6 different
bounding boxes to simulate different conditions. The signatures
have been scanned at 600 dpi. This dataset is used exclusively
for testing and comparing against state of the art.

The CEDAR dataset contains 55 users (Kalera et al., 2004).
For each user, it contains 24 genuine signatures and 24 forg-
eries. The signatures have been scanned at 300 dpi. This dataset
is used exclusively for testing and comparing against state of the
art.

5.2. Types of Forgeries

For each user, a set of genuine signatures is used as ref-
erences. Our results are labeled with Rx where x stands for
the number of references actually used for verification. We al-
ways use the first x genuine signatures as references for repro-
ducibility. Our classifiers use these references to distinguish
between genuine signatures and forgeries. We are considering
two types of forgeries, which are common in the pattern recog-
nition community, skilled forgeries (SF) and so-called random
forgeries3(RF). SF are provided together with each benchmark

2The opposite-hand signatures should be treated as forgeries according to
the authors of the dataset.

3This term is mainly used in the pattern recognition community and it might
be confusing for readers from other fields. For more details, see Malik and
Liwicki (2012).
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dataset (see Section 5.1). While the details vary, the common
theme is that SF are created with some information about the
user’s signature. On the contrary, RF are genuine signatures
of other users that are used to simulate a brute force attack. We
are using one genuine signature from each other user as random
forgeries.

5.3. Evaluation Metrics

The main performance measure for our verification systems
is the equal error rate (EER), which is the error rate at the de-
cision threshold when the false rejection rate (FRR) is equal to
the false acceptance rate (FAR). FRR is the percentage of gen-
uine signatures rejected and FAR is the percentage of forgeries
accepted. If calculated on their own, FRR and FAR require a
threshold (see Section 5.5). We distinguish EER and FAR based
on the type of forgery, viz. EERSF and FARSF when dealing
with skilled forgeries, and EERRF and FARRF when consider-
ing random forgeries. We also calculate the average error rate
(AER): AERSF = (FRR + FARSF)/2. Additionally, we consider
two types of EER. The common way is to determine the EER
by using the same global threshold for all users. We label this
as the global EER, formally EERglobal

RF and EERglobal
SF . Another

way is to calculate the EER individually per user and average
the result over all user. This user-specific EER is, however, ig-
noring the problem of user adaptation. We refer to this metric
as EERuser

RF and EERuser
SF .

5.4. Setup

In a real-world scenario, it is unlikely to have access to a
large database of real signatures for training. A possible solu-
tion is the use of a synthetic signature database. We want to
focus on a use-case with realistic difficulty. Therefore, we are
using the synthetic GPDS dataset for training (see Section 5.1).
Specifically, we train using the GPDS-last10, GPDS-last100,
GPDS-last1000, and GPDS-last3925 datasets. These subsets
are disjoint with the GPDS-75 dataset that is used for testing.
We want to emphasize that with the exception of GPDS-75, the
evaluation is carried out on different datasets containing real
data. This is certainly a challenging approach, but it allows a
better look at how the system would perform if no dataset spe-
cific training data is available.

5.4.1. Graph Parameter Validation
To determine the best parameters for our graph-based

method, we performed a grid search with the following pa-
rameters: D ∈ {25, 50, 100}, Cnode ∈ {12.5, 25, 50, 100}, and
Cedge ∈ {0, 12.5, 25, 50, 100}. The best parameters have been
selected by calculating EERglobal

SF on the GPDS-last100 dataset.
The best results have been achieved using the following param-
eters D = 25, Cnode = 25, and Cedge = 25. We use these pa-
rameters in the following experiments as our proposed GED
system.

5.4.2. Neural Network Training
We have validated two different network architectures

(ResNet-18 and DenseNet-121, see Section 3.1) in conjunc-
tion with two different pretraining approaches (see Section 3.3)

and four different training sets (GPDS-last10, GPDS-last100,
GPDS-last1000, GPDS-last3925, see Section 5.1) resulting in
2 · 2 · 4 = 16 neural networks. Only the genuine signatures
from these synthetic datasets are considered for training. For
each user, 16 signatures are used for training and the remaining
8 signatures are used for validation. The networks are trained to
distinguish between the different users of the dataset. We opti-
mize the network using the Stochastic Gradient Descent (SGD)
optimizer with a learning rate of 0.01 and a momentum of 0.9.
The networks have been trained using the open-source toolkit
DeepDIVA (Alberti et al., 2018).

Table 5 shows the validation results of the 16 models using
the EERglobal

RF metric on the GPDS-last100 dataset. The classifi-
cation pretraining consistently leads to better results. The best
results are achieved using the DenseNet-121 architecture with
classification pretraining trained on the GPDS-last1000 dataset.
This network is used in the following experiments as our pro-
posed CNN system. The proposed MCS system is the combina-
tion (see Section 4.3) of the proposed GED and proposed CNN
systems.

5.5. Threshold Selection

In order to calculate the FRR, FARSF, FARRF, and AER, we
need to select a decision threshold. Three thresholds are de-
termined, one for each of our three proposed systems, namely
proposed GED, proposed CNN, proposed MCS. For each of the
systems, we use the threshold that leads to the EERglobal

SF on the
GPDS-last100 dataset. We use the EERglobal

SF since the threshold
for skilled forgeries tends to be closer to the genuine samples
than the random forgery threshold. Using a specific proposed
system, the same threshold is used for all users, test sets, and ex-
periments (skilled and random forgeries). This is a more chal-
lenging approach than selecting a user-specific threshold based
on the references in each dataset, especially since none of the
users during testing have been seen during training and tuning.
Please, note that the before mentioned threshold is only used
for FRR, FAR, and AER. The EER is not calculated based on a
fixed threshold (see Section 5.3).

5.6. Test Results

Tables 1 to 4 show the results of the three proposed sys-
tems on the four test sets (GPDS-75, MCYT-75, UTSig, and
CEDAR). Overall, the proposed MCS achieves better results
than the individual proposed systems. This indicates that the
GED-based system and the CNN-based system have comple-
mentary properties that benefit from a combined perspective.
Individually, the proposed CNN system achieves significantly
better results in the random forgeries evaluation. The pro-
posed GED system obtains better results on skilled forgeries on
GPDS-75 and UTSig, similar results on MCYT-75, and worse
results on CEDAR when compared with the individual CNN-
based system.

The results of our proposed systems are compared with sev-
eral published state-of-the-art results. Unfortunately, there are
several different evaluation protocols that have been used in the
past and thus a meaningful comparison is often not trivial. We
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Table 1: GPDS-75 dataset: Comparison with other published methods. The best result is highlighted in bold font and the top three results are marked with numbers.

System #Refs FRR FARRF EERuser
RF EERglobal

RF FARSF AERSF EERuser
SF EERglobal

SF

GPDS website (Ferrer, 2016) 10 - - - 0.76 - - - 16.01
Soleimani et al. (2016a) 10 6.51* 0.11*(3) - 1.08 18.23* 12.37* - 12.83
Maergner et al. (2018a) 10 - - - 2.05 - - - 6.84 (1)
Narwade et al. (2018) 12 3.51*(1) - - - 13.91*(3) 8.71*(2) - -
Maergner et al. (2018b) 10 - - - 0.56 (3) - - - 7.24 (2)

Proposed GED 10 8.86 1.37 1.35 (3) 3.80 10.31 (2) 9.58 (3) 6.89 (2) 9.47
Proposed CNN 10 6.19 (3) 0.04 (2) 0.11 (2) 0.38 (1) 15.33 10.76 8.13 (3) 10.27
Proposed MCS 10 5.05 (2) 0.00 (1) 0.00 (1) 0.47 (2) 9.11 (1) 7.08 (1) 4.76 (1) 7.29 (3)
*: The starred numbers have been calculated for 2500 users (Soleimani et al., 2016a) and 90 users (Narwade et al., 2018).

However, results for 75 users should be similar since this dataset is quite stable for different user counts (Ferrer, 2016).

Table 2: MCYT-75 dataset: Comparison with other published methods. The best result is highlighted in bold font and the top three results are marked with numbers.

System #Refs FRR FARRF EERuser
RF EERglobal

RF FARSF AERSF EERuser
SF EERglobal

SF

Fierrez-Aguilar et al. (2004) 10 - - 1.14 - - - 9.28 -
Alonso-Fernandez et al. (2007) 10 - - 7.26 - - - 22.13 -
Gilperez et al. (2008) 10 - - 1.18 - - - 6.44 (3) -
Vargas et al. (2011) 10 12.61 1.53 - 2.20 7.53 (1) 10.07 (2) - 8.80 (3)
Ooi et al. (2016) 10 - - - - - - - 9.87
Soleimani et al. (2016a) 10 6.13 (2) 0.00 (1) - 0.37 (2) 12.71 (2) 9.42 (1) - 9.86
Hafemann et al. (2018) 10 - - 0.03 (2) 0.19 (1) - - - 3.64 (1)
Maergner et al. (2018a) 10 - - 0.52 1.24 - - 5.78 (2) 8.71 (2)
Narwade et al. (2018) 10 - - - - - - - 9.26
Maergner et al. (2018b) 10 - - 0.25 0.79 (3) - - 10.13 11.11

Proposed GED 10 6.13 (2) 1.17 0.70 2.67 20.80 13.47 7.02 13.24
Proposed CNN 10 8.00 (3) 0.14 (3) 0.09 (3) 1.03 16.80 (3) 12.40 6.84 12.71
Proposed MCS 10 4.00 (1) 0.13 (2) 0.00 (1) 0.79 (3) 17.24 10.62 (3) 3.91 (1) 9.16

Table 3: UTSig dataset: Comparison with other published methods. The best result is highlighted in bold font and the top three results are marked with numbers.

System #Refs FRR FARRF EERuser
RF EERglobal

RF FARSF AERSF EERuser
SF EERglobal

SF

Soleimani et al. (2016c) 12 39.27 0.08 (3) - - 21.29 (3) 30.28 - 29.71
Soleimani et al. (2016a) 12 18.96 0.00 (1) - - 16.15 (2) 17.56 (3) - 17.45 (3)
Soleimani et al. (2016b) 12 16.34 0.01 (2) - - 15.69 (1) 16.02 (1) - 16.00 (1)
Narwade et al. (2018) 9 7.41 (1) - - - 24.95 16.18 (2) - -

Proposed GED 12 14.67 1.25 2.04 (2) 4.90 (3) 21.60 18.14 14.78 (2) 18.96
Proposed CNN 12 14.26 (3) 1.37 2.70 (3) 4.52 (2) 32.71 23.49 20.77 (3) 23.57
Proposed MCS 12 7.88 (2) 1.12 0.82 (1) 3.06 (1) 29.49 18.69 14.09 (1) 17.35 (2)

Table 4: CEDAR dataset: Comparison with other published methods. The best result is highlighted in bold font and the top three results are marked with numbers.

System #Refs FRR FARRF EERuser
RF EERglobal

RF FARSF AERSF EERuser
SF EERglobal

SF

Chen and Srihari (2006) 16 7.70 (1) - - - 8.20 (2) 7.95 (1) - -
Bharathi and Shekar (2013) 12 9.36 (2) - - - 7.84 (1) 8.60 (2) - -
Hafemann et al. (2018) 10 - - 0.37 (2) 1.14 (1) - - - 3.60 (1)

Proposed GED 10 19.09 0.24 (2) 1.52 5.05 15.76 17.42 11.52 (3) 17.50
Proposed CNN 10 16.10 0.40 (3) 1.31 (3) 2.96 (3) 14.92 15.51 8.56 (2) 15.30 (3)
Proposed MCS 10 12.21 (3) 0.13 (1) 0.30 (1) 1.82 (2) 12.35 (3) 12.28 (3) 5.91 (1) 12.27 (2)
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Table 5: Comparison of the different CNNs using EERglobal
RF on GPDS-last100.

The best result printed in bold font.

Architecture Classification Training data: GPDS-
Pretraining last10 last100 last1000 last3925

ResNet-18 No 7.64 0.28 0.21 0.19
ResNet-18 Yes 6.71 0.12 0.14 0.14
DenseNet-121 No 6.64 0.21 0.21 0.21
DenseNet-121 Yes 6.07 0.14 0.10 0.14

follow an evaluation protocol that has been used by other re-
cent publications and compare against publications that follow
the same (or almost identical) protocol.

On GPDS-75 (Table 1), the proposed MCS system achieves
the best result with respect to five of the eight evaluation metrics
and all results are within the top-3. This test set is the most
similar to the training dataset. These results highlight that the
proposed approach can achieve excellent results using specific
training data.

On MCYT-75 (Table 2), the proposed MCS system obtains
top-3 results with respect to six of the eight evaluation met-
rics (according to three metrics it achieves the best result). The
difference between our results and the best-reported results in
some of the metrics is quite large, which might be due to the
lack of dataset-specific training. Regarding that our method is
trained on synthetic data only, it performs overall very well on
this specific signature dataset.

On UTSig (Table 3), the proposed MCS system gets top-2
results with respect to five of the eight evaluation metrics. Re-
garding the threshold based metrics (FRR, FAR, AER), our sys-
tems perform not that good. This indicates that the threshold
that has been determined using synthetic Western signatures
might not be suited for this dataset containing Persian signa-
tures. However, the EER results are good, suggesting that the
approach itself is suited for this dataset.

On CEDAR (Table 4), the proposed MCS system achieves
top-3 results with respect to all eight evaluation metrics. How-
ever, significantly different evaluation protocols have been used
on this dataset in the past. This limits the number of published
results that can be used for comparison. Overall, the results of
our proposed systems seem to be worse compared to the state of
the art. A possible reason might be the lower resolution of the
signature images (see Section 5.1). However, the user-specific
metrics (EERuser

RF and EERuser
SF ) suggest that the proposed method

has potential on this dataset as well.
In summary, the results show nicely that structural and sta-

tistical models perform well together. Trained on a synthetic
dataset, the approaches achieve remarkable results on four dif-
ferent datasets without any further adaptations. When looking
at the differences between the global EER versus user-specific
EER, it becomes clear that the optimal decision threshold dif-
fers significantly between users. While a certain difference is
expected, the difference in our results is quite significant on
most datasets. This indicates that our user-based normaliza-
tion is not sufficient. Improving the alignment between dif-
ferent users with a better user-adaptation could improve the
proposed approach. Other approaches train support vector ma-

chines (SVM) for each user based on the user’s reference sig-
natures, e.g. Hafemann et al. (2018). Following a similar ap-
proach in the future could lead to further improvements in our
proposed methods.

6. Conclusions and Outlook

The performance of a signature verification system on four
benchmark datasets is significantly improved when combin-
ing structural and statistical models. Individually, the struc-
tural model based on graph edit distance performs overall better
on skilled forgeries, while the statistical model based on deep
triplet networks performs significantly better on random forg-
eries. These complementary strengths have been combined in
our proposed multiple classifier system. Overall, the system
generalized well to new data and users that have not been used
for any model training or parameter tuning.

Our experiments also show that the proposed system is likely
to benefit from an improved user-adaptation. Furthermore, the
structural approach could be improved by investigating addi-
tional graph-representations. The statistical method might be
able to learn a more accurate and general vector space embed-
ding when employing synthetic data augmentation. Finally, the
robustness of biometric authentication is likely to further im-
prove when using a large multiple classifier system that com-
bines even more structural and statistical classifiers.
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