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e PURPOSE: To test the hypothesis that contact lens
sensor (CLS)-based 24-hour profiles of ocular volume
changes contain information complementary to intraoc-
ular pressure (IOP) to discriminate between primary
open-angle glaucoma (POAG) and healthy (H) eyes.

e DESIGN: Development and evaluation of a diagnostic
test with machine learning.

e METHODS: SUBJECTS: From 435 subjects (193 healthy
and 242 POAG), 136 POAG and 136 age-matched
healthy subjects were selected. Subjects with contraindi-
cations for CLS wear were excluded. PROCEDURE: This is
a pooled analysis of data from 24 prospective clinical
studies and a registry. All subjects underwent 24-hour
CLS recording on 1 eye. Statistical and physiological
CLS parameters were derived from the signal recorded.
CLS parameters frequently associated with the presence
of POAG were identified using a random forest modeling
approach. MAaIN OUTCOME MEASURES: Area under the
receiver operating characteristic curve (ROC AUC) for
feature sets including CLS parameters and Start IOP, as
well as a feature set with CLS parameters and Start IOP
combined.

e RESULTS: The CLS parameters feature set discrimi-
nated POAG from H eyes with mean ROC AUCs of
0.611, confidence interval (CI) 0.493-0.722. Larger
values of a given CLS parameter were in general associ-
ated with a diagnosis of POAG. The Start IOP feature
set discriminated between POAG and H eyes with a
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mean ROC AUC of 0.681, CI 0.603-0.765. The com-
bined feature set was the best indicator of POAG with
an ROC AUC of 0.759, CI 0.654-0.855. This ROC
AUC was statistically higher than for CLS parameters
or Start IOP feature sets alone (both P < .0001).

e CONCLUSIONS: CLS recordings contain information
complementary to IOP that enable discrimination be-
tween H and POAG. The feature set combining CLS pa-
rameters and Start IOP provide a better indication of the
presence of POAG than each of the feature sets sepa-
rately. As such, the CLS may be a new biomarker for
POAG. (Am ] Ophthalmol 2018;194:46-53. ©
2018 Elsevier Inc. All rights reserved.)

LAUCOMA IS A GROUP OF OPTIC NEUROPATHIES

characterized by optic nerve changes and visual

loss that may progress to blindness if the condi-
tion is not diagnosed and treated effectively. Intraocular
pressure (IOP) is the most important modifiable risk factor
for the onset and progression of glaucoma,” but the role of
IOP in the disease is not fully understood. Many
individuals, despite having elevated IOP, never progress
to glaucoma.' Therefore, while IOP has some ability to
discriminate between glaucomatous and healthy eyes, this
ability is limited.”* Individual susceptibility to IOP may
explain why a significant number of patients with normal
IOP can develop glaucoma or experience worsening of
glaucomatous damage, while others with elevated IOP
show no sign of the disease or little progression. The
relationship between glaucomatous damage and IOP is
therefore of interest.

Lately, it has been suggested that biomechanical phe-
nomena drive the glaucomatous process leading to typical
glaucoma alterations of the optic nerve head (ONH) in sus-
ceptible eyes.” Elevated IOP exerts forces that are trans-
mitted to the scleral canal and ONH. These forces may
expand the scleral canal and deform or displace the lamina
cribrosa, depending on the individual eye tissue character-
istics and biomechanics. Furthermore, even at normal IOP
values, the ocular tissues seem to be subject to substantial
levels of IOP-related stress that may be related, at least in
part, to its variability. In other words, a given level of
[OP-related stress may be physiologic or pathophysiologic,
depending on the individual eye.
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FIGURE 1. Statistical and physiological parameters derived from the Contact Lens Sensor output recorded over 24 hours.

A device based on a contact lens sensor (CLS) that re-
cords 24-hour profiles of IOP-related ocular volume changes
has become available in the past few years.” The device de-
tects ocular phenomena having their origin inside the eye
through measurements on the outer surface of the ocular
shell. Therefore, the device signal can be expected to be
influenced by the eye’s biomechanical properties.” Certain
parameters extracted from the 24-hour CLS profiles have
been associated with the visual field (VF) progression rate
recorded in treated glaucoma patients.” The combination
of CLS parameters showed a stronger association with the
VF progression rate than the mean, peak, and fluctuation
of Goldmann IOP measurements in the same period. This
provides support for the hypothesis that CLS parameters
could provide information regarding IOP-driven stress and
strain. CLS measurements of changes in limbal strain in
the face-down position in patients with glaucoma showed
a sustained strain increase, especially in patients with past
VF worsening.” In this study with a total CLS recording
duration of approximately 3 hours, patients with glaucoma
showed an increase in their mean CLS values when moving
to and from face-down position, while age-matched controls
did not. Other studies showed differences between 24-hour
CLS profiles from healthy and glaucomatous individuals.” "
However, these studies were conducted in relatively small
cohorts and differed in how CLS profiles were analyzed.

We undertook the current pooled analysis to test the
hypothesis that CLS profiles contain information comple-
mentary to IOP for the discrimination of primary open-
angle glaucoma (POAG) from healthy (H) eyes.

METHODS

THE ANALYSIS WAS PERFORMED ON A DATABASE CONTAIN-
ing pooled data from 24 prospective clinical studies and a
registry, which were approved by the respective competent
body in each center (listed in Appendix 1; Supplemental
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Material available at AJO.com) and which followed the te-
nets of the Declaration of Helsinki. The Registry and all
but 7 studies (3 investigator driven studies and 4 studies
that were part of a cohort study) were registered at Clinical-

Trials.gov  (trial registration nos. NCT01263535,
NCTO01217853, NCTO01351779, NCTO01319617,
NCTO01347229, NCT01390779, NCTO01769521,
NCTO01507584, NCT01560975, NCTO01495312,
NCTO01561001, NCTO01766947, NCTO01767753,
NCT01828255, NCT01906502, NTC02030886,

NCTO01912599). Written informed consent was obtained
from all participants.

e SUBJECTS: Data from 435 subjects (193 healthy and 242
glaucoma) were initially available. To avoid age-related
bias, subjects were age-matched using the nearest neighbor
method with R — Matchlt.'” This led to 136 subjects in
each group. POAG subjects with a glaucomatous optic
disc on clinical examination and glaucomatous VF defects
were included. Glaucomatous optic disc features included
diffuse or localized neuroretinal rim loss, excavation, and
retinal nerve fiber layer defects. Glaucomatous VF features
included a pattern standard deviation outside of the 95%
normal confidence limits, and/or a Glaucoma Hemifield
Test result outside normal limits. For subjects with bilateral
glaucoma, only 1 eye was included, either randomly or at
the responsible clinician’s discretion. H subjects had a
normal optic disc and VF. All subjects had open angles
on gonioscopy. Subjects with contraindications for CLS
wear, including corneal abnormalities, severe dry eye syn-
drome, and ongoing ocular inflammation or infection,
were excluded. POAG patients were treated or not with
[OP-lowering medication, as judged appropriate by their
treating physician, at the time of CLS recording. Patients
who were treated with IOP-lowering drops were instructed
to instill these as usual during the recording.

e CONTACT LENS SENSOR RECORDING: All subjects un-
derwent a 24-hour recording session with the CLS on 1
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TABLE 1. Detailed List and Description of Contact Lens Sensor Parameters Used as Input for the Machine Learning Classification
Algorithm

CLS Parameters

Definition

Drop in smoothed OPA curve overnight

How the amplitude of the ocular pulse decreases during the main sleep period. The

amplitude over time is modeled with a second-order polynomial and the drop is
determined as the start value of the polynomial subtracted from the end value.

Drift Difference of CLS measurements at the end compared to the start of the recording session,
more precisely the difference between the median of the 3 first and 3 last measurements.

Level 7 hours after sleep onset

How high the CLS signal is during the hour that occurs from 7 hours to 8 hours after the main

sleep period started. It is calculated as the median of the measurements recorded
throughout this hour minus the CLS signal value at the start of the sleep period.

Mean burst amplitude on day 2

Mean amplitude within the 30-second intervals on the second day of the recording.

Calculated as the mean of the within-burst amplitudes on the second day of the CLS

recording session.
Amount of fluctuation of the CLS signal during the main sleep period. Calculated as

Variability from the mean during sleep

n
1 S iCLSo — CLS|
n-1:5

where n is the number of CLS measurements over the recording period; CLS; is the
observed CLS signal; and CLSy, is the mean of CLS signals over the recording period.

Amplitude of the CLS recording

Range of measurement values during the recording, calculated as the maximum

measurement minus the minimum measurement.

Overnight OPA variability

Standard deviation of the difference between modeled OPA with a second-order

polynomial and the raw OPA values.

Drop in OPA overnight

How the amplitude of the ocular pulse decreases during the main sleep period. Determined

as the start value subtracted from the end value

Mean burst OPF
session.
Level 3 hours before sleep onset

Mean over 24 hours of each within-burst ocular pulse frequency during the CLS recording

How high the CLS signal is during the hour that occurs from 4 hours to 3 hours before the

main sleep period started. It is calculated as the median of the measurements recorded
throughout this hour.

Level before sleep onset

How high the CLS signal is during the hour that occurs before the main sleep period. It is

calculated as the median of the measurements recorded throughout this hour minus the
CLS signal value at start of sleep.

CLS = contact lens sensor; OPA = ocular pulse amplitude; OPF = ocular pulse frequency.

Two types of CLS parameters are referred to:

® Measurement: the median of all individual data points in a 30-second recording interval; 288 of these are expected throughout a 24-hour

CLS recording session.

e Burst: the 300 individual data points within a 30-second recording interval.
Whenever parameters were derived for day 1, day 2, and the main sleep period of the recording, these were defined as:
e Day 1: from the start of the CLS recording until the time at which sleep onset was detected.
e Day 2: from the time at which the subject’s main sleep period ended until the end of the CLS recording.
Main sleep period: From the time of sleep onset until the time at which sleep ended. If there was more than 1 sleep period detected during the
24-hour CLS recording, the main sleep period was the one with the longest duration.

eye (SENSIMED Triggerfish; Sensimed AG, Lausanne,
Switzerland), following an initial [OP measurement using
applanation tonometry (Start IOP). Changes in ocular
dimensions are detected in the limbal area by strain gauges
embedded in the CLS and communicated wirelessly to a
periorbital antenna connected to a recorder unit with a
data cable. Measurements expressed in millivolt equiva-
lents (mV eq) are acquired during 30 seconds (burst)
repeated every 5 minutes. The technology is described in

more detail elsewhere."” "’
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e STATISTICAL ANALYSES: CLS  parameters  were
computed from recordings with a minimum duration of
22 of the 24 hours and at least 230 valid measurements of
the 288 expected values. Bursts were considered valid if
at least 30 of the 300 data points were available for the
30-second data acquisition period. We only included re-
cordings that were not affected by jumps (sudden and per-
manent changes in CLS signal of at least 120 mV eq
between 2 consecutive Triggerfish medians, for example
owing to eye rubbing provoking CLS movement) and for
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193 Healthy subjects

136 Healthy subjects

Cohort are age-matched using nearest neighbour age-matching.

On age-matched data, collinear CLS parameters (VIF > 5) are
recursively removed.

75% of each group is randomly selected to constitute the training
fold of this iteration (left), the remaining 25% goes into the test
fold of this iteration (right).

On the training fold only, hyperparameters* are optimized
through a 25 iterations RRSS CV within the train fold.
The test fold is not used at all during this step.

Once the features are chosen and the hyperparameters are tuned
for this iteration, the model is trained on the whole training fold.
The test fold is not used at all during this step.

The model is tested on the test fold. The result of this iteration is
the ROC AUC of the model on the test fold.

1000
iterations

ROC AUC
distribution

The final model score is the mean ROC AUC over the 1000
iterations and the 95% confidence interval.

FIGURE 2. Steps of the repeated random subsampling cross-validation process used to build the models and evaluate the statistical
validity of the average performance. *Define internal parameters of the model. Hyperparameter optimization is done within a 25-
iteration repeated random subsampling cross-validation. In the case of the random forest model, the optimized hyperparameter is
the number of decision trees. In the case of the simple decision tree, no hyperparameter is optimized and this step is skipped.
CLS = contact lens sensor; POAG = primary open-angle glaucoma; ROC AUC = area under the receiver operating characteristic
curve; RRSS CV = repeated random subsampling cross-validation; VIF = variance inflation factor.

which CLS parameters required for analyses could be
computed.

Contact Lens Sensor Parameters. For each subject, statisti-
cal and physiological CLS parameters were derived from the
recorded signals (Figure 1). Some of the parameters were
statistics-related, such as the mean, standard deviation
(SD), minimum, maximum, and amplitude of the CLS
signal medians across all bursts. Other parameters were
derived from data points within bursts. For these, we
extracted intra-burst amplitude and SD, as well as ocular
pulse amplitude (OPA) and frequency (OPF), for each
burst of the recording and calculated the same statistics as
described above.

Moreover, we extracted the same preceding parameters,
but only on the bursts of the first and second day of the
overnight recording session, as well as on those of the sub-
ject’s main sleep period. Sleep was asserted from the data by
a computerized detection of eye blinks on the CLS curves
and considering sleep as the period without eye blinks. In
addition, we defined parameters from the CLS signal level
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measured each hour up to 7 hours after the start and before
the end of the main sleep period, as well as each hour up to
7 hours before the main sleep period start. We also
computed the CLS signal difference between the end and
the start of the recording session, respectively, and the
slope of the CLS signal at sleep onset and at awakening.
The list and definitions of the main CLS parameters are

provided in Table 1.

Multicollinearity Reduction. CLS parameters are intrinsi-
cally correlated to one another, which could potentially
lead to undesired effects of multicollinearity in the ana-
lyses. To minimize these effects, we used the Variance Infla-
tion Factor (VIF), which qualifies the level of collinearity
between parameters. Highly collinear CLS parameters
(VIF > 5) were discarded. The cutoff of 5 was chosen to

avoid losing significant information.'®

Discrimination Between Primary Open-angle Glaucoma and
Healthy Eyes. Machine learning (ML) models were devel-
oped to classify POAG and H eyes (classes) based on Start
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TABLE 2. Classification of Primary Open-angle Glaucoma
and Healthy Eyes Using the 3 Feature Sets

N

Feature Set POAG H AUC SD Cliow  Cluign

1. CLS parameters 136 136 0.611 0.057 0.493 0.722

2. Start IOP 136 136 0.681 0.040 0.603 0.765
3. CLS parameters + 136 136 0.759 0.050 0.654 0.855
Start IOP

AUC = area under the receiver operating characteristic curve;
Cl = confidence interval; CLS = contact lens sensor; H = healthy;
IOP = intraocular pressure; N = number of subjects; POAG = pri-
mary open-angle glaucoma; SD = standard deviation.

IOP, CLS parameters, and both feature sets combined.
During the phase called training, a model was built using
a subset of the available subjects whose classification
outcome is known (training fold). During the second phase,
called test, another subset of the available subjects, also
with known classification outcomes (test fold), was used
to attest for the classification performance of the built
model. To do that, a performance score had to be chosen.
Area under the receiver operating characteristic curve
(ROC AUC) was used as performance score, as it is a com-
mon metric used by both ML and medical communities in
binary statistics associated with diagnostic tests. Several
ML classification algorithms are available for such analyses.
The random forest (RF) algorithm was chosen for its
simplicity of use and capacity to help interpreting the
results as well as determining the best discriminative
features. Provided in the Python ML framework Scikit-
learn, the RF algorithm operates by constructing decision
trees (DT) during the training phase and outputting the
class that is the most often returned by the individual
decision trees during the test phase.” A DT is a
classification algorithm that creates a discriminative
model by learning simple decision rules inferred from the
features. Since there is only 1 feature to analyze in the
models built using Start IOP only, a simple DT with 2
branches and a depth equal to 1 was used.

We thereby generated, validated, and compared 3
different feature sets to discriminate between POAG and
H eyes. A process was developed and applied to build the
models and evaluate the statistical validity of the average
model performance. This process was based on a repeated
random subsampling cross-validation (RRSS CV). Our
RRSS CV consists in randomly splitting the subjects into
1000 training and test folds, select the best discriminative
features for each training fold, and then averaging the
ROC AUC:s obtained on the corresponding 1000 test folds
to give a final estimation of the average performance of the
ML models for the discrimination between POAG and H
eyes. RRSS CV has the advantage that the number of
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subjects in each training and test fold does not depend on
the number of iterations. However, it has the drawback
that some subjects may never be part of the test fold,
whereas others can be included more than once. Neverthe-
less, each train and test fold will have a unique composition
of POAG and H subjects. The process is described in
Figure 2. ROC AUC values for different feature sets and
distributions of feature values in H and POAG eyes were
compared using 2-tailed ¢ tests, with P < .05 being consid-
ered as statistically significant.

RESULTS

THE DATA OF 272 AGE-MATCHED SUBJECTS (136 H AND 136
POAG) meeting the inclusion and exclusion criteria
were analyzed. Mean (SD) age was 58.5 (12.1) years for
POAG and 56.1 (12.6) years for H (P = .12; 2-tailed ¢
test). We evaluated 3 feature sets for discrimination
between POAG and H eyes: (1) CLS parameters; (2) Start
IOP; (3) CLS parameters and Start IOP combined.

The distributions of ROC AUCs obtained over 1000 it-
erations in the test fold for each of the feature sets are
presented in Table 2. The mean ROC AUC:s for the models
built using CLS parameters or Start I[OP alone are statisti-
cally different (P < .0001) and just above the informative
limit (0.611 and 0.681, respectively). However, the 95%
confidence interval for the mean ROC AUC using the
CLS parameters includes 0.5, equivalent to a random clas-
sifier and therefore indicating that CLS parameters alone
are borderline to discriminate between POAG and healthy
eyes. When the CLS parameters and Start IOP are com-
bined, a synergistic effect is apparent, with the resulting
mean ROC AUC being significantly higher than for each
of the Start IOP and the CLS feature sets individually
(both P < .0001).

The most important features selected by the RF algo-
rithm in each of the feature sets were ranked according to
their average weight over the 1000 iterations of RRSS
CV (Table 3). With only slight variations to their internal
ranks, the same CLS parameters ranked highest in both the
CLS parameters and the combined feature sets (ie, contrib-
uted most of the information contained in the CLS record-
ings). All but 1 feature showed a significant difference
between H and POAG eyes. In general, larger values
were associated with a diagnosis of POAG.

DISCUSSION

CLINICAL DECISION MAKING IN GLAUCOMA MANAGEMENT
involves taking account of a wide variety of variables,
including an individual’s age, family history, optic disc
and VF characteristics, IOP level, and other risk factors.
The contribution of different glaucoma risk factors has

OCTOBER 2018



TABLE 3. Summary of Most Important Features Discriminating Primary Open-angle Glaucoma From Healthy Eyes Ranked in Each of
the Feature Sets

Rank in Rank in Rank in
Features CLS Start IOP  CLS + IOP  Diagnosis Mean (SD) P Value Relationship With Diagnosis
Drop in smoothed OPA curve 1 NA 2 POAG —0.005 (0.032) .009 Larger value associated with POAG
overnight (mV eq) H —0.014 (0.022)
Drift (mV eq) 2 NA 3 POAG 139 (132) .005 Larger value associated with POAG
H 92 (146)
Level 7 hours after sleep 3 NA 4 POAG 111 (111) .002 Larger value associated with POAG
onset (mV eq) H 69 (104)
Mean burst amplitude 4 NA 5 POAG 2.941 (0.667) .002 Larger value associated with H
on day 2 (mV eq) H 3.189 (0.660)
Variability from the mean 5 NA 6 POAG 43 (19) .003 Larger value associated with POAG
during sleep (mV eq) H 37 (14)
Amplitude of the CLS 6 NA 7 POAG 440 (96) .010 Larger value associated with POAG
recording (mV eq) H 409 (102)
Overnight OPA variability 7 NA 9 POAG 0.016 (0.006) .032 Larger value associated with POAG
(mV eq) H 0.015 (0.006)
Drop in OPA curve overnight 8 NA 8 POAG —0.015 (0.043) .010 Larger value associated with POAG
(mV eq) H -0. 029 (0.040)
Mean burst OPF (Hz) 9 NA 12 POAG 63 (8) 146 Larger value associated with H
H 64 (9)
Level 3 hours after sleep 10 NA 1 POAG —61 (83) .011 Larger value associated with POAG
onset (mV eq) H —88 (91)
Level before sleep 11 NA 10 POAG —11 (48) .044 Larger value associated with POAG
onset (mV eq) H —22 (41)
Start IOP (mm Hg) NA 1 1 POAG 8 (5) <.0001 Larger value associated with POAG
H 4 (3)

CLS = contact lens sensor; H = healthy; IOP =

intraocular pressure; mV eq = millivolt equivalent; NA = not applicable; OPA = ocular pulse

amplitude; OPF = ocular pulse frequency; POAG = primary open-angle glaucoma; SD = standard deviation.

been extensively studied at a population level. However,
the ability to predict the risk of an apparently healthy
eye developing glaucoma or the risk of an eye with glau-
coma deteriorating over time remains relatively limited.
IOP remains the major modifiable risk factor for glaucoma
onset and progression, but the level of IOP at which
glaucoma onset or progression occurs varies widely
among individuals. To enhance glaucoma management,
therefore, it should be an important goal to identify
additional risk factors.

In the current study, 136 POAG patients and age-
matched controls were used to evaluate 3 feature sets for
discrimination between POAG and H eyes: CLS, Start
IOP, and CLS Parameters + Start IOP combined. When
the CLS parameters and Start IOP are combined, there
was an apparent synergistic effect, with the resulting mean
ROC AUC being significantly higher than for each of the
Start IOP and the CLS feature sets individually (both P <
.0001). Thus, the use of CLS parameters in addition to the
Start IOP significantly increased the average performance
of algorithms to discriminate POAG and H eyes.

It should be noted that POAG patients in the current
study were treated at the discretion of the physician. A ma-
jority of them were on IOP-lowering medications. This is
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likely to have caused the IOP distribution of POAG and
H subjects to be more similar than would be expected for un-
treated patients, and thus made the task of discriminating
the groups based on 10P, and IOP-related variables such
as CLS parameters, more difficult. This may explain the rela-
tively low AUC values obtained in the current analysis.
Among the relevant CLS parameters discriminating
POAG from H subjects, those with larger values were
generally associated with a diagnosis of POAG (Table 3).
In other words, CLS recordings in individuals with POAG
tended to show more variability than recordings in H sub-
jects, resulting in larger average amplitudes of the studied
parameters in POAG patients. Moreover, signal levels pre-
ceding and during sleep were higher in POAG patients.
These findings are similar to a previous report where 24-
hour CLS recordings were modeled for groups of healthy
and POAG subjects.” In this report, the amplitude of the
cosinor function that was fitted to CLS data was larger and
the nocturnal values were also higher in the POAG patients
than in the healthy ones. It is, however, not known whether
the CLS signal has a larger amplitude because of differences
in IOP between H and POAG or differences in scleral
biomechanical properties. Evidence suggests that the scleral
location that is most influential on ONH biomechanics is
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the peripapillary sclera, while the CLS readings are mostly
influenced by the limbal sclera.'® At present, it is not known
to what degree scleral properties at these 2 locations are
correlated. Results from this study seem to suggest that
many factors other than IOP are involved in glaucoma
development. This theory is reflected by CLS measure-
ments, which are composed of changes in IOP, intraocular
volume, and the biomechanical properties of the eye.

To investigate whether CLS profiles contained valuable
information related to glaucoma, and in line with our
hypothesis that CLS detects how ocular tissues respond
to IOP-related stresses, a data-driven methodology based
on a repeated random subsampling was preferred to usual
analysis methods involving univariate and/or multivariate
analyses. This choice was guided by our interest to achieve
data mining analyses, as opposed to elaborate single specific
classification models, with assurance that overfitted results
would be avoided. Nevertheless, the performance score
used with our methodology (ROC AUC) reflects the sensi-
tivity/specificity commonly found in prior publications.

We applied ML algorithms to extract the best CLS
parameters. Several ML classification algorithms exist.
Some, such as support vector machines or artificial neural net-
works, function rather as “black boxes” lacking the ability
to identify the best discriminative parameters explicitly.
For the current analysis, the RF algorithm was selected
because of its inherent simplicity and capacity to facilitate
interpretation of results, as well as to determine the best
discriminative features.

For each of the CLS parameters that was most frequently
selected by the RF algorithm, as well as for the Start IOP
(in our data), a single statistical test was used to compute
the P values to compare the distribution of each parameter
between H and POAG. These P values were not used to select
the best features, but just to confirm them at the end of the
analysis. Thus, correction of P values for multiple simulta-
neous comparisons was not relevant to the current study.

The RRSS CV process used to build our models and mea-
sure their performance has the advantage that the number
of samples in each training and test fold does not depend on
the number of iterations (unlike, for example, what occurs
in a standard K-fold CV). This design means that some sub-
jects may never be part of the test fold, whereas others can
be included more than once. It is unlikely this had any sig-
nificant effect on the validity of our results, as the number
of iterations (1000) was high.

In the current study, the 24-hour CLS profile
contained information contributing to the discrimination
between H and POAG. We speculate that tissue proper-
ties that differ between POAG and H eyes contribute to
this finding. It has been suggested that biomechanical
phenomena drive the glaucomatous process, leading to
typical glaucoma alterations of the ONH in susceptible
eyes.” Further, decreased scleral rigidity was associated
with more deformation of the lamina cribrosa, suggesting
more optic nerve damage when IOP is elevated.'®"”
However, there is no readily available method to
measure such tissue properties in living eyes, which
therefore is unknown for the subjects analyzed here.
Hence there is no means to further explore this
hypothesis. Nevertheless, the CLS’s unique ability to
provide information on the eye’s behavior, in addition
to IOP, could therefore be both clinically relevant and
valuable.

In summary, a pooled analysis of data from 24 prospec-
tive clinical studies and a registry was performed to test
the hypothesis that CLS-based 24-hour profiles of ocular
volume changes contain information complementary to
IOP to discriminate between POAG and H eyes. The
feature set combining CLS parameters and Start IOP pro-
vide a better indication of the presence of POAG than
each of the feature sets. Thus, CLS parameters may be addi-
tional and novel risk factors for predicting the onset and

progression of POAG.

FUNDING/SUPPORT: SENSIMED AG, LAUSANNE, SWITZERLAND, PROVIDED FINANCIAL SUPPORT FOR THIS RESEARCH AND
participated in the design of the research, data management, data analysis, interpretation of the data, and preparation, review and approval of the manuscript.
The University of Applied Sciences Western Switzerland (HES-SO) participated in the data analysis and data interpretation, as well as preparation, review,
and approval of the manuscript in the framework of this research project, partially funded by the Swiss Commission for Technology and Innovation (CTI)
under grant 17325.1 PFLS-LS. Financial Disclosures: Keith R. Martin: Allergan (consultant [C]), Santen (C), Bausch & Lomb (C), Novartis (C), Quethera
(C, financial interest, patent), Sensimed (C), VISUfarma (C). Kaweh Mansouri: Santen (C), Sensimed (C), Topcon (grant support [S]), Alcon (S), Implan-
data (C), Allergan (S), Optovue (S), New World Medical (C). Robert N. Weinreb: Aerie Pharmaceutical (C), Alcon (C), Allergan (C), Bausch & Lomb
(C), Eyenovia (C), Novartis (C), Sensimed (C), Unity (C), Heidelberg Engineering (S), Optovue (S), Topcon (S), Zeiss Meditec (S). The following authors
have no financial disclosures: Robert Wasilewicz, Christophe Gisler, Jean Hennebert, and Dominique Genoud. All authors attest that they meet the current

ICMJE criteria for authorship.

A list of Research Consortium members is available as Appendix 2 (Supplemental Material available at AJO.com).

REFERENCES

1. Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hyper-
tension Treatment Study: baseline factors that predict the
onset of primary open-angle glaucoma. Arch Ophthalmol

2002;120(6):714-720.

52 AMERICAN JOURNAL OF OPHTHALMOLOGY

2. Le A, Mukesh BN, McCarty CA, Taylor HR. Risk factors
associated with the incidence of open-angle glaucoma: the
visual impairment project. Invest Ophthalmol Vis Sci 2003;
44(9):3783-3789.

3. Wahl ], Barleon L, Morfeld P, Lichtmess A, Haas-
Brahler S, Pfeiffer N. The Evonik-Mainz Eye Care-Study

OCTOBER 2018


http://AJO.com
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref1
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref1
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref1
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref1
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref2
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref2
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref2
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref2
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref3
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref3

10.

11.

VoL. 194

(EMECS): development of an expert system for glaucoma
risk detection in a working population. PLoS One 2016;
11(8):e0158824.

. Iliev ME, Meyenberg A, Buerki E, Shafranov G, Shields MB.

Novel pressure-to-cornea index in glaucoma. Br ] Ophthalmol
2007;91(10):1364-1368.

. Crawford Downs ], Roberts MD, Sigal IA. Glaucomatous

cupping of the lamina cribrosa: a review of the evidence for
active progressive remodeling as a mechanism. Exp Eye Res

2011;93(2):133-140.

. De Moraes CG, Jasien JV, Simon-Zoula S, Liebmann JM,

Ritch R. Visual field change and 24-hour IOP-related profile
with a contact lens sensor in treated glaucoma patients.

Ophthalmology 2016;123(4):744-753.

. Friedenwald JS, Stiehler RD. The mechanism of formation of

the aqueous. Trans Am Ophthalmol Soc 1937;35:184-200.

. Flatau A, Solano F, Idrees S, et al. Measured changes in

limbal strain during simulated sleep in face down position
using an instrumented contact lens in healthy adults and
adults with glaucoma. JAMA Ophthalmol 2016;134(4):
375-382.

. Agnifili L, Mastropasqua R, Frezzotti P, et al. Circadian intra-

ocular pressure patterns in healthy subjects, primary open
angle and normal tension glaucoma patients with a contact
lens sensor. Acta Ophthalmol 2015;93(1):e14—e21.

Tojo N, Hayashi A, Otsuka M, Miyakoshi A. Fluctuations of
the intraocular pressure in pseudoexfoliation syndrome and
normal eyes measured by a contact lens sensor. ] Glaucoma
2016;25(5):e463-e468.

Tojo N, Abe S, Ishida M, Yagou T, Hayashi A. The fluctua-

tion of intraocular pressure measured by a contact lens sensor

12.

13.

14.

15.

16.

17.

18.

19.

in normal-tension glaucoma patients and nonglaucoma sub-
jects. ] Glaucoma 2017;26(3):195-200.

Ho D, Imai K, King G, Stuart E, Whitworth A. Matchlt:
nonparametric preprocessing for parametric casual inference.
3.0.1. Available at https://cran.r-project.org/web/packages/
Matchlt/, 2017. Accessed April 27, 2017.

Leonardi M, Pitchon EM, Bertsch A, Renaud P, Mermoud A.
Wireless contact lens sensor for intraocular pressure moni-
toring: assessment on enucleated pig eyes. Acta Ophthalmol
2009;87(4):433-4317.

Mansouri K, Shaarawy T. Continuous intraocular pressure
monitoring with a wireless ocular telemetry sensor: initial
clinical experience in patients with open angle glaucoma.
Br ] Ophthalmol 2011;95(5):627-629.

Mansouri K, Weinreb R. Continuous 24-hour intraocular
pressure monitoring for glaucoma - time for a paradigm
change. Swiss Med Wkly 2012;142:w13545.

Montgomery Douglas DC, Peck EA, Vining GG. Introduc-
tion to Linear Regression Analysis. 5th ed. Hoboken, New
Jersey: John Wiley & Sons; 2012.

Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:
Machine Learning in Python. ] Mach Learn Res 2011;12:
2825-2830.

Tun TA, Atalay E, Baskaran M, et al. Association of func-
tional loss with the biomechanical response of the optic nerve
head to acute transient intraocular pressure elevations. JAMA
Ophthalmol 2018;136(2):184-192.

Wang ], Freeman EE, Descovich D, et al. Estimation of ocular
rigidity in glaucoma using ocular pulse amplitude and pulsa-
tile choroidal blood flow. Invest Ophthalmol Vis Sci 2013;
54(3):1706-1711.

MACHINE LEARNING DiscrRIMINATION OF POAG VErRsUs HEALTHY EYES 53


http://refhub.elsevier.com/S0002-9394(18)30386-6/sref3
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref3
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref3
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref4
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref4
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref4
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref5
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref5
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref5
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref5
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref6
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref6
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref6
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref6
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref7
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref7
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref8
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref8
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref8
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref8
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref8
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref9
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref9
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref9
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref9
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref10
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref10
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref10
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref10
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref11
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref11
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref11
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref11
https://cran.r-project.org/web/packages/MatchIt/
https://cran.r-project.org/web/packages/MatchIt/
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref13
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref13
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref13
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref13
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref14
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref14
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref14
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref14
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref15
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref15
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref15
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref16
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref16
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref16
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref17
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref17
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref17
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref18
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref18
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref18
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref18
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref19
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref19
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref19
http://refhub.elsevier.com/S0002-9394(18)30386-6/sref19

	Use of Machine Learning on Contact Lens Sensor&ndash;Derived Parameters for the Diagnosis of Primary Open-angle Glaucoma
	Methods
	Subjects
	Contact Lens Sensor Recording
	Statistical Analyses
	Contact Lens Sensor Parameters
	Multicollinearity Reduction
	Discrimination Between Primary Open-angle Glaucoma and Healthy Eyes

	Results
	Discussion
	References


