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Abstract: This study presents a novel approach for Arabic video text recognition based on recurrent neural networks. In fact,
embedded texts in videos represent a rich source of information for indexing and automatically annotating multimedia
documents. However, video text recognition is a non-trivial task due to many challenges like the variability of text patterns and
the complexity of backgrounds. In the case of Arabic, the presence of diacritic marks, the cursive nature of the script and the
non-uniform intra/inter word distances, may introduce many additional challenges. The proposed system presents a
segmentation-free method that relies specifically on a multi-dimensional long short-term memory coupled with a connectionist
temporal classification layer. It is shown that using an efficient pre-processing step and a compact representation of Arabic
character models brings robust performance and yields a low-error rate than other recently published methods. The authors’
system is trained and evaluated using the public AcTiV-R dataset under different evaluation protocols. The obtained results are
very interesting. They also outperform current state-of-the-art approaches on the public dataset ALIF in terms of recognition
rates at both character and line levels.

1 Introduction
Since the 1980s, research in optical character recognition (OCR)
techniques has been an attractive area in computer vision and
pattern recognition communities [1, 2]. Prior studies have
addressed specific research problems that bordered on handwritten
texts [3, 4] and scanned documents in domains such as postal
address [5] and bank cheques [6] recognition.

For the two last decades, embedded texts in videos and natural
scene images have received increasing attention as they often give
important information about the multimedia content [7–9].
Recognising text in videos, often called video OCR, is an essential
task in a lot of applications like video indexing and content-based
multimedia retrieval. Most existing video OCR systems are
dedicated to few languages, such as Latin and Chinese [7–11]. For
a language like Arabic, which is used by more than 500 million
people around the world, such systems are much less developed.

A video OCR system is basically composed of two main
phases: text localisation, which may include detection and tracking
of text regions; and text recognition, which may include extraction,
segmentation, and recognition of already detected text regions. In
this study, we focus on the second phase by proposing a new
approach for recognising Arabic text in the news video.

Compared with the case of printed/handwriting text recognition
in scanned documents, video text recognition is more challenging
due to many factors including

• Background complexity: the presence of text-like objects such
as fences and bricks can be confused with text characters.

• Text patterns variability: text in videos mostly has an unknown
size/font and differs in colour and alignment.

• Video quality: it includes acquisition conditions, compression
artefacts, and low resolution.

Fig. 1a provides examples of frames collected from different
news TV channels for typical problems in video text recognition.
Text in videos is generally classified into scene text and artificial
(or superimposed) text. The first type is naturally recorded as part

of a scene during video capturing, like text on signs and clothing,
and may include handwritten material. The second type is
artificially superimposed on the video during the editing process.
Fig. 1b illustrates a video frame from TunisiaNat1 TV including
scene text in the form of a traffic sign, and artificial text in the form
of subtitles describing event information. Compared with the scene
text, the artificial one can provide a brief and direct description of
video content, which is important for automatic broadcast
annotation. Typically artificial text in a news video indicates the
names of people, event information, location, scores of a match,
etc. In this context, we particularly focus on this type of text. 

The recognition of Arabic texts for indexing Arabic documents
has recently become a compelling research domain. Several
techniques have been proposed in the conventional field of Arabic
OCR in scanned documents [4, 12–15]. However, very few
attempts have been made on the development of recognition
systems for artificial text in Arabic news videos [16, 17], despite
the presence of several Arabic news channels with very high
viewing rates in the Arabic world and outside of it. Actually, we
need to extract embedded texts from the video content as powerful
semantic cues for automatic broadcast annotation. Compared with
Latin text, the Arabic one has special characteristics.

• It is cursive with high connectivity between characters, i.e. most
of them have right and/or left connection points linked to the
baseline.

• Arabic characters can have up to four shapes depending on their
position in the word: at the beginning, in the middle, at the end
or isolated. Fig. 1c presents a decomposition example of an
Arabic word into individual characters, labelled in Latin and
accompanied by suffixes indicating their positions.

• The spaces between pieces of Arabic words are not uniform and
vary in size, making ambiguities to distinguish between stroke
ends or word ends in the segmentation phase.

• Arabic characters may have exactly the same shape and are
distinguished from each other only by a diacritic mark, which
may appear above or below the main character such as letters
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Baa (ب), Taaa (ت) and Thaa (ث). These diacritics are normally a
dot, a group of dots (two or three), a Hamza (ء) or a Tild (~). It is
worth noting that any deletion or erosion of these diacritic marks
results in a misrepresentation of the character. Hence, any
binarisation algorithm needs to efficiently deal with these dots
so as not to change the identity of the character.

• Arabic has several standard ligatures, which are formed by
combining two or more letters. The most common one is
LaamAlif (لأ), which is a combination of Laam (ل) and Alif (ا).

More details on the specificities of the Arabic script can be
found in [4, 12]. All these characteristics along with the previously
mentioned challenges may give rise to failures in Arabic video text
recognition tasks.

In this study, we propose a novel text recognition system based
on a segmentation-free method, which relies on the use of LSTM
networks. These networks have been successfully applied in
different sequence classification problems and have outperformed
alternative hidden Markov models (HMMs) [13, 14], recurrent
neural networks (RNNs) [18, 19], their combination [20], and other
sequence learning models. Some benchmark work has been
developed using the RNN-LSTM networks, such as handwriting
recognition of Latin and Asian scripts [21–23]. The excellent
performance of such networks has motivated us to investigate their
application for the recognition of Arabic video text.

The major contributions of this study are the following:

• Up to our knowledge, we are the first to apply the multi-
dimensional LSTM (MDLSTM) architecture [15] for Arabic
video text recognition. Such an architecture is adopted to model
the text variations on both axes of the input image.

• We propose a new and simple pre-processing step that consists
of text polarity normalisation utilising a skeleton-based
technique. This pre-processing contributes to improving the
performance of our system, as it will be shown in the
experimental section.

• We suggest a compact representation of character models by
applying a regrouping process of character shapes, benefiting
from the morphological characteristics of the Arabic language.
This representation has a direct impact on the size of the
connectionist temporal classification (CTC) output layer of the
used network.

To sum up, we put forward an innovative scheme based on the
combination of a new pre-processing, a compact representation of
character models and an application of the MDLSTM network to
recognise Arabic text lines without any prior segmentation or
binarisation steps. We aim also in this work to stand out from the
dominant methodology, based on the so-called handcrafted
features. This is done by applying an MDLSTM network that
automatically learns features from the raw input image.

The rest of the manuscript is organised as follows. The related
work is reviewed in Section 2. Section 3 presents a short overview
of RNN networks with a main focus on the LSTM architecture.
The proposed system is presented in Section 4. Section 5 describes
the grouping strategy of character models. The used benchmark
datasets and the obtained experimental results are provided in
Section 6. Section 7 draws the conclusions and outlines the future
work.

2 Related work
Video text is usually embedded in complex backgrounds with
different colours, scales, and fonts, which makes it difficult to be
recognised by means of a standard OCR engine. According to the
literature, there are essentially two ways to solve this problem,
which are: (i) recognising characters by separating text pixels from
the background beforehand, and then applying an available OCR
software [24–27]. (ii) Recognising characters by using features and
classifiers specially designed for video or/and natural scene text
[28–31].

The first methodology requires an appropriate pre-processing
stage to obtain characters with well-defined shapes and a plain
background. Several techniques proposed a robust image
binarisation for this aim. For instance, Zhou et al. [24] suggested
an edge-based method for binarising text in video images. Zhang
and Wang proposed a method [25] for binarising artificial text in
the video using K-means algorithm in the RGB space with a
Markov random field model, and Log-Gabor filters as a refinement
step. Similarly, Hu et al. [26] put forward a binarisation method for
both overlaid and scene texts utilising two confidence maps and K-
means clustering algorithm. Roy et al. [27] introduced a new
method to binarise video text based on a Bayesian classifier for
text/non-text pixels discrimination and a connected component
analysis for text information restoring. After obtaining the
binarised text image, these methods made use of the Google's OCR
engine Tesseract for recognition. However, in this kind of
methodology, the recognition performance usually relies on the
efficiency of the text binarisation and may suffer from noise and
distortion in complex backgrounds.

On the other hand, the second methodology uses classifiers
directly on text regions mixed with background objects. For
example, Zhai et al. [28] put forward a segmentation-free method
based on bidirectional RNNs (BRNNs) with a CTC layer for
Chinese news text recognition. To train this network, the authors
collected 2 million news titles from 13 TV channels. Su and Lu
[29] extracted sequences of histogram of oriented gradient (HOG)
features as a sequential image representation and generated the
corresponding character sequence with RNNs. Jaderberg et al. [30]
proposed a convolutional neural network (CNN)-based classifier to
holistically recognise words in natural images. The utilised deep
neural models were trained on a large scale synthetic dataset.
Recently, some published work [7, 16, 31, 32] have jointly used the
CNN and RNN for recognising text in natural scene images or/and
videos. These methods are generally composed of two modules, a
deep CNN for feature extraction and a BRNN for sequence
modelling. In [31], video texts were first represented as sequences
of learned features with a multi-scale scanning scheme. The
sequence of features was then fed into a connectionist recurrent
model, which would recognise text words without prior
binarisation or explicit character segmentation. Shi et al. [32]
treated word recognition as a sequence labelling problem. CNNs
and BRNNs were employed to, respectively, extract feature
sequences from the input images and generate sequential labels of
arbitrary length. The CTC was adopted to decode the sequence.
Wang et al. [7] explored a GMM-HMM bootstrap model to align
the frame sequence with the transcription. The alignments were
then utilised as supervision to train the CNN. BRNNs were finally
used to model the text sequences. In fact, this kind of methodology
usually requires a large number of samples covering various text
fonts and backgrounds to train the classifier.

Like the document-based OCR techniques, video OCR can also
be divided into segmentation-based and segmentation-free
recognition methods. The former, known as an analytical approach,

Fig. 1  Frame samples from different TV channels depicting typical
characteristics of video text
(a) From left to right: examples of BBC, CCTV, and Al-Arabiya TV news channels,
(b) Video frame displaying Arabic scene and artificial texts, (c) Decomposition
example of an extracted word into characters
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segments the lines, words or sub-words into smaller units
(characters or graphemes) for recognition. The latter, also called
global approach, takes the whole line or word image for
recognition. In the case of Arabic text, the recognition systems
have traditionally been segmentation-based. For instance, Ben
Halima et al. [17] proposed to recognise Arabic video texts using
an analytical approach. Text lines were first binarised and then
segmented by projection profiles. Characters were finally classified
using the fuzzy k-nearest neighbours (KNN) algorithm applied on a
set of handcrafted features including occlusions, diacritic positions,
projection profiles and a number of foreground-to-background
transitions. In the same vein, Iwata et al. [33] adopted such
methodologies to recognise Arabic texts in news video frames.
Text lines were first segmented into words utilising a space
detection algorithm. The character candidates were then over-
segmented into primitive segments. The recognition was finally
performed using the modified quadratic function classifier at the
character level and the dynamic programming at the word level.
With such approaches, the segmentation errors can propagate
further and impact the recognition performance.

Yet, segmentation-free methods recognise a succession of
characters directly from the text image, without any explicit
segmentation. Such systems are based on classifiers like HMMs
[13, 14, 34] or RNNs [35]. In [16, 36], three RNN-based systems
were proposed for Arabic video text recognition. These systems
differed by their feature extraction scheme and had a common
classifier. Firstly, a multi-scale sliding window was used to extract
features based on three different feature-learning models. The two
first models made use of deep auto-encoders, whereas the third one
was CNN-based. A bidirectional LSTM (BLSTM) network
coupled with a CTC output layer is afterwards used to predict
correct characters of the input text image from the associated
sequence of features without pre-segmented data. Naz et al. [37]
suggested an RNN-based system for Urdu Nasta'liq (Urdu is a
derivative of the Arabic alphabet) text recognition. The input
textline images were first normalised to a fixed height, then
transformed into a sequence of manually-designed features
including horizontal and vertical projections, pixel distribution
features and grey-level co-occurrence matrix (GLCM) features
(contract, energy, correlation, and homogeneity). These features
were next fed to the RNN in a frame-wise fashion, followed by a
CTC decoding layer that transcribed the input data and finally
provided the recognised sequence.

Most of the aforementioned Arabic text recognition systems
rely on a feature extraction process. Nevertheless, feature design is
a challenging and time-consuming task due to its dependence on
the domain knowledge and past experience of human experts [14,
38]. On the other hand, there has been recent work that proposes
recognition systems performing automatic feature extraction inside
a learning scheme that operates directly on the raw pixel data. Such
systems have shown high performance on different OCR tasks [15,
22, 23] and received considerable attention, especially with the
resurgence of LSTM-RNNs. A comparison between the results of
two recent work [38, 39] for Arabic handwriting recognition shows
that a one-dimensional (1D) LSTM network operating on raw
image pixels [39] outperforms the same network trained using
whether handcrafted or learned features [38]. Motivated by this
observation, we propose to recognise Arabic video text without
relying on an explicit feature extraction stage. This is done by
applying a multi-dimensional LSTM-RNN architecture on the
input sequence.

3 Overview of RNNs
RNNs were first introduced in the 1980s and have become popular
due to their ability to model contextual information. They represent
powerful tools for processing patterns occurring in time series. In
its simplest form, an RNN is an multi-layer perceptron (MLP) with
recurrent layers.

Consider an input sequence x presented to an RNN with I input
units, H hidden units, and K output units. Then the hidden units ah
and the activations bh of a recurrent layer are calculated using the
following equations:

ah(t) = ∑
i = 1

I
wihxi(t) + ∑

h′ = 1

H
wh′hbh′(t − 1),

bh(t) = Θh(ah(t)),
(1)

where xi(t) is the value of an input i at time t, aj(t) and bj(t),
respectively, denote the network input to a unit j and the activation
of unit j at time t. wi j denotes the connection from a unit i to a unit
j, and Θh is the activation function of a hidden unit h.

Robinson [20] was among the first who suggested the use of
standard RNNs for speech recognition. Lee & Kim [40] and Senior
& Robinson [19] applied such networks to handwriting
recognition.

In 1997, Schuter and Paliwal [18] introduced BRNNs by
implementing two recurrent layers, one processing the sequence in
a forward direction (left to right) and the other backwards. Both
layers are connected to the same input and output layers.

The multi-dimensional recurrent neural network (MDRNN)
architecture [41] represents a generalisation of RNNs, which can
deal with multi-dimensional data, e.g. image (2D), video (3D) etc.
To extend the RNN to a multi-dimensional RNN, let p ∈ ℤD be a
point in an n-dimensional input sequence x of dimensions
D1, …, Dn. Instead of a(t) in a 1D case, we write ap as an input in
the multi-dimensional case. The upper index pi, i ∈ {1, 2, 3, …, n},
is used to define the position. Pd

− = (p1, …, pd − 1, …, pn) denotes
the position on a step back in dimension d. Let wi j

d  be the recurrent
connection from i to j along dimension d. The forward equation for
an n-dimensional MDRNN is calculated according to the following
equations:

ah
p = ∑

i = 1

I
wihxi

P + ∑
d = 1

n

∑
h′ = 1

H
bh

Pd
−
wh′h

d ,

bh
p = Θh(ah

p) .
(2)

The backward pass is given by (3), where εj
p = ∂E /∂bj

p and
δj

p = ∂E /∂aj
p, respectively, denote the output error of the unit j at

time p and the error after accumulation

εh
p = ∑

k = 1

K
δk

pwhk + ∑
d = 1

n

∑
h′ = 1

H
δh

pd
+
wh′h

d ,

δh
p = θ′h(ah

p)εh
p .

(3)

While standard RNNs use a recurrence only over 1D, like the x-
axis of an image, the MDRNNs scan the input image along both
axes, allowing the exploitation of more context and the modelling
of the text variations in four directions (left, right, top, and bottom).
In particular, the 2DRNN forward pass starts at the origin (0, 0),
follows the direction of the arrows and scans through the 2D input
sequence Xp, as illustrated in Fig. 2. It is to be noted that the point
(i, j) is never reached before both (i − 1, j) and (i, j − 1) [42]. 

3.1 LSTM networks

The problems of long-term dependencies and vanishing gradient –
the gradient of the loss function decays exponentially over time
[43] – were the reason for the lack of practical applications of
RNNs. In 1997 [44], an advance in designing such networks was
introduced as the long short-term memory (LSTM). LSTM
networks are a special class of RNNs that use memory cells as
hidden layer units. These cells can maintain information for long
periods of time.

LSTM consists of a set of three multiplicative gates, so-called
the input gate i, the output gate o, and the forget gate f, to control
when information should be stored or removed from the memory
cell c. This architecture lets them learn longer-term dependencies
(see Fig. 3b for an illustration). LSTM first computes its gates’
activation it (4), ft (5), and updates its cell state from ct−1 to ct (6).
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It then computes the output gate activation ot (7) and finally
outputs a hidden representation ht (8). The inputs of an LSTM unit
are the observations xt and the hidden representation from the
previous time step ht−1. LSTM runs the following set of update
operations:

it = σ(Wixxt + Wihht − 1 + Wicct − 1 + bi), (4)

f t = σ(W f xxt + W f hht − 1 + W f cct − 1 + bc), (5)

ct = f tct − 1 + ittanh(Wxcxt + Whcht − 1 + bc), (6)

ot = σ(Woxxt + Wohht − 1 + Wocct + bo), (7)

ht = ottanh(ct), (8)

where W denotes the weight matrices, b denotes the bias vectors
and σ(x) = 1/1 + e−x is the logistic sigmoid function. 

Standard LSTM is explicitly 1D since each cell contains a
single recurrent connection, whose activation is controlled by a
single forget gate. Nevertheless, it is possible to extend this to n
dimensions, i.e. an MDLSTM memory cell, by using n recurrent
connections instead (one for each of the cell's previous states along
every dimension), with n forget gates.

4 Proposed system
The proposed video text recognition system is based on an
MDLSTM network coupled with a CTC output layer. It is mainly
developed using an adapted version of the open-source RNNLib
toolkit. The use of RNNLib goes typically through two steps:
training and test. During the training step, the network learns the
sequence-to-sequence matching in a supervised fashion, i.e. the

alignment between the input and the output sequences. In the test
step, the normalised textline image is fed to the trained MDLSTM
model, which generates the predicted sequence. For both steps, we
apply the same pre-processing operations.

In what follows, we describe the pre-processing stage.

4.1 Pre-processing

As mentioned before, the video OCR domain has many problems
to deal with in regard to the variability of text patterns, the
complexity of backgrounds, etc. Therefore, we propose to apply
some pre-processing prior to the recognition step in order to reduce
these undesirable effects. Given a textline image, pre-processing
steps of text polarity normalisation and image size scaling are
performed. First, the text polarity is determined; i.e. judging
whether it is dark text on light background or vice versa, using a
skeleton-based technique. Skeletons are important shape
descriptors in object representation and recognition. The
generalised skeleton representation of a binary image is the union
of sets {Sn} given by the following equation:

Sn(X) = (X ⊖ nB) − (X ⊖ nB) ∘ B, (9)

where Sn(X) represent the skeleton subsets of a binary image
containing a set of topologically open shapes X, n is the number of
shapes, and B is a structuring element. The symbols ⊖ and ∘ refer
to the binary erosion and opening, respectively. Note that the
binary images Bin and Bin are obtained by adaptive thresholding
the input greyscale image Gs and its negative version Gs (step (2)
of Algorithm 1 (see Fig. 4)). It can be observed from the content
distribution of the skeleton maps (steps (3) and (4) of Algorithm 1
(Fig. 4)) created with the correct gradient direction, that the
skeleton pixels are retained in the centre line of the character shape
(e.g. skeleton dark-on-light (DL) in Fig. 5a and skeleton light-on-
dark (LD) in Fig. 5b). This is due to the characteristics of the
skeleton function that generates a thin version of the original shape,
which is equidistant to its boundaries. Otherwise, the skeleton
pixels all surround the characters and are placed on the image
boundaries (cf. skeleton LD in Fig. 5a and skeleton DL in Fig. 5b).
Thus, the text gradient direction is simply obtained by comparing
the number of white pixels (WPs) located on the boundaries of the
two skeleton images (step (11) of Algorithm 1 (Fig. 4)), i.e. we
invert the input greyscale image if its skeleton LD has fewer WPs
on the boundaries (step (12) of Algorithm 1 (Fig. 4)).
Subsequently, the text polarity is normalised to DL for all input
greyscale images, as shown at the bottom of Fig. 5. This method
has been able to achieve an accuracy of 95% on our dataset. 

All the normalised images are then scaled to a common height
(determined empirically) using the bi-linear interpolation method.

4.2 Network architecture

As depicted in Fig. 6, our network consists of five layers of which
three are LSTM-based hidden layers (for each direction) and two
are feedforward subsampling layers with tanh as an activation
function. We adopt the hierarchical network topology as used in
[42] by repeatedly composing MDLSTM layers with feedforward
tanh layers. The purpose of the subsampling step is to compress the

Fig. 2  Scanning directions of 2D RNN, inspired from [42]
 

Fig. 3  Detailed schematic of neurons for RNNs
(a) Simple neuron, (b) LSTM unit
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sequence into windows, thus speeding up the training time with the
MDLSTM architecture. The subsampling is also required for
reducing the number of weight connections between hidden layers. 

In this network, there are mainly four important parameters that
require tuning during the training phase.

• The input block size refers the ‘width × height’ of the pixel block
used to initially divide the input text image into small patches.
We empirically set the size of this parameter as 2 × 4 or 1 × 4
depending upon the evaluation protocol (see Section 5).

• The LSTM size refers to the number of LSTM cells in each
hidden layer. In our work, 2, 10 and 50 represent the appropriate
values for this parameter. These values are found empirically
and they match as well those reported by other researchers [22,
37, 42]. Note that the number of LSTM cells, for each hidden
layer, should be equal to the size of that layer multiplied by the
number of directions in which the input image is scanned. In the
proposed architecture, the image is scanned in four different
directions. Hence, the number of LSTM cells become 2 × 4, 10 
× 4 and 50 × 4. This is shown in Fig. 6 by four different colours
of LSTM cells.

• The tanh size describes the number of tanh units in each
subsampling layer.

• The subsampling window size refers to the window required for
subsampling the input from each layer before feeding it to the
next hidden layer. This parameter decreases the sequence length,
in the applied layer, by a factor corresponding to the window
width. The optimal sizes are set to 1 × 4 for both first and second
hidden layers. At the hidden-to-output layer transition, no
subsampling is applied.

4.3 CTC layer

The output of the last LSTM hidden layer is passed to a CTC
output layer, which is used as an output layer with softmax
activation function. This layer permits working on an unsegmented
input sequence, which is not the case for standard RNN objective
functions. The principle of such a layer is inspired by the forward–

backward algorithm of the HMM [45] and is used to align the
target labels with the LSTM output sequences. During training, this
alignment enables the network to learn the relative location of
labels in the whole transcription. The CTC layer contains as many
units as there are elements in the alphabet L of labels, plus one
extra ‘blank’ unit, i.e. the output alphabet is L′ = L ∪ { ⊘ }.
‘Blank’ is not a real character class, but a virtual symbol used to
separate the consecutive real character. Let x be an input sequence
of length T and β:L′ → L ≤ T be a mapping function, which
removes duplicates then blanks in the network prediction. For
example: β(a ⊘ ⊘ ab) = β(aa ⊘ ⊘ abb) = aab. Since the
network outputs for different time steps are conditionally
independent given x, the probability of a label sequence π ∈ L′T in
terms of LSTM outputs is calculated according to the following
equation:

p(π | x) = ∏
t = 1

T
yπt

t (x), (10)

where yk
t  is the activation of output unit k at time t. The mapping β

allows calculating the posterior probability of a character sequence
l ∈ LT, which is the sum of the probabilities of all paths (L′T)
corresponding to it

p(l | x) = ∑
π ∈ β−1(l)

p(π | x) . (11)

This ‘collapsing together’ of different paths to the same labelling is
what allows the CTC to use unsegmented data. After that, the CTC
objective function maximises the probability to find the most
probable label sequence for the corresponding unsegmented
training data S = {(x, z), z ∈ L|x|} by minimising the following cost:

ϑ = − ∑
(x, z) ∈ S

log p(z | x) . (12)

5 Choice of model sets
By a model set, we mean the number of classes used to represent
the different variations in character shapes. Benefiting from the
morphological characteristics of the Arabic alphabet, we propose a
glyph-based grouping method similar to [46], which leads to three
sets with, respectively, 165, 104 and 72 classes, as described below.
This proposal has a direct impact on the size of the CTC output
layer, and consequently on the behaviour of the network.

• Set165: As stated in the Introduction, the Arabic alphabet
contains 28 characters and most of them change shape according
to their position in the word. Taking into account this variability,
the number of shapes increases from 28 up to 100. In addition,
the Arabic script includes two groups of extra characters. The
first one represents a variation in some basic characters like the
TaaaClosed (ة), which is a special form of the character Taaa
a combination of Hamza ,(ٶ) and the HamzaAboveWaaw ,(ت)
The second group includes four ligatures created .(و) Waaw + (ء)
when the character Alif (or one of its variants) follows the
character Laam in the word. Considering these extra characters,
there are overall 125 shapes (see Fig. 7 for examples). Adding to
that, 10 digits, 13 punctuation marks and 12 additional
characters that are combined with the diacritic mark Chadda (ٍّ),
the total number of models goes up to 165.

• Set104: Using set165, we group similar glyphs into 104 models
according to the following rules: (1) ‘beginning’ and ‘middle’
shapes share the same model. (2) ‘End’ and ‘isolated’ shapes
share the same model. These rules are applied to all alphabet
characters except for the characters Ayn (ع) and Ghayn (غ)
where the initial, middle, final, and isolated shapes are too
different. This strategy of grouping is natural as beginning-
middle and end-isolated character shapes are visually similar.
For instance, the two first character models (left-to-right) of the
word in Fig. 8 are grouped to one model as they belong to the

Fig. 4  Algorithm 1: Text polarity normalisation to DL
 

Fig. 5  Pre-processing step of text gradient normalisation
(a) DL text, (b) LD text
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same basic character Taaa, so we obtain two samples of the
model Taaa_B instead of having one for the model Taaa_B and
another for the model Taaa_M.

• Set72: we used here one single model for each character of
Fig. 7, regardless of its position in the word.

The question to address regarding these sets is ‘does a trade-off
exist between having more models per character (to capture the
intrinsic details of each glyph, i.e. set165) and having more training
samples per character model (without considering the details of
character shapes, i.e. set104 and set75)’. 

Fig. 6  Architecture of the used subsampling hierarchical MDLSTM Network. Different colours indicating four scan directions of LSTM layers
 

Fig. 7  Different class models to be recognised
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6 Experiments
This section describes the set of experiments that we separately
conducted to (i) fix the optimal network parameters, (ii) analyse the
effect of both pre-processing and model sets on the recognition
performance, and (iii) compare the proposed system with other
recently published methods using two public datasets.

We now introduce the experimental setup in terms of data,
evaluation protocols, and metrics.

6.1 AcTiV-R dataset

To evaluate the proposed method, we use a part of our publicly
available AcTiV database [47], namely AcTiV-R. It consists of
10,415 textline images, 44,583 words, and 259,192 characters
distributed over four sets (one set per TV channel). Every set
includes three sub-sets: ‘training-set’, ‘test-set’, and ‘closed-test
set’ (used for competitions only [48]). As illustrated in Fig. 9,
AcTiV-R texts are in various fonts and sizes, and with different
degrees of background complexity. The recognition ground-truth is
provided at the line level for each text image. During the
annotation process, 165 character shapes are considered, as
detailed above in the description of set165. We evaluate our work,
specifically, in three protocols proposed by Zayene et al. [47].
More details about the protocols and statistics of the used dataset
are given in Table 1. To have an easily accessible representation of
Arabic text, it is transformed into a set of Latin labels with a suffix
that refers to the letter's position in the word, i.e. B: Begin, M:
Middle, E: End, and I: Isolate. A typical example has been already
depicted in Fig. 1c. 

6.2 Evaluation metric

The performance measure used in our experiments is based on the
line recognition rate (LRR) and word recognition rate (WRR) at
the line and word levels, respectively, and on the computation of
insertion (I), deletion (D), and substitution (S) errors at the
character level (CRR). These metrics are defined as follows:

CRR = #characters − I − S − D
#characters , (13)

WRR = #words_correctly_recognised
#words , (14)

LRR = #lines_correctly_recognised
#lines . (15)

6.3 Selection of the optimal network parameters

The optimal parameters for our proposed MDLSTM model are
found by empirical analysis. Note that for these experiments we
just pick out a small set of 2000 text images from AcTiV-R, in
which 190 are used as a validation set. We first need to find the
best size of hidden MDLSTM layers, which gives us the optimal
performance. To do that, we fix the size of feedforward tanh layers
to 6 and 20. As shown in Table 2, the suitable values of the
MDLSTM size, which give us optimal results, are 2, 10 and 50 for
the first, second and third hidden layers, respectively. Afterwards,
we evaluate the impact of the feedforward size against the fixed
optimal size of MDLSTM layers (2, 10 and 50). As a consequence,
the best obtained size of feedforward layers is 6 and 20 for the first
and second feedforward tanh layers, respectively, as presented in
Table 3. The indicators observed during the fine-tuning of these
parameters are the CRR and the average time per epoch. It is
interesting to note that such results are not comparable with the
system results obtained in the next subsection. 

Once the architecture is fixed, we perform several experiments
to find the best sizes of the input block and the hidden block
(subsampling window). Therefore, the size of the input block is
fixed to 1 × 4 for protocols 6.1 and 3, and to 2 × 4 for the remaining
protocols. The hidden block sizes are fixed to 1 × 4 and 1 × 4 for all
protocols.

It is worth noting that the training of this network is carried out
with the back-propagation through time algorithm, and the steep-
set optimiser is used with a learning rate of 10−4 and a momentum

Fig. 8  Sequence of models with proposed sets 165 and 104. ‘B’, ‘M’, ‘E’ and ‘I’, respectively, denote the letter positions Begin, Middle, End, and Isolate
 

Table 1 Evaluation protocols and statistics of used dataset. Protocol 6 includes four sub-protocols: three channel-dependent
protocols (6.1, 6.2, and 6.3) and one channel-free protocol (6.4)
Protocol TV channel Training-set Test-set

#Lines #Words #Characters #Lines #Words #Characters
P3 AlJazeeraHD 1,909 8,110 46,563 196 766 4,343

France24 1,906 5,683 32,085 179 667 3,835
P6 Russia Today 2,127 13,462 78,936 250 1,483 8,749

TunisiaNat1 2,001 9,338 54,809 189 706 4,087
AllSD 6,034 28,483 165,830 618 2,856 16,671

P9 All 7,943 36,593 212,393 814 3,622 21,014
 

Fig. 9  Typical textline images from the AcTiV-R dataset. From top to bottom: samples of the used TV channels: AljazeeraHD, TunisiaNat1, France24 Arabe,
and RussiaToday Arabic
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value of 0.9. Training stops when the validation error shows no
improvement in successive 20 epochs.

6.4 Results and discussion

6.4.1 Impact of the pre-processing step: To examine the impact
of text polarity normalisation on the input greyscale images of each
protocol, we carry out several experiments by training two different
types of input images, with and without text polarity normalisation.
Note that for these experiments, we use the same network
architecture and we fix the height of all images to 70 pixels. By
carefully examining the obtained results given in Table 4, it is
concluded that the pre-processing step has a clear beneficial effect
on the recognition accuracy. The results indicate that by using both
height and polarity normalisation, the LRR increases from 51.54 to
53% for AljazeeraHD's protocol (P3), from 51.40 to 57% for
France24's protocol (P6.1), from 40.82 to 43.6% for RussiaToday's
protocol (P6.2), and from 62.44 to 67.73% for TunisiaNat1's
protocol (P6.3). An increase of 5.13% is achieved on the AllSD
protocol (P6.4) and of 7% on the channel-free protocol (P9). The
best results are marked in bold in Table 4. 

6.4.2 Effect of model set choice: Table 5 provides the
recognition results of set165, set104, and set72-based systems. We
can see that the performances are increasing significantly (e.g. by
11.29% for P3) from set165 to set104. It seems beneficial to finely

model the difference between begin-middle shapes and end-isolate
ones. Intuitively, we should lose more precision of the modelling
using fewer models. Nevertheless, we are probably observing here
the effect of having too few training data for less frequent
representations of some character shapes. For instance, the
character TildAboveAlif (آ) in the position ‘End’ is represented with
only 32 occurrences in the dataset. On the other hand, the
performances decline considerably (at least 6%) from set104 to
set72, where a single sub-model per character is used. 

Overall, our best system for all evaluation protocols is the one
based on the set104. The best accuracies are achieved on the
TunisiaNat1 channel subset (P6.3) with 96.48% as a CRR and
72.49% as an LRR. An important increase of 9.4% for the channel-
free protocol (P9) is achieved in terms of LRR.

6.4.3 Error analysis: Fig. 10 depicts some typical misrecognised
lines. It contains four blocks. Each one presents two (or three)
input images and their corresponding output sequences. Block (a)
shows two images from protocol 3. For each, we present its results
with set165 and set104, respectively. As it can be seen, most
erroneous characters in the first set are correctly recognised (green
colour) using set104. Block (b) depicts two output lines (per
image) of two different evaluation protocols, P6.1 and P6.4 (AllSD
protocol). It is clear that for both images the results of P6.4 are
better than those of P6.1. This can be explained by the presence of
more training shapes in the AllSD protocol. Blocks (c) and (d)

Table 2 Impact of MDLSTM size against the fixed size of feedforward layer
MDLSTM size CRR, % LRR, % Total epochs Time per epoch, min
2, 10, 50 96.26 68.26 128 7
4, 20, 100 95.65 66.14 350 19
20, 60, 100 97.04 74.61 162 46
8, 30, 150 97.12 75.67 298 63
The bold values indicate the best values.
 

Table 3 Impact of feedforward layers size against the fixed size of MDLSTM layers
Feed-forward size CRR, % LRR, % Total epochs Time per epoch, min
6, 20 96.26 68.26 128 7
8, 30 96.46 71.43 347 13
12, 40 96.43 70.38 309 8
16, 80 97.09 75.7 204 17
The bold values indicate the best values.
 

Table 4 Results of the proposed recognition system on the AcTiV-R dataset: impact of polarity normalisation
Without normalisation of text polarity With normalisation of text polarity

CRR, % WRR, % LRR, % CRR, % WRR, % LRR, %
P3 90.03 71.18 51.54 92.2 74.13 53
P6.1 89.1 70.49 51.4 91.5 79.66 57
P6.2 93.8 68.22 40.8 93.33 68.9 43.6
P6.3 94.3 80.77 62.44 96.16 85.14 67.73
P6.4 93.17 73 52.4 94.1 81.23 57.3
P9 73.4 58.34 31.9 80.41 60.6 38.14
 

Table 5 Final obtained results on the AcTiV-R dataset: impact of model sets choice
Set165 Set104 Set72

CRR, WRR, LRR, CRR, WRR, LRR, CRR, WRR, LRR,
(%) (%) (%) (%) (%) (%) (%) (%) (%)

P3 92.2 74.93 53.8 94.62 83.11 64.29 92.71 75.29 54
P6.1 91.5 79.66 57 92.27 81.19 59.55 91 75.18 52
P6.2 93.33 68.9 43.6 94.1 73.67 49.27 90.45 67.24 43.2
P6.3 96.16 85.14 67.73 96.48 86.05 72.49 93.87 82.39 63.6
P6.4 94.1 81.23 57.3 95.82 83.4 63.27 92.11 78.53 55.8
P9 80.41 60.64 38.14 88 70.28 47.32 80.77 59.11 36.4
The bold values indicate the best values.
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present examples of output lines from P6.2 and P6.3, respectively.
A visual inspection of the errors is actually supporting this
statement, where frequent errors are related to less frequent shapes
in the training database. Based on our knowledge about the
specificities of Arabic alphabet, we divide the causes of errors into
two categories: character similarity (substitution errors of block
(a)) and insufficient samples of punctuation, digits and symbols
(substitution and deletion errors of blocks (b), (c) and (d)). Several
measures can be taken to minimise the character error rate. For
instance, some errors can be corrected by integrating language
models and dropout [22] to improve the LSTM-based recognition
system and increase the generalisation performance [49]. 

6.4.4 Comparison with other methods: We validate here the
performance of our proposed system by comparing it with the
method presented by Iwata et al. [33] (see related work section).
As depicted in Fig. 11, we outperform Iwata's system by a large
margin in all protocols. The obtained results, in terms of LRR, are
higher with a gain ranging from 10 to 16% for protocols 6.2 and
6.3, respectively. It is to be noted that the current version of Iwata
system is not compatible with high definition resolution. 

We have also evaluated our system using a recently published
dataset of superimposed video text recognition, namely ALIF [36].
The dataset is composed of 6532 cropped text images extracted
from diverse Arabic TV channels, where 12% of them are from
web sources. It contains two parts: one being the training dataset

with 4152 text images and the other a test dataset with three sub-
sets. ALIF [36] works only on standard definition (SD) resolution
and presents 140 character shapes including digits and punctuation
marks. Table 6 shows the comparative results for the proposed
system against five recently proposed methods [16, 36]. Note that
these systems have been developed by the same author that put
forward the ALIF dataset [36], and four of them were BLSTM-
based. For these experiments, we use the same pre-processing steps
and optimal network parameters, which give us the best
recognition accuracies on the AcTiV-R dataset. We also adopt the
same rules of model grouping as those used for set104 in Section 5.
Interestingly, our proposed MDLSTM network with the
normalisation step outperforms the BLSTM systems whether they
were based on manually crafted features (HC-BLSTM) or
automatic learned features (DBN-AE-BLSTM, MLP-AE-BLSTM,
and CNN-BLSTM). We are able to achieve results roughly 16%
higher than the best rate obtained by the CNN-BLSTM system, in
terms of LRR. These results are obtained on the ALIF_Test1 subset
[36], which includes 900 textline images. 

7 Conclusion
We have presented in this study an Arabic video text recognition
system based on an MDLSTM network coupled with a CTC output
layer. The proposed system allows avoiding two hard OCR steps,
which are a textline segmentation and feature extraction. The
suggested method has been trained and evaluated using the AcTiV-

Fig. 10  Examples of some output errors picked out from experimental results. Errors are marked by red symbols
 

Fig. 11  Comparison of our recognition system to Iwata's on the test-set of AcTiV-R
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R database. We have reported 96.5% as a character recognition rate
and nearly 72.5% as a LRR for the SD resolution. The pre-
processing step and model set choice have brought significant
recognition improvement in terms of reduction in the line error
rate. Our method has also outperformed the results of previous
work on the ALIF dataset, more particularly those based on the
combination of CNN and BLSTM [16, 36].

The interesting findings in this study have been the application
of the MDLSTM network to video Arabic text with unknown font
sizes and font families and the use of an efficient normalisation
step as well as the analysis of the impact of model sets. Our results
are achieved without using any dropout regularisation technique or
language modelling. However, as a future work, we plan to
integrate such methods to further improve the line recognition
accuracy. Future work will also cover the development of an end-
to-end recognition system which takes as an input the entire video
sequence instead of text images.
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