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Abstract. This project explores the feasibility of remote patient mon-
itoring based on the analysis of 3D movements captured with smart-
watches. We base our analysis on the Kinematic Theory of Rapid Hu-
man Movement. We have validated our research in a real case scenario
for stroke rehabilitation at the Guttmann Institute5 (neurorehabilitation
hospital), showing promising results. Our work could have a great impact
in remote healthcare applications, improving the medical efficiency and
reducing the healthcare costs. Future steps include more clinical valida-
tion, developing multi-modal analysis architectures (analysing data from
sensors, images, audio, etc.), and exploring the application of our tech-
nology to monitor other neurodegenerative diseases.

Keywords: Healthcare applications · Kinematic Theory of Rapid Hu-
man Movements · Human activity recognition · Stroke rehabilitation ·
3D kinematics.
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1 Introduction

Stroke, defined as the lack of blood flow or bleeding in the brain [1], is the second
leading cause of death in Europe. Moreover, experts estimate that strokes will
rise dramatically in the next 20 years due to an ageing population 6. Moreover,
60% of the survivors have different degrees of disability, with a socio-economic
impact of the first magnitude for the patient [2] [3], their environment, the
health system and the society in general [4] [5]. Therefore, in addition to stroke
prevention, it is crucial to find personalized and suitable treatments during stroke
rehabilitation, the most important phase of stroke survivors.

The Kinematic Theory of Rapid Human Movement [6] [7] [8] provides a
mathematical description of the movements made by individuals, reflecting the
behaviour of their neuromuscular system. It has demonstrated a great poten-
tial for analysing fingers, hand, eye, head, trunk and arm movements as well as
speech. According to the lognormal principle, the motor learning process and its
deterioration with aging can be followed, allowing to monitor neuromuscular dis-
eases in terms of the alteration of the ideal parameters. O’Reilly et al.[9] showed
that brain stroke risk factors can be associated with the deterioration of many
cognitive and psychomotor characteristics. The psychomotor tests demonstrated
that the features extracted from the kinematic motion analysis of handwriting
were successfully correlated with risk factors (e.g. obesity, diabetes, hyperten-
sion, etc.).

However, the use of the Kinematic Theory in monitoring rehabilitation pro-
cesses is a challenge: it requires to collect and to analyse the movement data
using robust, efficient and task oriented lognormal parameter extraction algo-
rithms. These constraints must be removed to develop a universal tool for brain
stroke treatments and rehabilitation. Stroke patients, especially in early stages
of the recovery treatment, cannot write using a stylus on a tablet device, so most
of the analysis of their motor skills improvement is based on simple hands or
arms movements.

Recently, inertial and magnetic sensors, including accelerometers, gyroscopes
and magnetometers, have been incorporated into wearables, such as smartbands,
to assess, among others, the biomechanics of sports performance. These devices
are increasingly popular, which make us propose the hand/arm movements as a
source to extract the lognormal patterns. Moreover, these devices are not intru-
sive, so they could be used for continuous remote patient monitoring (RPM) in
the rehabilitation stages and during the routine daily life of patients, improving
the medical efficiency and reducing the healthcare costs.

For the above mentioned reasons, we aim to explore the use of the Kinematic
Theory of Rapid Human Movements for analysing continuous 3D movements
captured with smartwatches (a worldwide affordable and non-intrusive technol-
ogy), and thus, to provide an objective estimator of the improvement of the
patients’ motor abilities in stroke rehabilitation.

6 The Burden of Stroke in Europe: http://www.strokeeurope.eu/
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This paper describes the RPM3D project 7 [10], which aims to make a step
forward towards the removal of such constraints to develop a universal tool for
monitoring rehabilitation processes. Indeed, such a tool can have a great impact
in remote health care tasks in general. The integration of an analytic tool in a
consumer and affordable technology such as smartwatches (instead of high-end
clinical devices) could be used for continuous remote patient monitoring in the
rehabilitation stages of different neuromuscular diseases, improving the medical
efficiency and reducing the healthcare costs.

The overview of our approach is shown in Figure 1. The main project results
are the following:

– We have developed a smartwatch application to record data from the inertial
sensors of smartwatches (concretely, the Apple Watch).

– We have proposed a model to segment and classify the relevant gestures in
continuous 3D movements for their posterior analysis.

– We have adapted the parameter extraction algorithms of the kinematic
model to these relevant 3D movements captured with the smartwatch.

– We have defined the experimental protocol and validated our research in a
real case scenario for stroke rehabilitation at the Guttmann Institute (neu-
rorehabilitation hospital).

The innovation potential of this project is the provision of a new tool to obtain
significant measures of the human movement of patients of brain strokes in the
rehabilitation phase using wearable devices such as smartwatches. Conveniently
calibrated, this tool can be seen as a thermometer of the human neuromotor
system, and with the appropriate interpretation (according to the correlation
with the clinical indicators), medical doctors will be able to make decisions on
the rehabilitation prescription and treatment of patients.

The rest of the paper is organized as follows. In Section 2, we overview the
state of the art. Next, in Section 3, we describe the application protocol and the
capturing of data from the smartwatches. Section 4 is devoted to the recognition
of movements, whereas Section 5 describes the kinematic analysis performed.
Section 6 is devoted to the conclusions and future work.

2 State of the Art

Assessing the physical condition in rehabilitation scenarios is challenging because
it involves Human Activity Recognition (HAR) [11] and kinematic analysis.

HAR methods must deal with intraclass variability and interclass similari-
ties [12] [13]. Also, the detection of target (relevant) movements is difficult due
to the diversity of non-target movements. In continuous time series data, the
challenge is to detect and segment those subsequences (target movements) so
that they can be properly analysed by the kinematic model. This is especially
difficult when the movements are non-repetitive and that is why a major part of
7 http://dag.cvc.uab.es/patientmonitoring/
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Fig. 1: Overview of the pipeline.

activity recognition works deal only with repetitive(periodic) movements such
as: walking[14], stair ascent or descent [15], running, sport exercises [16]...

HAR is about seeking high-level knowledge that describes human activities,
ergo HAR benefited broadly from deep learning since this latter one can provide
automatic feature extraction [17] [18] [19].

At the same time, traditional machine learning like Support Vector Machines
(SVMs) [20] [21], K-Nearest-Neighbours (KNNs) [22] [23] still provide an efficient
accurate solution for HAR tasks due to the fact that they perform better in few
data problems which is the case of most HAR tasks that suffer from data scarce.

As mentioned in the introduction, the Kinematic Theory of Rapid Human
Movement [24] has demonstrated a great potential for monitoring neuromuscu-
lar diseases, but it requires robust algorithms to estimate the model parameters
with an excellent precision for a meaningful neuromuscular analysis. So far, most
algorithms (Idelog [25] and Robust XZERO [26,27]) have mainly focused on 1D
and 2D movements in a controlled scenario, e.g. pen movements on a tablet com-
puter . This constraint makes the approach unrealistic for stroke rehabilitation.
Stroke patients have severe mobility limitations, especially in early stages, so
the analysis of their motor skills improvement is based on simple hands or arms
movements. Thus, the recently proposed 3D algorithm [28] must be adapted to
continuous movements in unconstrained scenarios (closer to real use cases). Fi-
nally, the hardware is an extra difficulty, because the smartwatch could be less
accurate than clinical devices.
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a) b) c) d)

Fig. 2: Target movements. a) Movement 1; b) Movement 2; c) Move-
ment 3; d) Movement 4.

In summary, the challenges are the following:

– The use of sensors from consumer devices instead of clinical devices, which
can decrease the quality of the data for the application of the kinematic
model.

– The extraction of the model parameters from the continuous 3D movement
sequences for their posterior analysis.

– The accurate detection, segmentation and analysis of the target movements
in uncontrolled scenarios.

3 Application Protocol and Data Capturing

Next, we describe the application protocol and the recorded movements.

3.1 Application Protocol

We have designed an upper-limb assessment pipeline inspired by the Fugl-Meyer
Assessment scale, an index to assess the sensorimotor impairment in stroke pa-
tients. Concretely, we have defined four target (non-repetitive) movements (see
Figure 2), based on the following joint movements:

1. Shoulder extension/flexion
2. Shoulder adduction/abduction
3. External/internal shoulder rotation
4. Elbow flexion/extension

We have recorded these movements in two scenarios:

– L1 is a constrained scenario which consists in performing the same target
movement in a sequence, but alternating the arm (left, right or both).
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– L2 is an unconstrained scenario, where target movements appear inside
longer sequences that include non-target movements (e.g. common daily
life activities like eating, pouring water into a glass, brushing your teeth,
scratching the ear, etc.).

As a proof of concept, we have recorded data from 25 healthy individuals and
4 patients from Guttmann Institute. Out of the 25 healthy individuals, 48% are
women and 52% are men. While for the patient population, there is one woman
and 3 men. Healthy and patient individuals’ age range between 20 and 60 years.

The users wear two watches, one in each wrist. Patients data was recorded
along four sessions with an interval of one to two weeks, while healthy individuals’
data was recorded in one session.

3.2 Data Capturing

We have developed an application for the Apple Watch 4 to record the sequences
of movements, as shown in Fig1. The user-generated acceleration (without grav-
ity) for all three axes of the device, unbiased gyroscope (rotation rate), mag-
netometer, altitude (Euler angles) and temporal information data have been
recorded in the watch’s internal memory at 100Hz sampling rate.

The two watches are synchronised thanks to an audio signal. Afterwards, the
data is transmitted to the mobile phone and the cloud service. Finally, the signal
is preprocessed to minimize the sensor drift, which often leads to inaccurate
measures and larger accumulated error.

4 Human Activity Recognition

We have used the Euler angles and the linear acceleration. To detect the target
movements in the unconstrained scenario L2, we explored two segmentation
options:

1. Segmenting the complete sequence using non-overlapping sliding windows
(namely action recognition).

2. Picking the positive peaks in the signal as candidates to be relevant move-
ments (namely gesture spotting).

We have also explored two classification methods. First, SVMs, a machine learn-
ing approach typically used in HAR, together with the following feature vector
set: the mean, the minimum, the maximum and the standard variation of the
window. Second, Convolutional Neural Networks (CNN), a deep learning model
in which the input is the linear acceleration signal instead of a feature vector
set. More details can be found at [29].

As shown in Table 1, action recognition is preferable. In healthy individuals,
the SVM classifier obtains better results (84% in L1 and 61% in L2) than the
CNN one (65% in L1 and 59% in L2) because the CNN is a data hungry method.
Concerning gesture classification, the results by the two classifiers are similar.
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Table 1: HAR classification and spotting results
Healthy Individuals Patients

Action
Recognition

Gesture
Spotting

Action
Recognition

Gesture
Spotting

Scenario SVM CNN SVM CNN SVM SVM

L1 84% 65% 55% 60% 56% 41%

L2 61% 59% 51% 53% 41% 35%

In patients, the accuracy in the unhealthy body part decreases (56% in L1 and
41% in L2) in comparison with their healthy side (84,5% in L1 and 61% in L2),
because these movements are less accurate due to their loss of motor function.

5 Kinematic Analysis

The Kinematic Theory of Rapid Human Movements describes the resulting speed
of a neuromuscular system action as a lognormal function [6] [7] [8]. To analyse
the 3D movements captured by smartwatches, we utilize a recently proposed
3D extension of the Sigma-Lognormal model [28] to decompose observed 3D
movements into sequences of elementary movements with lognormal speed. There
are several model parameters that can be analysed with a view to the patients’
motor abilities.

Here, we focus on the signal-to-noise-ratio (SNR) between the observed tra-
jectory of the smartwatch and the reconstructed trajectory using the analytical
model. A high SNR indicates a high model quality, i.e. a good representation of
the 3D movement. Furthermore, healthy subjects tend to achieve a higher SNR
than patients with motor control problems [24].

Table 2: Kinematic analysis mean standard deviation
Healthy Individuals Patients

Samples 649 126

Duration [s] 4.1 ± 1.0 4.9 ± 0.8

Number of Lognormals 17.3 ± 4.7 17.6 ± 4.5

SNR [dB] 22.2 ± 2.8 21.3 ± 2.1

Table 2 and Fig 3 present the first results of our kinematic analysis, com-
paring 649 movements from 25 healthy individuals with 126 movements from
4 patients. In both cases an excellent SNR is achieved, indicating that the 3D
Sigma-Lognormal model is suitable for analysing the smartwatch movements.
Furthermore, we observe that the patients needed more time to execute the
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Fig. 3: Kinematic analysis results.

movements, more lognormals were needed to model the patients’ movements,
and a lower SNR was achieved. The difference in SNR is statistically significant
(Mann-Whitney U test, p < 0.0001). These observations are consistent with the
lognormality principle [28] and encourage a more detailed kinematic analysis of
the patients’ motor abilities based on the Kinematic Theory.

6 Conclusion and Future Steps

In this paper, we have presented the RPM3D project, which aims to ease the
monitoring of patients during the neurorehabilitation stages.

In the future, we plan to focus on the continuous and remote monitoring of
the patients’ neuromotor status. Concretely:

– We will to perform more clinical validation through an exhaustive analysis
of the correspondence between the kinematic analysis and the clinicians’
estimations. We will also continue the comparative analysis between healthy
users and patients.

– We will explore the use of other lower-cost wearables (e.g. smarbands) and
also, the possibility to combine the sensor data with video images or speech.
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Also, we would like to recognize functional (purposeful) movements to deter-
mine the degree of integration of the affected side of the body in the patients’
daily life actions.

– We will explore the adaptation of our approach for monitoring patients suf-
fering from Multiple Sclerosis or Parkinson diseases, the ageing effects in
elderly people, the effects of medication in clinical trials, etc.
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