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The Kinematic Theory of rapid human movements analytically describes
pen tip movements as a sequence of elementary strokes with lognormal
speed. The theory has been confirmed in a large number of experimen-
tal evaluations, achieving a high reconstruction quality when compared
with observed trajectories and providing pertinent features for biomed-
ical applications as well as biometric identification. So far, the Kine-
matic Theory has focused on one-dimensional movements with the Delta-
Lognormal model and on two-dimensional movements with the Sigma-
Lognormal model. In this chapter, we present a model for movements
in three dimensions, which naturally extends the Sigma-Lognormal ap-
proach. We evaluate our method on two action recognition datasets and
an air-writing dataset, demonstrating a high reconstruction quality for
modelling rapid 3D movements in all cases.

1. Introduction

The Kinematic Theory of rapid human movements [Plamondon, 1995a,b,

1998, Plamondon et al., 2003] is one of the most comprehensive theories on

the production process of handwriting. It postulates that pen tip move-

ments are the result of a series of elementary neuromuscular strokes, whose

speed is a lognormal function. When compared with other frameworks for

human movement modeling, such as coupled oscillator models [Hollerbach,

1981] or minimum jerk models [Flash and Hogans, 1985], the Kinematic

Theory stands out with an excellent reconstruction quality of observed tra-
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jectories [Plamondon et al., 1993], i.e. the analytical representation is highly

accurate.

Moreover, an increasing number of experiments suggest that the ana-

lytical representation provided by the Kinematic Theory indeed captures

neuromuscular properties of the writer, which can be exploited for the anal-

ysis of human motor control. Successful applications include learning tools

for children [Djeziri et al., 2002, Rémi et al., 2017], biomedical applica-

tions [Plamondon et al., 2013, O’Reilly et al., 2014], gesture recognition [Al-

maksour et al., 2011], handwriting recognition [Fischer et al., 2014, Martin-

Albo et al., 2014], and signature verification [Galbally et al., 2012a,b, Diaz

et al., 2018, Fischer and Plamondon, 2017], to name just a few. Besides the

analysis of finger movements, the Kinematic Theory has also been applied

to analyze wrist, arm, head, and eye movements [Plamondon, 1995a], and

recently on head trunk rotations [Lebel et al., 2017] as well as for speech

processing [Carmona-Duarte et al., 2016].

Except for a few published and unpublished exploratory studies [Leduc

and Plamondon, 2001, Djioua, 2007], the Kinematic Theory has focused on

movements in one and two dimensions. Rapid 1D movements are modeled

by two opposed neuromuscular systems generating agonist and antagonist

movements, according to the Delta-Lognormal model (∆Λ) [Plamondon

and Guerfali, 1998]. Complex 2D movements, such as signatures, are mod-

eled by a vectorial sum of strokes, i.e. several movements that are overlap-

ping in time during execution, according to the Sigma-Lognormal model

(ΣΛ) [Plamondon and Djioua, 2006].

In both cases, algorithms are needed to extract the model parameters

from observed trajectories. The Robust XZERO algorithm [Djioua and

Plamondon, 2008] has been proposed to estimate the parameters of the ∆Λ

model from the velocity profile. For estimating the parameters of the ΣΛ

model, the Robust XZERO algorithm is complemented with an estimation

of the start and end angles of the two-dimensional strokes [O’Reilly and

Plamondon, 2009]. Improved variants of this approach include a breadth-

first search strategy that minimizes the number of strokes [Martin-Albo

et al., 2015] and the recently introduced iDeLog method [Ferrer et al., 2018],

which estimates the lognormal parameters not only from the velocity profile

but also from the trace, taking into account visual feedback.

In this chapter, we present a three-dimensional model for the Kinematic

Theory. It naturally extends the ΣΛ model by introducing an additional

angle for the third dimension. The present chapter builds upon our re-

cent conference paper [Schindler et al., 2018], which has introduced the
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method. Additional contributions include a more comprehensive descrip-

tion of the 3D model as well as an extended experimental evaluation on two

supplementary motion datasets. In our experiments, we measure the recon-

struction quality of the 3D model in terms of signal-to-noise-ratio (SNR) as

well as classification accuracy on two action recognition datasets, namely

HDM05 [Müller et al., 2007] and UTKinect [Xia et al., 2012], as well as

an air-writing dataset [Chen et al., 2016]. While the air-writing dataset

consists of finger movements, the action recognition datasets are based on

wrist and ankle movements.

The remainder of this chapter is organized as follows. Section 2 reviews

the standard ΣΛ model of the Kinematic Theory, Section 3 details our

proposed extension to three dimensions, and Section 4 reports experimental

results. Finally, we draw conclusions in Section 5 and discuss future lines

of research for modeling 3D movements with the Kinematic Theory.

2. Sigma-Lognormal Model

The Sigma-Lognormal model (ΣΛ) [Plamondon and Djioua, 2006] of the

Kinematic Theory represents a two-dimensional pen tip movement as a

series of elementary strokes.a An individual stroke is initiated at time t0 in

the central nervous system to cover distance D. It is then executed with

lognormal speed

|~v(t)| = D√
2π · σ(t− t0)

exp

(
− [ln(t− t0)− µ]2

2σ2

)
, (1)

where µ is the log time delay and σ is the log response time, which depend

on the neuromuscular system. The distance traveled at time t is

d(t) =

∫ t

0

|~v(τ)|dτ =
D

2

[
1 + erf

(
ln(t− t0)− µ

σ
√

2

)]
. (2)

The ΣΛ model assumes that each 2D stroke follows a circular trajectory

with start angle θs and end angle θe. The angular position is

θ(t) = θs + (θe − θs)
d(t)

D
. (3)

To sum up, each lognormal stroke s is characterized by a total of six

parameters

s = (t0, D, µ, σ, θs, θe) . (4)
aNote that the term stroke is sometimes used to describe the pen tip movement be-
tween pen-down and pen-up. In the present context of kinematic analysis, it refers to

a movement primitive described by a lognormal velocity profile. [Woch and Plamondon,

2004].
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Finally, the velocity of the 2D movement is given by vectorial summation

of n individual strokes

~v(t) =

n∑
i=1

~vi(t) . (5)

The underlying assumption is that the strokes are scheduled in an action

plan according to their initiation time t0 and overlap in their execution.

For reconstructing the velocity and the trace of a 2D pen tip movement

based on the analytical ΣΛ representation, it follows that

vx(t) =

n∑
i=1

|~vi(t)| cos(θi(t)) , (6)

vy(t) =
n∑

i=1

|~vi(t)| sin(θi(t)) , (7)

x(t) =

∫ t

0

vx(τ)dτ , (8)

y(t) =

∫ t

0

vy(τ)dτ . (9)

Figure 1 illustrates a handwritten signature and its ΣΛ model. The ob-

served as well as the reconstructed signature is shown, together with the cir-

cular trajectories of the individual strokes. The signal-to-noise ratio (SNR)

is 27dB for this example, which is highly accurate (see Section 2.2).

For more details, we refer to the articles that introduce the Kinematic

Theory. [Plamondon, 1995a,b, 1998, Plamondon et al., 2003].

2.1. Stroke Extraction and Parameter Estimation

One of the most widely used algorithms for stroke extraction and estimation

of the ΣΛ parameters is based on an iterative detection of strokes in the

velocity profile [O’Reilly and Plamondon, 2009].

In order to improve the stability of the algorithm, certain signal prepro-

cessing steps are recommended. First, it can be helpful to stop the pen tip

artificially at the beginning and at the end of the movement during 200ms,

to ensure zero velocity. Secondly, if the acquisition device has a low or

unstable sampling rate, an interpolation of the velocity profile with cubic

splines and a resampling at 200Hz is suggested. Finally, a low-pass filter

can be used to remove noise introduced by the acquisition device.

After preprocessing, strokes are extracted iteratively from the signal.

The following five steps describe the extraction of a single stroke:
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Fig. 1. Sigma-Lognormal reconstruction of the trace and the velocity profile of a hand-

written signature [Fischer and Plamondon, 2017].

(1) Detect new stroke in the speed profile |~v(t)|.
(2) Estimate parameters D, t0, µ, and σ.

(3) Estimate angular parameters θs and θe.

(4) Optimize parameter estimation.

(5) Remove stroke from the speed profile.

These steps are repeated until there are no more strokes detected in the

speed profile.

Step 1 detects a local maximum in the speed profile together with neigh-

boring infexion points and minima. The maximum speed and the area

under curve have to exceed a minimum value.

Step 2 applies the Robust XZERO algorithm [Djioua and Plamondon,

2008] to estimate the speed-related parameters D, t0, µ, and σ. It is based

on zero crossings of the first and second derivatives of the lognormal func-

tion.

Step 3 estimates the start angle θs and the end angle θe based on five

characteristic times of the lognormal stroke illustrated in Figure 2. The

start and end are chosen as t1 = t0 +exp(µ−3σ) and t5 = t0 +exp(µ+3σ),
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Fig. 2. Characteristic times of a lognormal stroke.

respectively. The maximum speed is reached at t3 = t0 + exp(µ − σ2),

and the inflection points are t2 = t0 + exp(µ− 1.5σ2 − σ
√

0.25σ2 + 1) and

t4 = t0 + exp(µ− 1.5σ2 + σ
√

0.25σ2 + 1), respectively.

The angular parameters are obtained by means of linear extrapolation.

Considering the velocity angle

θ(t) = arctan
vy(t)

vx(t)
, (10)

the angular derivative is calculated with respect to the distance traveled at

time t4 and t2 (see Equation 2)

∆θ =
θ(t4)− θ(t2)

d(t4)− d(t2)
. (11)

Finally, the start and end angles are estimated using

θ̂s = θ(t3)− (d(t3)− d(t1))∆θ , (12)

θ̂e = θ(t3) + (d(t5)− d(t3))∆θ . (13)

Step 4 optimizes the initial parameter estimation using non-linear least

squares curve fitting.

Step 5 removes the new stroke from the speed profile before the next

stroke is detected.

For more details on stroke extraction and parameter estimation, we refer

to the original article [O’Reilly and Plamondon, 2009].

2.2. Model Quality

The analytical ΣΛ model allows to reconstruct the movement using Equa-

tions 6-9. The quality of the model can be evaluated by means of a signal-

to-noise ratio (SNR) between the observed velocity ~vo(t) and the recon-

structed velocity ~vr(t). With respect to the start time ts and end time te
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Fig. 3. Spherical coordinates of the 3D model.

of the movement, the SNR is

SNR = 10 · log

( ∫ te
ts
|~vo(τ)|2dτ∫ te

ts
|~vo(τ)− ~vr(τ)|2dτ

)
. (14)

In practice, we approximate the integral with the trapezoidal rule over all

sampling points.

3. 3D Model Extension

The proposed 3D model naturally extends the ΣΛ model by introducing

an additional angle φ(t) for the third dimension as illustrated in Figure 3,

where the radius ρ = |~v(t)| corresponds to the speed.

Assuming that strokes act along a pivot direction, we model the new

angle similar to Equation 3 by

φ(t) = φs + (φe − φs)
d(t)

D
. (15)

That is, the change in the angle is proportional to the distance traveled.

Two additional parameters are thus introduced to the stroke model, i.e.

the start angle φs and the end angle φe in the third dimension

s3D = (t0, D, µ, σ, θs, θe, φs, φe) . (16)

For reconstructing the velocity based on the 3D model, Equations 6
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and 7 have to be modified. The three velocity components are

vx(t) =

n∑
i=1

|~vi(t)| sin(φi(t)) cos(θi(t)) , (17)

vy(t) =

n∑
i=1

|~vi(t)| sin(φi(t)) sin(θi(t)) , (18)

vz(t) =

n∑
i=1

|~vi(t)| cos(φi(t)) . (19)

For reconstructing the position, Equations 8 and 9 remain the same.

The three position components are

x(t) =

∫ t

0

vx(τ)dτ , (20)

y(t) =

∫ t

0

vy(τ)dτ , (21)

z(t) =

∫ t

0

vz(τ)dτ . (22)

The stroke extraction and parameter estimation procedure follows the

same procedure as in 2D (see Section 2.1). In Step 3, the additional angles

φs and φe are estimated similar to θs and θe.

Considering the velocity angle

θ(t) = arccos
vz(t)

ρ
, (23)

where ρ = |~v(t)| is the speed, we estimate the new angles similar to Equa-

tions 11-13:

∆φ =
φ(t4)− φ(t2)

d(t4)− d(t2)
, (24)

φ̂s = φ(t3)− (d(t3)− d(t1))∆φ , (25)

φ̂e = φ(t3) + (d(t5)− d(t3))∆φ . (26)

The proposed modifications of the ΣΛ model allow us to extract 3D

strokes from any three-dimensional movement. By vectorial summation of

the strokes, the analytical model enables us to reconstruct the movement.

The model quality is measured in terms of SNR as described in Section 2.2.

4. Experimental Evaluation

The proposed 3D model has been evaluated on three publicly available

motion datasets described in Section 4.1. Besides reporting the SNR in

Section 4.2, we also investigate the reconstructed 3D movements in the

context of a classification experiment in Section 4.3.
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Table 1. 3D motion datasets.

HDM05 UTKinect Air-Writing

Type of activities Actions Actions Words

Number of subjects 5 10 5

Number of classes 11 10 100

Number of samples 249 199 500

Acquisition device Vicon Kinect Leap

Sampling rate 120 Hz 15 Hz 60 Hz

reconstructed trajectories

original trajectories

Fig. 4. Original (blue) and reconstructed (red) traces and velocity profiles of the four

limbs for a kick action from the HDM05 dataset.

4.1. Datasets

A summary of the motion datasets is provided in Table 1, including the

number of subjects who performed 3D movements, the number of classes

(types of movements), the total number of samples in the dataset, the

acquisition device, and the sampling rate.

Exemplary 3D trajectories together with their reconstructions are shown

in Figures 4-6 for each of the datasets.

HDM05. The HDM05 dataset [Müller et al., 2007] contains around 1500

motion samples of 100 different action classes, performed by five subjects.

The movements were recorded with an optical marker-based motion capture

suit of Vicon with a sampling rate of 120 Hz.

We use a common subset of eleven classes and 249 samples. The classes

are deposit floor, elbow to knee, grab high, hop both legs, jog, kick forward,
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reconstructed trajectories

original trajectories

Fig. 5. Original (blue) and reconstructed (red) traces and velocity profiles of the four

limbs for a throwing action from the UTKinect dataset.

original trajectory

reconstructed trajectory

Fig. 6. Original (blue) and reconstructed (red) traces and velocity profiles of the fin-

gertip for the word ZIP from the Air-Writing dataset.

lie down floor, rotate both arms backward, sneak, squat and throw basketball.

Four 3D trajectories are considered for our experiments, namely the

wrists relative to the shoulders and the ankles relative to the hips [Boulahia

et al., 2016]. These trajectories are then normalized by the length of arms

and legs of the subject, which supports action recognition across different

persons [Kulpa et al., 2005].

UTKinect. The UTKinect dataset [Xia et al., 2012] is composed of 199

samples of 10 actions performed by 10 subjects. The movements are

recorded by a Kinect camera with a sampling rate of 30Hz. However,

frames were only recorded when the skeleton was tracked, causing missing
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Table 2. Reconstruction quality in terms of SNR.

HDM05 UTKinect Air-Writing

2D 3D 2D 3D 2D 3D

Mean 19.19 18.52 21.87 20.21 12.60 12.52

Standard deviation 3.77 4.09 3.62 4.40 2.02 2.02

frames and a final sampling rate of about 15Hz.

Ten indoor activities include walk, sit down, stand up, pick up, carry,

throw, push, pull, wave and clap hands.

Similar to the HDM05 dataset, we consider four 3D trajectories of nor-

malized wrist and ankle movements.

Air-Writing. The Air-Writing dataset [Chen et al., 2016] includes 150

short words written with the index finger into the air by 18 subjects. They

consist of uppercase letters A-Z and were written with a specified movement

order in box-writing style, i.e. on top of each other. The writing is recorded

without markers or gloves using a Leap camera with a sampling rate of

60Hz.

For our experiments, we consider 100 common words written by 5 sub-

jects (C3, J1, M3, T3, W1), resulting in a total of 500 fingertip trajectories.

4.2. SNR Results

Table 2 reports the mean SNR of our 3D model together with the standard

deviation for all three datasets. It is compared with the SNR achieved with

the unmodified ΣΛ model when the z-direction is disregarded. Detailed bar

plots are provided in Figure 7.

Despite the increased complexity of modeling 3D movements, the pro-

posed method achieves a high model quality that is only slightly below the

2D results. Actions recorded by the Vicon suit (HDM05) and the Kinect

camera (UTKinect) have a significantly higher SNR than the finger move-

ment recorded with the Leap camera (Air-Writing), which may be due to

the larger scale of the whole-body actions when compared with the rela-

tively small finger movements. In all three datasets, the movements are

rather rapid with a duration of less than five seconds on average.

These results also demonstrate that the proposed algorithm can work

with low frequency sampled signals as compared to most of the previous

studies where the sampling frequency is above 100 Hz, generally 200Hz.
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Fig. 7. SNR histograms for 2D reconstructions (left) and 3D reconstructions (right) of

the HDM05, UTKinect, and Air-Writing datasets (top to bottom).

4.3. Classification Results

In a final experiment, we have classified the different types of movements

using dynamic time warping (DTW) [Schindler et al., 2018].

During preprocessing, we resample the original trajectories at 30Hz for

HDM05 and at 15Hz for UTKinect and Air-Writing using cubic spline in-

terpolation, in order to obtain a stable sampling rate and to speedup the

DTW computation. The reconstructed trajectories are computed at the

same sampling times. Afterwards, we use a second-order regression to com-

pute velocity and acceleration as additional features leading to a total of

nine features (x, y, z, vx, vy, vz, ax, ay, az) per sample point.

The classifier is optimized for each dataset separately with respect to fea-

ture selection and feature normalization. For HDM05, the best results are

achieved when considering only the velocity for each of the four limbs, nor-

malized to zero mean and unit variance for each movement. For UTKinect,



December 3, 2019 16:57 ws-rv9x6 Book Title fischer19chapter
page 13

Modeling 3D Movements with the Kinematic Theory of Rapid Human Movements 13

only the position is considered for each of the four limbs and no normal-

ization is applied. For Air-Writing, position and velocity are considered for

the finger movement, normalized to zero mean.

For classification, the DTW distance is computed for all pairs of move-

ments. Each movement is then assigned to the same class as the nearest

neighbor in the dataset performed by other subjects. In order to speedup

the distance computation and to avoid unrealistic warping paths, we use

DTW with a Sakoe-Chiba band of width |n1−n2|+10, where n1 and n2 are

the number of sampling points of the two movements. The resulting DTW

distance is normalized with the total number of sampling points n1 + n2.

The classification results are reported in Table 3 both for original and

reconstructed samples, respectively. In all cases, we observe only a slight

deviation in the classification accuracy, which emphasizes the high quality

of the proposed 3D model.

Table 3. Classification accuracy using origi-

nal and reconstructed 3D movements.

Original Reconstructed

HDM05 96.4 96.1

UTKinect 94.0 92.0

Air-Writing 99.0 98.2

5. Conclusions

The proposed 3D model of the Kinematic Theory of rapid human move-

ments has demonstrated a high reconstruction quality for rapid 3D move-

ments of ankles, wrists, and fingertips recorded with diverse equipment.

There are several promising lines of future research to pursue. First,

there seems to be potential to improve the current stroke extraction and

parameter estimation method, for example by minimizing the number of

strokes [Martin-Albo et al., 2015] or by taking into account visual feed-

back [Ferrer et al., 2018]. Secondly, the synthesis of 3D movements may

be highly rewarding. It can support classifiers with realistic training data.

Thirdly, there is a wide range of new applications that may emerge from

modelling 3D motions with the Kinematic Theory in biomedicine, biomet-

rics, and robotics.

From a more fundamental perspective, our results support the univer-

sality of the lognormality principle and its potential use to study any kind

of human movements.
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Rémi, C., Nagau, J., Vaillant, J. and Plamondon, R. (2017). Preliminary study of
t0, a sigma-lognormal parameter extracted from young children’s controlled
scribbles, in Proc. 18th Conf. of the International Graphonomics Society,
pp. 109–113.

Schindler, R., Bouillon, M., Plamondon, R. and Fischer, A. (2018). Extending
the sigma-lognormal model of the kinematic theory to three dimensions, in
Proc. 1st Int. Conf. on Pattern Recognition and Artificial Intelligence, pp.
748–752.

Woch, A. and Plamondon, R. (2004). Using the framework of the kinematic theory
for the definition of a movement primitive, Motor Control 8, 4, pp. 547–557.

Xia, L., Chen, C. and Aggarwal, J. (2012). View invariant human action recogni-
tion using histograms of 3d joints, in Proc. IEEE Conf. on Computer Vision
and Pattern Recognition Workshops (CVPRW), pp. 20–27.


