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Abstract. Detection of fidgeting activities is a field which has not been much 
explored as of now. Studies have shown that fidgeting has a beneficial impact on 
people's healthiness as it burns a significant amount of energy. Being able to de-
tect when someone is fidgeting would allow to study more closely the health im-
pact of fidgeting. The purpose of this work is to propose an algorithm being able 
to detect feet fidgeting period of subjects while sitting using 3-D accelerometers 
on both shoes. Initial results on data from 5 subjects collected during this work 
shows an accuracy of 95% for a classification between sitting with fidgeting and 
sitting without fidgeting. 
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1 Introduction 

Physical inactivity is more and more frequent in today society. It is known that seden-
tary has a negative impact on health, notably weight increase as energy is conserved as 
body fat. Health specialists therefore recommend to people to do physical activities to 
stay healthy. Recent studies have shown that people doing a light physical activity like 
walking, household activities or fidgeting could add up to several hundred of calories 
burnt per day, which has an impact on human well-being. While the field of activity 
and gesture recognition has seen a lot of research the past years, mainly due to the 
growing of fields such as human-computer interaction (HCI) or health-monitoring de-
vices, the problem of detecting fidgeting periods has seen much less research. Activity 
and gesture recognition might initially seem to be a problem similar to fidgeting detec-
tion. There are however some key differences, mainly in the nature of movements. Ac-
tivities are spanning on a longer period while fidgeting is generally short and sponta-
neous. This has an impact on the discriminative power of features, the mean of a signal 
is frequently used in posture recognition as it averages out over a long time, while it 
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might not be as important for fidgeting detection due to the short and spontaneous na-
ture of the movement. An algorithm allowing to detect whether a subject is fidgeting is 
of great interest, it would allow to further assess the impact of fidgeting on energy con-
sumption or it could be used to encourage fidgeting. Therefore, the purpose of this work 
is to propose an algorithm detecting periods where the subject is fidgeting with its feet 
by using smart shoes composed of tri-axial accelerometers. First a selection of similar 
work is presented. The dataset as well as the data collection protocol and instrumented 
shoe system is discussed. The algorithms chapter presents the pipeline of the data, the 
features extracted from the signals as well as trained models. Tests done during the 
work, which include determining an optimal window size and reproduction of a base-
line algorithm are then presented, followed by a discussion of the result. The work ends 
with a conclusion and possible outlook. 

2 Related Works 

Various algorithms were proposed for the tasks of activity and gesture recognition. 
Ayumi explored the application of Gradient boosting to action recognition over multi-
ple dataset using a Kinect and depth sensor camera. While the nature of the data is 
different in our work, Ayumi compared gradient boosting to methods such as SVM or 
naive Bayes. The gradient boosting method outperformed the other two in most cases 
[3]. Zhang et al. worked on activity classification using decision tree and tri-axial ac-
celerometers on instrumented shoe sensors [2]. El Achkar et al. proposed a system for 
activity classification using Instrumented shoe and a tree-based algorithm [5]. In these 
two studies data are similar to our work while movements are different, which impacts 
the choice of features and windowing. Tapia presents a detailed analysis of activity 
recognition using machine learning algorithm based on accelerometers data, exploring 
questions such as the processing and windowing of the signals, impact of multiple fea-
tures, various models such as decision tree, naive Bayes, nearest neighbor and the dif-
ferences between subject-dependent and subject-independent training [6]. Lugade et al. 
similarly proposed an algorithm which detects movements with a sensitivity greater 
than 85% using accelerometers which were placed on the waist and thigh. Amongst the 
activities, they were trying to detect quiet sitting and sitting with fidgeting. While the 
proposed algorithm could get good performances on activity recognition, they do men-
tion that their lowest accuracy was for activities where the subject was fidgeting while 
sitting or standing [1]. As suggested by Lugade et al, it is necessary to do more research 
on human motion while fidgeting which is the focus of this work. Zhang et al. proposed 
an algorithm to detect feet fidgeting while the subject is sitting by using a 3D accel-
erometer. This is, to our knowledge, the only algorithm which is performing feet fidg-
eting recognition while seated and will therefore be used as a baseline algorithm for 
this work [4]. 
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3 Datasets 

Data in this study data were gathered using instrumented shoe sensors which were pro-
vided by [6].  

3.1 Instrumented Shoe 

The instrumented shoe system is composed of insoles with force sensors, a Physilog 
which includes 3D accelerometer, 3D gyroscope and 3D magnetometer with a sampling 
frequency of 200 Hz. The system can easily be inserted in any shoe. The orientation 
and position of Physilog sensors is not primordial as calibration of the signal is done. 
Fig. 1 shows the instrumented shoe once set up as well as the orientation of accelerom-
eter and gyroscope axes.  

 
Fig. 1. Instrumented shoe setup with axes orientation 

3.2 Collected dataset 

A dataset was collected for this study using the instrumented shoe in [6]. Data from 6 
different subjects were collected. Each subject had to follow a predetermined protocol 
after a calibration of the sensors. 
 
Collection protocol. Table 1 shows the protocol followed by each subject. They were 
sitting on a chair for the whole time and asked to perform four different leg gestures 
generally considered as fidgeting, with 5s of quiet standing in-between each fidget. 
During the quiet sitting period, the subject was asked not to move. This protocol was 
performed twice for each subject, one time for each foot. A supervisor was present 
during the collection protocol to note the time at which subjects where changing be-
tween tasks so that it is possible to label the data later. 
 

Task Duration (s) 
Quiet sitting 5 
Fidget 1 10 
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Quiet sitting 5 
Fidget 2 10 
Quiet sitting 5 
Fidget 3 10 
Quiet sitting 5 
Fidget 4 10 

Table 1. Data Collection Protocol 

The total time of the protocol is 1 min of data per subject, repeated once for each 
foot. Considering 6 subjects, this results in a dataset which contains a total of 12 
minutes of data. 
 

• Fidget 1 (upper leg swinging): The subject is moving its thighs left and right, either 
one or both at the same time. The two feet are constantly touching the ground. This 
gesture could be identical for each foot, depending on the subject. 

• Fidget 2 (up and down leg bouncing): The subject has his two feet on the floor and 
is repetitively moving the heel of one leg up and down (along the z axis) with the toe 
still touching the ground. 

• Fidget 3 (Lower leg swinging): The heel of one leg stands on the knee of the other 
one. The subject was asked to move its foot. 

Fidget 4 (Foot jiggling): The legs of the subject are crossed with its thighs being one 
over the other. The lower leg of the subject is swinging, usually along the y axis. 

 
Fig. 2. Illustration of the 4 types of fidgeting recorded 

Collected Features. Given the multiple sensors present on the instrumented shoe, it 
was possible to collect a total of 15 signals per foot as listed below. 

• 3D acceleration [g] 
• 3D gyroscope [deg/s] 
• Force of the eight insole sensors [V] 
• Pressure [KPa] 
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Collected data were labeled to train supervised models. In that regard, signals were 
shown on a plot where the supervisor could specify fidgeting periods as noted during 
the collection protocol. 

4 Algorithms 

 
Fig. 3. Algorithm pipeline of the processed data. 

4.1 Signal processing.  

Filters. Raw signals extracted from sensors are usually noisy. It is important to prepro-
cess them before extracting features from them. Removing frequencies considered to 
be noise is an important first step. A Butterworth bandpass filter with the following 
specification was applied to signals: 

• Passband: [0.1 20] Hz 
• Stopband: [0.01, 99] Hz 
• Maximum passband ripple: 1 dB 
• Minimum stopband attenuation: 60 dB 

Windowing. A second important step is to split signals in multiple windows. An opti-
mal window length is not universally defined and seems to depend on the problem to 
be solved. In the context of this work it is necessary to detect fidgeting which are usu-
ally short spontaneous movements. A small window therefore seems to be more appro-
priate to the problem. Both non-overlapping and 50% overlapping windows will be 
extracted from the signals to compare the two versions in terms of performance metrics. 

4.2 Feature extraction 

The present work focused on using accelerometers, therefore only the six accelerome-
ters signals, x, y and z for each foot, were used. For each signal, multiple features in-
spired by the work of Tapia [6] were computed as presented below. Both time and 
frequency features were extracted. For the frequency domain features, the 0 Hz term of 



6 

the FFT was omitted when computing features related to the frequency domain. Fea-
tures are extracted on a window-basis. A total of 62 features are extracted for each 
window and the whole set of features was used to train classification models. 

FFT Peaks. The frequency component with the highest magnitude. A tuple which con-
tains the frequency and its magnitude is extracted. 

Main frequency energy ratio. This feature is computed using the equation 1, where 
𝑚𝑎𝑔ℎ$%   is the highest magnitude across all frequencies of the signal. The maximum 
frequency is 20 Hz. 

𝑅 = 	
𝑚𝑎𝑔ℎ$%

𝑚𝑎𝑔$%
)*+	 _-./0
$12

	(1) 

Entropy. The entropy is a commonly used feature in signal processing measuring the 
signal complexity. Equations 2 and 3 show how the entropy is computed, with B being 
the number of FFT bins. 

𝐻 = 	−	 𝑝9 ∗ 	 log% 𝑝9

>

91?

	(2) 

𝑝9 = 	
𝑚𝑎𝑔9
𝑚𝑎𝑔A>

A12
	(3) 

Root mean square. The root mean square is a commonly used feature in statistics and 
is easy to compute. The signal is detrended before computing this feature, with N being 
the number of samples in the window and 𝑎C is the measured acceleration at index n in 
the window. 

𝑅𝑀𝑆 = 	
1
𝑁
	 𝑎C %

G

C1?

H

	(4) 

Absolute area. This feature is the sum of the absolute value of each sample in the 
window. 

Absolute mean. Like the absolute area, the absolute mean corresponds to the mean of 
the samples in the window.  
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Autocovariance. The autocovariance corresponds to the cross-covariance of a signal 
with itself. Only the highest and the lowest values were kept for each signal which 
results in 2 features per signal. 

Approximate entropy. The approximate entropy is a feature which is useful for cap-
turing signal complexity and the evolution of complexity and predictability of the sig-
nal. A value close to 0 suggests that the signal is predictable and regular. The parame-
ters m=2 and r=0.01 were used to compute this feature [8]. 

Total SVM. The signal vector magnitude of the signal is extracted as a feature by using 
the equation 5  

𝑆𝑉𝑀 =
1
𝑁
	 	 𝑎C_K%

C9_LMNO

K1?

HG

C1?

(5) 

Total absolute area. This feature corresponds to the sum of the absolute area feature 
of the six accelerometer signals used. It is computed once per window instead of once 
per signal. 

4.3 Models  

Multiple supervised models were trained and compared in this work, which includes 
decision tree, random forest, AdaBoost and gradient tree boosting. The training was 
done using K-fold cross-validation with K=10. A grid search was performed on each 
model to optimize hyperparameters. Both binary and multiclass models were trained 
using a single subject-independent dataset. The purpose of binary models was to clas-
sify between fidgeting and no fidgeting while multiclass models should recognize each 
fidgeting gesture independently. For each category (binary / multiclass) of models, the 
four machine learning algorithms were trained once using non-overlapping window and 
a second time with 50% overlapping window. The choice of the optimal window size 
is detailed in 5.2. 

5 Tests 

5.1 Baseline algorithm 

Zhang et al. proposed an algorithm to detect whether a subject is sitting or sitting and 
fidgeting [4]. In a 2-second window, the sum of the square of the three accelerometer 
signals is computed for each sample in the window. Only the maximum of these values 
in the window is kept and signals are not preprocessed in this algorithm. If the maxi-
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mum value is above a given threshold, the window is classified as fidgeting. One limi-
tation of this algorithm is that it can’t be used for multiclass classification. This algo-
rithm was reproduced and used as a baseline comparison for the proposed algorithm. 
As only few information on how to compute the decision threshold was available, a 
decision tree with the entropy splitting criterion and a maximum depth of 1 node was 
used to determine this threshold. 

5.2 Optimal window length 

Tapia [6] proposed a procedure to determine an adequate window length for a given 
dataset. Two features highly impacted by the window length, the Pearson correlation 
coefficient and FFT peaks were computed for each signal, using windows size ranging 
from 1s to 7s, with a step size of 0.2s. A CART Decision Tree was then trained on the 
two features previously mentioned for each combination of window length, window 
overlap and classification type. Performances were assessed using 10-fold cross-vali-
dation. The Fig. 4 shows the trend for the binary, non-overlapping windows model, 
other models are not shown here but similar results were obtained. The accuracy de-
crease as the window length increase which can be explained by the fact that increasing 
the window size drastically reduces the number of samples of the already small dataset 
therefore increasing the generalization error of the model. 

 

Fig. 4. Accuracy as function of window length for the binary, non-overlapping windows model. 

6 Results and Discussion 

Table 2 and 3 summarize the results obtained with the best performing model resulting 
of the grid search using 10-fold cross-validation. Metrics are computed using a macro-
average. We see that models trained on overlapping window perform slightly better 
overall. Performances are good for both binary and multiclass models.  
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Regarding the binary problem, DT perform slightly worse than other models. The Mat-
thews correlation coefficient (MCC) is significantly lower for the baseline algorithm. 
Because the classes are not perfectly balanced, metrics such as accuracy are slightly 
skewed while the MCC is more representative of the true performances.  
 

 Accuracy Precision Recall F-score MCC 
 No O No O No O No O No O 

Base 0.80 0.83 0.81 0.81 0.58 
DT 0.89 0.93 0.89 0.93 0.89 0.93 0.89 0.93 0.72 0.83 
RF 0.93 0.95 0.93 0.95 0.93 0.95 0.93 0.95 0.83 0.89 
AB 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.86 0.85 
GB 0.94 0.94 0.94 0.95 0.94 0.94 0.94 0.95 0.86 0.87 

Table 2. Performances of binary models using rectangular windows. “No” stands for non-over-
lapping windows, “O” for 50% overlapping windows, “DT” is decision tree, “RF” is random 

forest, “AB” is AdaBoost, “GB” is gradient tree boosting. 

The multiclass problem still yields decent performances. Gradient tree boosting has the 
best performances overall. While models might be overfitted, it is to be noted that 
boosting method such as gradient tree bosting trains multiple shallow trees and is there-
fore resilient to overfitting. 
 

 Accuracy Precision Recall F-score 
 No O No O No O No O 

DT 0.77 0.82 0.77 0.82 0.77 0.82 0.77 0.82 
RF 0.85 0.90 0.85 0.89 0.85 0.89 0.85 0.89 
AB 0.40 0.64 0.42 0.65 0.41 0.64 0.40 0.64 
GB 0.88 0.91 0.88 0.91 0.88 0.91 0.88 0.91 

Table 3. Performances of the multiclass models using rectangular window. 

Fig. 5 shows the confusion matrix for the GB model with 50% overlapping window of 
length 1.2s, which results in a dataset of approximately 1200 samples. While other ma-
trices are not presented here, the error distribution is similar in each one of them. We 
see that there is a confusion between the gesture “Lower leg swinging” and “Foot jig-
gling”. These two gestures are indeed quite similar, another source of misclassification 
is the “No fidgeting” class. A possible source of confusion here is that the “No fidgeting” 
class isn’t perfectly representative of the reality as subjects were asked not to move 
during the quiet sitting periods. A subject might do small movements that should not 
be considered as fidgeting. It is also to be noted that the classes are not perfectly bal-
anced, with more “No fidgeting” samples compared to the other classes for the mul-
ticlass models. It is the opposite for the binary models, 2/3 of the samples are labelled 
as fidgeting. 
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Fig. 5. Confusion matrix of the GB model trained on 50% overlapping 1.2s windows 

7 Conclusion 

In this work, we showed initial results on detecting fidgeting activities while seated. 
The algorithm can get decent performances on the multiclass problem and better per-
formances when compared to the baseline algorithm for the binary classification prob-
lem. While more work is still necessary, this does provide initial promising results. The 
main limitation of this work is the collected dataset which is too small and leads to 
model overfitting. Therefore, the next step is to collect more data by having subjects in 
real-life situations instead of following a predefined protocol. Other possible outlook 
includes performing dimensionality reduction algorithm to select only the most relevant 
features and extracting features from other sensors such as the gyroscope or the force 
sensing insole. 
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