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Abstract—This paper presents a page segmentation method
for handwritten historical document images based on a Con-
volutional Neural Network (CNN). We consider page segment-
ation as a pixel labeling problem, i.e., each pixel is classified as
one of the predefined classes. Traditional methods in this area
rely on hand-crafted features carefully tuned considering prior
knowledge. In contrast, we propose to learn features from raw
image pixels using a CNN. While many researchers focus on
developing deep CNN architectures to solve different problems,
we train a simple CNN with only one convolution layer. We
show that the simple architecture achieves competitive results
against other deep architectures on different public datasets.
Experiments also demonstrate the effectiveness and superiority
of the proposed method compared to previous methods.
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I. INTRODUCTION

Page segmentation is an important prerequisite step of

document image analysis and understanding. The goal is to

split a document image into regions of interest. Compared

to segmentation of machine printed document images, page

segmentation of historical document images is more chal-

lenging due to many variations such as layout structure,

decoration, writing style, and degradation. Our goal is to

develop a generic segmentation method for handwritten

historical documents. In this method, we consider the seg-

mentation problem as a pixel-labeling problem, i.e., for a

given document image, each pixel is labeled as one of the

predefined classes.

Some page segmentation methods have been developed

recently. These methods rely on hand-crafted features [1],

[2], [3], [4] or prior knowledge [5], [6], [7], or models that

combine hand-crafted features with domain knowledge [8],

[9]. In contrast, in this paper, our goal is to develop a more

general method which automatically learns features from

the pixels of document images. Elements such as strokes

of words, words in sentences, sentences in paragraphs have

a hierarchical structure from low to high levels. As these

patterns are repeated in different parts of the documents.

Based on these properties, feature learning algorithms can be

applied to learn layout information of the document images.

Convolutional Neural Network (CNN) is a feed-forward

artificial neural network which shares weights among neur-

ons in the same layer. By enforcing local connectivity

pattern between neurons of adjacent layers, CNN can dis-

cover spatial correlations at different granularity of local

context [10]. With multiple convolutional layers and pooling

layers, CNN has achieved many successes in various fields,

e.g., handwriting recognition [11], image classification [12],

and text recognition in natural images [13].

In [14], the authors show that an autoencoder can be

used to learn features automatically on the training images.

An autoencoder is a feed forward neural network trained to

reconstruct its input. Hidden layers outputs are then used as

features to feed an off-the-shelf classifier. In [15], the authors

show that by using superpixels as units of labeling, the speed

of the method is increased. In [16], a Conditional Random

Field (CRF) [17] is applied in order to model the local

and contextual information jointly to refine the segmentation

results which have been achieved in [15]. Following the

same idea of [16], we consider the segmentation problem

as an image patch labeling problem. The image patches

are generated by using superpixels algorithm. In contrast

to [14], [15], [16], in this work, we focus on developing

an end-to-end method. We combine feature learning and

classifier training into one step. Image patches are used as

input to train a CNN for the labeling task. During training,

the features used to predict labels of the image patches are

learned on the convolution layers of the CNN.

While many researchers focus on developing very deep

CNN to solving various problems [12], [18], [19], we train

a simple CNN of one convolution layer. Experiments on

public historical document image datasets show that despite

the simple structure and little tuning of hyperparameters, the

proposed method achieves comparable results compared to

other CNN architectures.

II. METHODOLOGY

In order to create general page segmentation method

without using any prior knowledge of the layout structure of

the documents, we consider the page segmentation problem

as a pixel labeling problem. We propose to use a CNN

for the pixel labeling task. The main idea is to learn a

set of feature detectors and train a nonlinear classifier on

the features extracted by the feature detectors. With the set

of feature detectors and the classifier, pixels on the unseen

document images can be classified into different classes.
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A. Preprocessing

In order to speed up the pixel labeling process, for a

given document image, we first apply a superpixel algorithm.

A superpixel is an image patch which contains pixels be-

long to the same object. Then instead of labeling all the

pixels, we only label the center pixel of each superpixel

and the remaining pixels in that superpixel are assigned to

the same label. The superiority of the superpixel labeling

approach over the pixel labeling approach for the page

segmentation task has been demonstrated in [15]. The simple

linear iterative clustering (SLIC) algorithm [20] is applied

as a preprocessing step to generate superpixels for given

document images.

B. CNN Architecture

The architecture of our CNN is given in Figure 1. The

structure can be summarized as 28×28×1−26×26×4−
100−M , where M is the number of classes. The input is a

grayscale image patch. The size of the image patch is 28×28
pixels. Our CNN architecture contains only one convolution

layer which consists of 4 kernels. The size of each kernel

is 3 × 3 pixels. Unlike other traditional CNN architecture,

the pooling layer is not used in our architecture. Then one

fully connected layer of 100 neurons follows the convolution

layer. The last layer consists of a logistic regression with

softmax which outputs an estimation of the probability of

each class, such that

P (y = i|x,W1, · · · ,WM , b1, · · · , bM ) =
eWix+bi

∑M
j=1 e

Wjx+bj
,

(1)
where x is the output of the fully connected layer, Wi and

bi are the weights and biases of the ith neuron in this layer,

and M is the number of the classes. The predicted class ŷ
is the class which has the max probability, such that

ŷ = argmax
i

P (y = i|x,W1, · · · ,WM , b1, · · · , bM ). (2)

In the convolution and fully connected layers of the CNN,

Rectified Linear Units (ReLUs) [21] are used as neurons. An

ReLU is given as: f(x) = max(0, x), where x is the input

of the neuron.

C. Training

To train the CNN, for each superpixel, we generate a patch

which is centred on that superpixel. The patch is considered

as the input of the network. The size of each patch is 28×28
pixels. The label of each patch is its center pixel’s label. The

patches of the training images are used to train the network.

In the CNN, the stride length is 1 and the weights

are initialized by using Xavier initialization [22]. The cost

function is defined as the cross-entropy loss, such that

Figure 1: The architecture of the proposed CNN

L(X,Y ) = − 1

n

n∑

i=1

(ln a(x(i)) + (1− y(i)) ln(1− a(x(i)))),

(3)

where X = {x(1), · · · , x(n)} is the set of training image

patches and Y = {y(1), · · · , y(n)} is the corresponding set

of labels. The number of training image patches is n. For

each x(i), a(x(i)) is the output of the CNN as defined in

Eq. 1. The CNN is trained with Stochastic Gradient Descent

with the dropout [23] technique. The goal of dropout is to

avoid overfitting by introducing random noise to training

samples. Such that during the training, the outputs of the

neurons are masked out with the probability of 0.5.

III. EXPERIMENT

Experiments are conducted on six public handwritten

historical document image datasets.

A. Datasets

The datasets are of very different nature. The G. Washing-
ton dataset consists of the pages written in English with ink

on paper and the images are in gray levels. The other two

datasets, i.e., Parzival and St. Gall datasets consist of images

of manuscripts written with ink on parchment and the images

are in color. The Parzival dataset consits of the pages written

by three writers in the 13th century. The St. Gall dataset

contains the manuscripts from a medieval manuscript written

in Latin. The details of the ground truth for both datasets

are presented in [24].

Three new datasets with more complex layouts have

been recently created [25]. The CB55 dataset consists of

manuscripts from the 14th century which are written in

Italian and Latin languages by one writer. The CSG18
and CSG863 datasets consist of manuscripts from the 11th

century which are written in Latin language. The number of

writers of both datasets is not specified. The details of the

three datasets are presented in [25].

In the experiments, all images are scaled down with a

scaling factor 2−3. Table I gives the details of training, test,

and validation sets of the six datasets.
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Table I: Details of training, test, and validation sets. TR, TE, and
V A denote the training, test, and validation sets respectively.

image size (pixels) |TR| |TE| |V A|
G. Washington 2200× 3400 10 5 4
St. Gall 1664× 2496 20 30 10
Parzival 2000× 3008 20 13 2
CB55 4872× 6496 20 10 10
CSG18 3328× 4992 20 10 10
CSG863 3328× 4992 20 10 10

B. Metrics

The most used metrics for page segmentation of histor-

ical document images are precision, recall, and pixel level

accuracy. Besides of these standard metrics, we also adapt

the metrics which are well defined and has been widely

used for common semantic segmentation and scene parsing

evaluations to evaluate different page segmentation methods.

These metrics have been proposed in [26]. They are based

on pixel accuracy and region intersection over union (IU).

Consequently, the metrics used in the experiments are: pixel

accuracy, mean pixel accuracy, mean IU, and frequency

weighted IU (f.w. IU).

In order to obtained the metrics, we define the variables:

• nc: the number of classes.

• nij : the number of pixels of class i predicted to belong

to class j. For class i:

– nii: the number of correctly classified pixels (true

positives).

– nij : the number of wrongly classified pixels (false

positives).

– nji: the number of wrongly not classified pixels

(false negatives).

• ti: the total number of pixels in class i, such that

ti =
∑

j

nji. (4)

With the defined variables, we can compute:

• pixel accuracy:

acc =

∑
i nii∑
i ti

. (5)

• mean accuracy:

accmean =
1

nc
×
∑

i

nii

ti
. (6)

• mean IU:

iumean =
1

nc
×
∑

i

nii

ti +
∑

j nji − nii
. (7)

• f.w. IU:

iuweighted =
1∑
k tk

×
∑

i

ti × nii

ti +
∑

j nji − nii
. (8)

C. Evaluation

We compare the proposed method to the previous meth-

ods [15], [16]. Similar to the proposed method, superpixels

are considered as the basic units of labeling. In [15], the

features are learned on randomly selected grayscale image

patches with a stacked convolutional autoencoder in an

unsupervised manner. Then the features and the labels of

the superpixels are used to train a classifier. With the trained

classifier, superpixels are classified into different classes.

In [16], a Conditional Random Field (CRF) is applied in

order to model the local and contextual information jointly

for the superpixel labeling task. The trained classifier in [15]

is considered as the local classifier in [16]. Then the local

classifier is used to train a contextual classifier which takes

the output of the local classifier as input and output the

scores of given labels. With the local and contextual clas-

sifiers, a CRF is trained to label the superpixels of a given

image. In the experiments, we use a multilayer perceptron

(MLP) as the local classifier in [15], [16] and an MLP

as the contextual classifier in [16]. Simple Linear Iterative

Clustering algorithm (SLIC) [20] is applied to generate the

superpixels. The superiority of SLIC over other superpixel

algorithms is demonstrated in [15]. In the experiments, for

each image, 3000 superpixels are generated.

Table II reports the pixel accuracy, mean pixel accuracy,

mean IU, and f.w. IU of the three methods. It is shown

that the proposed CNN outperforms the previous method.

Figure 2 gives the segmentation results of the three methods.

We can see that visually the CNN achieves more accurate

segmentation results compared to other methods.

D. Max Pooling

Pooling is a widely used technology in CNN. Max pooling

is the most common type of pooling which is applied in

order to reduce spatial size of the representation to reduce

the number of parameters of the network. In order to show

the impact of max pooling for the segmentation task. We add

a max pooling layer after the convolution layer. The pooling

size is 2× 2 pixels. Table II reports the performance of the

CNN with a max pooling layer. We can see that only on the

CB55 dataset, with max pooling the mean pixel accuracy

and mean IU are slightly improved. In general, adding a

max pooling layer does not improve the performance of the

segmentation task. Figure 3 reports the f.w. IU of the CNN

with different max pooling sizes. We define the max pooling

size as m×m, such that m = {2×n | n ∈ N, 0 ≤ n ≤ 13}.
We can see that increasing the pooling size decreases the

performance. The reason is that for some computer vis-

ion problems, e.g., object recognition and text extraction

in natural images, the exact location of a feature is less

important than its rough location relative to other features.

However, for a given document image, to label a pixel in

the center of a patch, it is not sufficient to know if there

is text somewhere in that patch, the location of the text is
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Table II: Performance (in percentage) of superpixel labeling with only local MLP, CRF, and the proposed CNN.

G. Washington Parzival St.Gall
pixel mean mean f.w. pixel mean mean f.w. pixel mean mean f.w.
acc. acc. IU IU acc. acc. IU IU acc. acc. IU IU

Local MLP [15] 87 89 75 83 91 64 58 86 95 89 84 92
CRF [16] 91 90 76 85 93 70 63 88 97 88 84 94
CNN 91 91 77 86 94 75 68 89 98 90 87 96
CNN (max pooling) 91 90 77 86 94 75 68 89 98 90 87 96

CB55 CSG18 CSG863
pixel mean mean f.w. pixel mean mean f.w. pixel mean mean f.w.
acc. acc. IU IU acc. acc. IU IU acc. acc. IU IU

Local MLP [15] 83 53 42 72 83 49 39 73 84 54 42 74
CRF [16] 84 53 42 75 86 47 37 77 86 51 42 78
CNN 86 59 47 77 87 53 41 79 87 58 45 79
CNN (max pooling) 86 60 48 77 87 53 42 80 87 57 45 79

Figure 2: Segmentation results on the Parzival, CB55, and CSG863 datasets from top to bottom respectively. The colors: black, white,
blue, red, and pink are used to represent: periphery, page, text, decoration, and comment respectively. The columns from left to right are:
input, ground truth, and segmentation results of the local MLP, CRF, and CNN respectively.

needed. Therefore, the exact location of a feature is helpful

for the page segmentation task.

E. Number of Kernels

In order to show the impact of the number of kernels of

the convolution layer on the segmentation task. We define

the number of kernels as K. In the experiments, we set

K ∈ {1, 2, 4, 6, 8, 10, 12, 14}. Figure 4 reports the f.w. IU

of the one convolution layer CNN with different number of

kernels. We can see that except on the CS18 dataset, when

K ≥ 4 the performance is not improved.

F. Number of Layers

In order to show the impact of the number of convo-

lutional layers on the page segmentation task. We incre-

mentally add convolutional layers, such that there is two

more kernels on the current layer than the previous layer.

Figure 5 reports the f.w. IU of the CNN with different
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Figure 3: f.w. IU of the CNN on different max pooling sizes.p g

Figure 4: f.w. IU of the CNN on different numbers of kernels.

Figure 5: f.w. IU of the CNN on different numbers of conv layers.

number of convolution layers. It is show that the number of

layers does not affect the performance of the segmentation

task. However, on the G. Washington dataset, with more

layers, the performance is degraded slightly. The reason is

that compared to other datasets, the G. Washington dataset

has fewer training images. Furthermore, the layouts of the

pages in the G, Washington dataset are more varied.

G. Number of Training Images

In order to show the performance under different amount

of training images. For each dataset, we choose N images

in the training set to train the CNN. For each experi-

ment, the number of batches is set to 5000. Figure 6

reports the f.w. IU under different values of N , such that

N ∈ {1, 2, 4, 8, 10, 12, 14, 16, 18, 20}1. We can see that in

general, when N > 2, the performance is not improved.

However, on the G. Washington dataset, with more training

images, the performance is degraded slightly. The reason is

that compared to the other datasets, on the G. Washington

1In the G. Washington dataset, there is 10 training images. Therefore,
N ∈ {1, 2, 4, 8, 10}.

Figure 6: f.w. IU of the CNN on different numbers of training
images.

dataset the pages are more varied and the ground truth is

less consistent.

H. Run Time

The proposed CNN is implemented with the python

library Theano [27]. The experiments are performed on a PC

with an Intel Core i7-3770 3.4 GHz processor and 16 GB

RAM. On average, for each image, the CNN takes about 1
second processing time. The superpixel labeling method [15]

and CRF model [16] take about 2 and 5 seconds respectively.

IV. CONCLUSION

In this paper, we have proposed a convolutional neural

network (CNN) for page segmentation of handwritten his-

torical document images. In contrast to traditional page

segmentation methods which rely on off-the-shelf classifiers

trained with hand-crafted features, the proposed method

learns features directly from image patches. Furthermore,

feature learning and classifier training are combined into one

step. Experiments on public datasets show the superiority

of the proposed method over the previous methods. While

many researchers focus on applying very deep CNN archi-

tectures for different tasks, we show that with the simple

one convolution layer CNN, we have achieved comparable

performance compared to other network architectures.
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