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a b s t r a c t 

Keyword spotting enables content-based retrieval of scanned historical manuscripts using search terms, 

which, in turn, facilitates the indexation in digital libraries. Recent approaches include graph-based repre- 

sentations that capture the complex structure of handwriting. However, the high representational power 

of graphs comes at the cost of high computational complexity for graph matching. In this article, we in- 

vestigate the potential of Hausdorff edit distance (HED) for keyword spotting. It is an efficient quadratic- 

time approximation of the graph edit distance. In a comprehensive experimental evaluation with four 

types of handwriting graphs and four benchmark datasets (George Washington, Parzival, Botany, and 

Alvermann Konzilsprotokolle), we demonstrate a strong performance of the proposed HED-based method 

when compared with the state of the art, both, in terms of precision and speed. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

In recent years we have seen increasing effort s worldwide by

ibraries and archives to digitize handwritten historical documents.

o integrate scanned manuscript images into digital libraries based

n their content, automatic handwriting recognition is needed.

owever, modeling and recognition of handwriting is far more

hallenging than optical character recognition (OCR) for printed

ext, mainly due to the variable character shapes. When facing an-

ient scripts and languages, automatic transcription is often not

easible because of a lack of training data. For such situations,

eyword spotting (KWS) offers an alternative to index scanned

anuscripts without performing a complete transcription [17] . 

Two general approaches to keyword spotting can be distin-

uished, viz. template-based and learning-based methods. 1 While

emplate-based methods match one or several instances of a key-

ord image directly with the scanned manuscript, learning-based

ethods aim to learn word or subword models from labeled
∗ Corresponding author. 

E-mail address: mo_amer@encs.concordia.ca (M.R. Ameri). 
1 Another commonly used distinction related to the query type is query-by- 

xample and query-by-string . See for example [1] . 
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raining samples. Examples include learning with hidden Markov

odels (HMM) [7,19,26] , support vector machines (SVM) [1] ,

ecurrent neural networks (RNN) [12] , and convolutional neural

etworks (CNN) [33,38] . In general, learning-based methods are

ble to achieve a significantly better performance than template-

ased methods. However, they are less flexible because they

equire a considerable amount of labeled training data. 

In this article, we focus on template-based methods, which do

ot require any learning and can be applied even if only a single

emplate image of the keyword is provided to the spotting system.

his is particularly useful for historical manuscripts, which typi-

ally require human experts for obtaining labeled training data in

 time-consuming and costly process. 

Early approaches to template-based KWS include pixel-by-pixel

atchings of word images [17] . Later on, different feature descrip-

ors have been investigated, including projection profiles [21] , his-

ograms of oriented gradients (HOG) [25,27,34] , and features ex-

racted from unlabeled data by deep neural networks [37] , to name

ust a few. For coping with the variable width of the handwriting,

 widely adopted approach is to use a sliding window for extract-

ng a sequence of feature vectors from word images and match

wo sequences by means of dynamic time warping (DTW) [21] . To

void an explicit segmentation of the scanned document page into
potting in historical manuscripts using Hausdorff edit distance, 
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word images, segmentation-free methods have been proposed as

well [27] . 

Two general limitations of feature vector descriptors relate to

their representational power. Firstly, they have to capture the

structure of handwriting with a fixed number of real-valued fea-

tures regardless of the complexity of the given instance. Secondly,

they cannot represent binary relations between parts of the hand-

writing in a straight-forward way. Both limitations can be over-

come by means of graph-based representations which model parts

of an object with nodes and relations between the parts with

edges [5] . In recent work, several graph-based methods have been

proposed in the context of template-based keyword spotting, using

keypoints as nodes [14,30,35,36] or basic strokes as nodes [3,22] ,

and connecting them with edges if there is a connection in the

image. 

The main drawback of graphs, however, is that their high repre-

sentational power comes at the cost of high computation complex-

ity. Most of the aforementioned methods for graph-based keyword

spotting use the well-known bipartite approximation (BP) [24] of

the graph edit distance (GED) [4] . Although BP reduces the N P -

complete problem of GED to a polyomial-time assignment prob-

lem, it still has a cubic time complexity with respect to the graph

size, which imposes significant computational constraints for key-

word spotting. 

In this article, we investigate the potential of a recently intro-

duced more efficient approximation of GED, namely the Hausdorff

edit distance (HED) [9] . It has a quadratic time complexity with

respect to the graph size – similar to DTW, which has a quadratic

time complexity with respect to the sequence length. Unlike DTW,

HED is not constrained to sequence matching. Instead it is able to

match arbitrary handwriting graphs without constraints as regards

the graph structure and the label alphabets for nodes and edges. 

A preliminary version of this article has been published as

an extended abstract in the proceedings of the 18th International

Graphonomics Society Conference (IGS2017) [2] . The present arti-

cle substantially extends the conference paper with a more de-

tailed description and discussion of the method, a more compre-

hensive experimental evaluation with three additional benchmark

datasets, a study on the combination of HED and DTW, and an ex-

tended comparison with the current state of the art. The main fo-

cus and contribution of the present work is the graph matching

method. For graph-based handwriting representation, we consider

four types of handwriting graphs introduced in earlier work [29] . 

In the remainder, we first describe the four graph-based hand-

writing representations in Section 2 , introduce the HED-based key-

word spotting system in Section 3 , present our experimental eval-

uation on four benchmark datasets in Section 4 , and conclude the

article in Section 5 with an outlook on future lines of research. 

2. Handwriting graphs 

The proposed template-based keyword spotting approach

makes use of graphs for the representation and retrieval of word

images as illustrated in Fig. 1 . In the first step, handwritten docu-

ment images are binarized and segmented into word images (de-

tailed in Section 2.1 ). Graphs are then extracted from single word

images by means of four different representations (see Section 2.2 ).

Next, the graphs are normalized by a z-score to minimize intraclass

variations (see Section 2.3 ). Finally, keyword spotting is performed

by computing all graph dissimilarities (see Sections 3.1 and 3.2 )

between a certain query graph q and all document graphs g ∈ G to

build a retrieval index (see Section 3.3 ). 

In the following sections, the first three steps are described

in greater detail, while the actual graph-based keyword spotting

method is detailed in Section 3 . 
Please cite this article as: M.R. Ameri et al., Graph-based keyword s
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.1. Image preprocessing 

To remove noise, a Difference of Gaussians edge enhancement is

rst applied to scanned document images [6] . Next, the locally en-

anced document images are binarized by means of global thresh-

lding. As the proposed keyword spotting framework operates on

solated word images, document images are segmented into text

ines and subsequently into words by means of projection profiles.

f necessary, the automatic segmentation result is manually cor-

ected. That is, segmentation errors are neglected in the evaluation

nd the measured precision can be seen as an upper bound on

he end-to-end spotting performance. Image preprocessing also in-

ludes a skew correction [18] , i.e. a correction of the inclination of

he document, which is applied at word-level. Optionally, word im-

ges are skeletonized by means of a 3 × 3 thinning operator [13] .

he binarized word images are denoted by B , while skeletonized

ord images are denoted by S from now on. 

.2. Graph extraction 

A graph g is defined as a four-tuple g = (V, E, μ, ν) where V

nd E are finite sets of nodes and edges, and μ: V → L V as well

s ν: E → L E are labeling functions for nodes and edges, respec-

ively. Graphs can be divided into undirected and directed graphs,

here pairs of nodes are either connected by undirected or di-

ected edges. Additionally, graphs are often distinguished into un-

abeled and labeled graphs. In the latter case, both nodes and edges

an be labeled with an arbitrary numerical, vectorial, or symbolic

abel from L V or L E , respectively. In the former case we assume

mpty label alphabets, i.e. L V = L E = {} . In the present work, we

onsider four types of graph representations that have been intro-

uced by Stauffer et al. [29] . They result in nodes that are labeled

ith two-dimensional numerical labels, while edges remain unla-

eled, i.e. L V = R 

2 and L E = {} . Fig. 2 illustrates the handwriting

raphs for the manuscripts used in our experimental evaluation

see Section 4.1 ). In the following, we briefly describe the graph ex-

raction procedures. For a more detailed account, we refer to Stauf-

er et al. [29] . 

Keypoint . The first graph extraction algorithm makes use of

haracteristics points (so-called keypoints) in skeletonized word

mages S . These keypoints are represented as nodes that are la-

eled with the corresponding ( x, y )-coordinates. Between pairs of

eypoints (which are connected on the skeleton) further interme-

iate points are converted to nodes and added to the graph at

quidistant intervals. Finally, undirected edges are inserted into the

raph for each pair of nodes directly connected by a stroke. 

Grid . The second graph extraction algorithm is based on a

rid-wise segmentation of binarized word images B into equally

ized segments. For each segment, a node is inserted into the

raph and labeled with the ( x, y )-coordinates of its respective cen-

er of mass. Undirected edges are inserted between two neighbor-

ng segments that are actually represented by a node. Finally, the

nserted edges are reduced to the minimal spanning tree. 

Projection . The next graph extraction algorithm is computed

n the horizontal and vertical projection profiles of B . The result-

ng segmentation is further refined in the horizontal and vertical

irection by means of two distance-based thresholds. A node is in-

erted into the graph for each segment and labeled by the ( x, y )-

oordinates of the corresponding center of mass. Undirected edges

re inserted into the graph for each pair of nodes directly con-

ected by a stroke in the original word image. 

Split . The fourth graph extraction algorithm is based on an

terative segmentation of binarized word images B . That is, seg-

ents are iteratively split into smaller subsegments until the width

nd height of all segments are below certain thresholds. A node

s inserted into the graph and labeled by the ( x, y )-coordinates of
potting in historical manuscripts using Hausdorff edit distance, 
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Fig. 1. Process of graph-based keyword spotting of the word “October”. 

Fig. 2. Exemplary graph representations of the Alvermann Konzilsprotokolle (AK), Botany (BOT), George Washington (GW), and Parzival (PAR) dataset. 
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2 That is, an exact and efficient algorithm for the graph edit distance problem can 

not be developed unless P = NP . 
he point on the stroke closest to the center of mass of each seg-

ent. For the insertion of the edges, the same procedure as for

rojection is applied. 

.3. Graph normalization 

To mitigate the influence of intraclass writing variations, the

esulting set of graphs is normalized with respect to the ( x, y )-

oordinates of their node labels μ( v ). Formally, we use a z-score

o derive normalized coordinates ( ̂  x , ̂  y ) by 

ˆ 
 = 

x − μx 

σx 
and 

ˆ y = 

y − μy 

σy 
, 

here ( μx , μy ) and ( σ x , σ y ) are the mean and standard deviation

f all ( x, y )-coordinates in the graph under consideration. 

. Graph-based keyword spotting 

For spotting keywords, a query graph q (used to represent a

ertain keyword) is pairwise matched against all document graphs

 = { g 1 , . . . , g N } . Generally, graphs can either be matched by means

f exact or inexact approaches [5,10] . In the case of graph-based

WS, graphs are used to represent the inherent characteristic of

andwriting, and thus, affected by (subtle) variations in both their

tructure and labels. For this reason, inexact graph matching can

e applied only. 

.1. Graph edit distance 

Several approaches have been proposed for inexact graph

atching [5,10] . Yet, graph edit distance (GED) is regarded as one

f the most flexible and powerful paradigms [4,23] . In particu-

ar, GED measures the amount of distortion needed to transform

raph g 1 into graph g 2 using a sequence of edit operations like in-

ertions, deletions , and substitutions of both nodes and edges (called

dit path λ( g , g ) between g and g ). 
1 2 1 2 

Please cite this article as: M.R. Ameri et al., Graph-based keyword s
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To find the most suitable edit path, one commonly introduces a

ertain cost function c ( e ) for every edit operation e . This cost func-

ion should correspond to the strength of a certain graph modifi-

ation. Formally, the graph edit distance d GED ( g 1 , g 2 ), or d GED for

hort, between g 1 and g 2 is given by 

 GED 

(g 1 , g 2 ) = min 

λ∈ ϒ(g 1 ,g 2 ) 

∑ 

e i ∈ λ
c(e i ) , 

here Y( g 1 , g 2 ) is the set of all edit paths between g 1 and g 2 . 

For the representation of domain knowledge, one commonly

akes use of a certain cost model. Following the cost model

f [30] , we use constant costs for both node and edge dele-

ions/insertions, i.e. τv ∈ R 

+ and τe ∈ R 

+ . Unlabeled edges are sub-

tituted without costs, i.e. c(p → q ) = 0 . For the substitution of

odes ( u → v ), we make use of a weighted Euclidean distance be-

ween the corresponding node labels, 

(u → v ) = 

√ 

α σx (x i − x j ) 2 + (1 − α) σy (y i − y j ) 2 , 

here α ∈ [0, 1] denotes a parameter to weight the importance of

he x - and y -coordinate of a node, while σ x and σ y denote the

tandard deviation of all node coordinates in the current query

raph. Moreover, we make use of a weighting factor β ∈ [0, 1] be-

ween the node and edge edit costs. 

.2. Hausdorff edit distance 

The exact computation of d GED is exponential with respect to

he number of nodes of the involved graphs. Formally, GED is an

nstance of a Quadratic Assignment Problem (QAP) [15] , which in

urn belongs to the class of N P -complete problems. 2 Hence, sev-

ral fast but suboptimal algorithms have been proposed in the last

ears (see [10] ). 
potting in historical manuscripts using Hausdorff edit distance, 
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3 George Washington Papers at the Library of Congress, 1741–1799: Series 2, 

Letterbook 1, pp. 270–279 & 300–309, http://memory.loc.gov/ammem/gwhtml/ 

gwseries2.html 
4 Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/ 

databases/iam- historical- document- database/parzival- database 
5 Alvermann Konzilsprotokolle and Botany at ICFHR2016 benchmark database, 

http://www.prhlt.upv.es/contests/icfhr2016-kws/data.html 
In this article, we consider the recently introduced Hausdorff

edit distance (HED) [9] , which is a lower bound of graph edit dis-

tance d HED ≤ d GED that can be computed in quadratic time with

respect to the graph size. It reduces the problem of graph edit

distance to a set matching problem between local substructures

(nodes and their adjacent edges). 

The Hausdorff edit distance d HED ( g 1 , g 2 ) between two graphs g 1 
and g 2 is formally defined as: 

d HED (g 1 , g 2 ) = 

∑ 

u ∈ V 1 
min 

v ∈ V 2 ∪{ ε} f (u, v ) + 

∑ 

v ∈ V 2 
min 

u ∈ V 1 ∪{ ε} f (u, v ) . 

Similar to the Hausdorff distance between finite subsets of a met-

ric space, the two summation terms compute nearest neighbor dis-

tances between the node sets according to the node function 

f (u, v ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

τn + 

∑ | P| 
i =1 

τe 

2 

for node deletion (u → ε) 

τn + 

∑ | Q| 
i =1 

τe 

2 

for node insertion (ε → v ) 

c(u → v )+ 

d HED (P,Q ) 
2 

2 

for node substitution (u → v ) 

,

where P and Q are the set of edges adjacent to u and v , respec-

tively. Note that only half of the implied edge cost is added to the

node cost and only half of the substitution cost is considered in

general, to ensure the lower bound property. 

The edge cost, which is implied by node substitution, is esti-

mated based on the edge sets P and Q with a similar Hausdorff

matching function 

d HED (P, Q ) = 

∑ 

p∈ P 
min 

q ∈ Q∪{ ε} g(p, q ) + 

∑ 

q ∈ Q 
min 

p∈ P∪{ ε} g(p, q ) 

according to the edge function 

g(p, q ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

τe for edge deletion (p → ε) 
τe for edge insertion (ε → q ) 

c(p → q ) 

2 

for edge substitution (p → q ) 

The underestimation of d HED ≤ d GED is limited by a minimum edit

cost, which is || V 1 | − | V 2 || · τn for d HED ( g 1 , g 2 ) and || P | − | Q|| · τe for

d HED ( P, Q ). For more details on HED, we refer to Fischer et al. [9] . 

3.3. Keyword spotting score 

For building the KWS score, the approximate graph edit dis-

tances d HED between query graph q and all document graphs G =
{ g 1 , . . . , g N } is normalized by the maximum cost edit path between

q and g i , i.e. the cost of the edit path that results from deleting all

nodes and edges of q and inserting all nodes and edges in g i . For-

mally, 

r(q, g) = − d HED 

(q, g i ) 

(| V q | + | V g i | ) τv + (| E q | + | E g i | ) τe 
, 

If a query consists of a graph collection Q = { q 1 , . . . , q t } that rep-

resents the same keyword (possibly in different writing styles), the

minimal distance is considered 

r(Q , g) = min 

q ∈Q 
(r(q, g)) . 

4. Experimental evaluation 

We evaluate the proposed HED-based method on four bench-

mark datasets for keyword spotting in historical manuscripts,

which are described in Section 4.1 . We compare the performance

of the proposed method with three template-based reference

methods, namely BP, BP2, and DTW, all of which are detailed in

Section 4.2 . Finally, we also put our method into context with

learning-based approaches to keyword spotting. 
Please cite this article as: M.R. Ameri et al., Graph-based keyword s
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.1. Datasets 

For the experimental evaluation we consider two well known

anuscripts, viz. George Washington (GW) 3 and Parzival (PAR) , 4 as

ell as two documents of a very recent KWS benchmark compe-

ition, 5 viz. Alvermann Konzilsprotokolle (AK) and Botany (BOT) . GW

onsists of letters of George Washington and his associates during

he American Revolutionary War in 1755. The letters are written in

nglish and based on twenty pages with minor variations in writ-

ng and degradation. PAR is based on stories of the German poet

olfgang von Eschenbach in the 13th century. The manuscript is

ritten in Middle High German and based on 45 pages with low

riting variations but markable signs of degradation. AK consists

f minutes of formal meetings held by the central administration

f the University of Greifswald in the period of 1794 to 1797. The

otes are written in German and based on 18,0 0 0 pages with mi-

or variations and signs of degradation. Finally, BOT is based on

otanical records made in British India in the 18th and 19th cen-

ury. The records are written in English and based on ten pages

ith high writing variation and markable signs of degradation. 

On all four manuscripts, we extract graphs by means of the

raph representation formalisms proposed in Section 2 . Note that

or AK and BOT, only the two most promising graph representa-

ions ( Keypoint and Projection ) are considered. Fig. 2 shows

n exemplary word of each manuscript and the corresponding

raph representations. 

.2. Reference methods 

In order to assess the potential of the proposed HED-based

raph matching approach, we compare it with three related ref-

rence methods for matching graphs (BP and BP2) and sequences

DTW), respectively. 

BP. The first reference is the bipartite graph matching

ethod (BP) proposed by Riesen and Bunke [24] for approximating

he graph edit distance. It is widely used for graph-based pattern

ecognition (for a survey, see [32] ) and has also been considered

n a number of graph-based keyword spotting systems, includ-

ng [3,22,30,31,36] . BP reduces the problem of graph edit distance

o a linear sum assignment problem (LSAP) and returns a valid –

ut not necessarily optimal – edit path between two graphs. The

ost of this edit path gives an upper bound of graph edit dis-

ance and can be used to compute a spotting score. The main con-

traint of BP is its cubic time complexity with respect to the graph

ize, which imposes computational limits regarding the size of the

andwriting graphs as well as the number of handwriting graphs

hat can be matched. 

BP2. The second reference is the recently introduced quadratic

ime variant of BP called BP2 [8] . It solves the bipartite matching

roblem in quadratic time and returns, similar to BP, a valid edit

ath between two graphs and thus an upper bound of graph edit

istance. 

DTW. The third reference is the well-established Dy-

amic Time Warping (DTW) method for sequence matching,

hich has often been used for keyword spotting in historical

anuscripts [12,21,34,37] . By moving a sliding window over the

andwriting a sequence of feature vectors is extracted. DTW finds

n optimal alignment of two sequences along a common time
potting in historical manuscripts using Hausdorff edit distance, 
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Table 1 

Number of keywords and number of word images in the training and test sets of 

the four datasets. 

Dataset Keywords Train Test 

GW 105 2447 1224 

PAR 1217 11,468 6869 

BOT 150 1684 3380 

AK 200 1849 3734 
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Table 2 

Mean average precision (MAP) for graph-based KWS systems on the George Wash- 

ington (GW) and Parzival (PAR) datasets. 

Method GW PAR 

MAP ± MAP ±
BP Keypoint 66.08 62.04 

Grid 60.02 56.50 

Projection 61.43 66.23 

Split 60.23 59.44 

BP2 Keypoint 68.42 + 2.33 55.03 -7.01 

Grid 62.10 + 2.07 57.00 + 0.50 

Projection 60.83 −0.60 63.35 −2.88 

Split 64.24 + 4.02 68.69 + 9.25 

HED Keypoint 69.28 + 3.19 69.23 + 7.19 

Grid 62.78 + 2.75 60.74 + 4.24 

Projection 66.71 + 5.28 72.82 + 6.59 

Split 65.12 + 4.89 72.79 + 13.35 

Table 3 

Mean average precision (MAP) for graph-based KWS systems on the Botany (BOT) 

and Alvermann Konzilsprotokolle (AK) datasets. 

Method BOT AK 

MAP ± MAP ±
BP2 Keypoint 45.06 77.24 

Projection 49.57 76.02 

BP2 Keypoint 50.94 + 5.88 74.86 −2.38 

Projection 50.49 + 0.92 75.46 −0.56 

HED Keypoint 51.74 + 6.68 79.72 + 2.48 

Projection 51.69 + 2.12 81.06 + 5.04 

Table 4 

Median and maximum number of nodes, mean runtime per graph pair in millisec- 

onds for BP and HED, and speedup factor on the George Washington (GW) dataset. 

Method | V | med | V | max T BP T HED Speedup 

Keypoint 74 366 303.0 3.2 95.3 

Grid 90 509 707.9 6.1 116.0 

Projection 74 391 344.1 3.9 88.1 

Split 80 434 480.2 4.4 108.1 
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xis such that the sum of feature vector distances is minimal. This

um of distances can then be used to compute a keyword spotting

core. Using dynamic programming, an optimal DTW alignment

an be obtained in quadratic time with respect to the sequence

ength. Note that sequences are a special case of graphs, in which

he nodes are ordered and have at most one successor. 

.3. Experimental setup 

On all benchmark datasets, individual word images are consid-

red for experimental evaluation. The word segmentation is man-

ally corrected, hence the results obtained on these benchmarks

an be seen as an upper bound on the spotting performance. In

 real-world scenario, errors stemming from automatic word seg-

entation may decrease the end-to-end performance. 

Experiments are conducted in two stages. First, during the val-

dation stage, several system parameters are fine-tuned on a small

alidation set, which consists of 10 random instances of 10 manu-

lly selected keywords (with different word lengths) and 900 ad-

itional, randomly selected words (10 0 0 words in total). Secondly,

uring the testing stage, the optimized system is evaluated on

he same training and test sets as used in [7] for GW and PAR

nd Pratikakis et al. [20] for AK and BOT. All templates of a key-

ord present in the training set are used for keyword spotting. In

able 1 a summary of the datasets is presented. 

To evaluate the keyword spotting performance, we consider Re-

all and Precision for each keyword query and compute the Mean

verage Precision (MAP) over all queries using the trec_eval 6 
oftware. 

.4. Comparison with graph edit distance approximations 

In the first experiment, we compare HED with other approx-

mation methods of graph edit distance, namely BP and BP2. All

hree methods can be applied to any type of graph, without con-

traints on the graph structure or the node and edge label alpha-

ets. The approximate graph edit distance is divided by the maxi-

um graph edit distance to derive a normalized keyword spotting

core, as described in Section 3.3 . 

We consider the four graph-based handwriting representations

iscussed in Section 2 and adopt optimal graph parameters from

revious work [29,30] . Parameters of the keyword spotting system

nclude the cost for node deletion/insertion τ n , the cost for edge

eletion/insertion τ e , and the weights α, β of the cost function

see Section 3.1 ). They are optimized over the range of τ n , τ e ∈ {1,

, 8, 16, 32} and α, β ∈ {0.1, 0.3, 0.5, 0.7, 0.9} for each method in-

ividually on the validation set. 

Table 2 presents the MAP results on the test set of GW and PAR

or the three methods and the four graph representations. Con-

rming the observations in [8] , BP2 performs very similar to BP,

utperforming BP in five out of eight cases. These results indicate

hat, in this scenario, the quadratic-time BP2 method is not only

ignificantly more efficient than the cubic-time BP method but it

an also achieve similar performance. 
6 http://trec.nist.gov/trec _ eval 
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HED achieves the best results, outperforming BP in eight out of

ight cases. Hence, it not only allows to reduce the computational

omplexity but also improves the keyword spotting performance.

nlike BP and BP2, HED allows multiple assignments among sub-

tructures in the handwriting graphs. We assume that this prop-

rty of HED is beneficial in the context of handwriting because

t allows a kind of “warping” between characters of different size,

imilar to DTW (see Section 4.2 ) but in two dimensions rather than

nly one. 

The results shown in Table 3 for the two other datasets, BOT

nd AK, confirm the findings. On these datasets, HED outperforms

P in four out of four cases. 

Finally, Table 4 reports the speedup that can be achieved with

he quadratic-time HED method when compared to the cubic-time

P method. On the GW dataset, the handwriting graphs have a me-

ian size between 74 and 90 and a maximum size between 366

nd 509. For this graph size, HED-based keyword spotting is about

undred times faster than BP-based keyword spotting. 

Note that the BP reference method has also been used in the

ontext of other handwriting graphs, including graphs based on

eypoints labeled with their shape context [36] , graphs based

n graphemes extracted from shape convexities [22] , and graphs

ased on invariants corresponding to prototypical strokes [3] .

hese systems achieve comparable spotting results on a qualitative
potting in historical manuscripts using Hausdorff edit distance, 
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Table 5 

Mean average precision (MAP) for graph-based KWS systems in comparison with 

three template-based reference systems on the George Washington (GW) and Parzi- 

val (PAR) dataset. The first, second, and third best systems are indicated by (1), (2), 

and (3). 

Method GW PAR Average 

Reference (Template) DTW’08 63.39 47.52 55.46 

DTW’09 64.80 73.49 (1) 69.15 (3) 

DTW’16 68.64 (2) 72.38 (3) 70.51 (2) 

Graph (Template) BP 66.08 66.23 66.16 

BP2 68.42 (3) 68.69 68.55 

HED 69.28 (1) 72.82 (2) 71.05 (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Mean average precision (MAP) for the combination of DTW and HED on the George 

Washington (GW) and Parzival (PAR) datasets. 

Method GW PAR 

Individual DTW 64.00 71.74 

HED 69.28 72.82 

Combined DTW + HED 77.83 + 8.55 77.00 + 4.18 

Table 7 

Mean average precision (MAP) for graph-based KWS systems in comparison with 

three state-of-the-art learning-based reference systems on the Alvermann Konzil- 

sprotokolle (AK) and Botany (BOT) datasets. The first, second, and third best systems 

are indicated by (1), (2), and (3). 

Method BOT AK Average 

Reference (Learning) CVCDAG 75.77 (2) 77.91 76.84 (2) 

PRG 89.69 (1) 96.05 (1) 92.87 (1) 

QTOB 54.95 (3) 82.15 (2) 68.55 (3) 

Graph (Template) BP 49.57 77.24 63.41 

BP2 50.94 75.46 63.20 

HED 51.74 81.06 (3) 66.40 
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level 7 and can potentially profit from the proposed HED-based

approach as an alternative to BP-based graph matching. 

4.5. Comparison with dynamic time warping 

Table 5 shows a comparison with the state of the art for

template-based keyword spotting using DTW. Three reference

methods are considered for the GW and PAR benchmark datasets.

DTW’08 [25] and DTW’09 [34] employ SIFT-like gradient features,

while DTW’16 [37] is based on convolutional neural network (CNN)

features that are extracted from the datasets without supervision

(without labeled training data) using deep belief networks. All re-

sults are taken from Wicht et al. [37] . For HED, we show the results

for the best performing graph representations found in Section 4.4 ,

which in most cases is Keypoint . 
The results indicate that the template-based keyword spot-

ting methods achieve performance results in the same ballpark.

DTW’09 and DTW’16 tend to outperform BP and BP2, while HED

achieves the overall best results on these benchmarks. 

The strong performance of HED is rather astonishing when

comparing the sophisticated CNN features of DTW’16 with the rel-

atively simple coordinate labels used for the handwriting graphs. It

underlines the representational power of graphs for capturing rel-

evant structures of the handwriting. 

Regarding runtime, HED has a quadratic time complexity with

respect to the graph size and DTW has a quadratic time complexity

with respect to the sequence length. In our experimental setting,

the graph size is typically smaller than the sequence length. On the

GW dataset, for example, the median graph size is 74, while the

median sequence length is 134. In this scenario, HED also reduces

the computational effort when compared with DTW. 

4.6. Combination of HED and dynamic time warping 

In the next experiment, we investigate the potential of combin-

ing HED and DTW. Since the two methods are quite different, one

matching two-dimensional graphs and the other matching one-

dimensional sequences, they have complementary properties and

thus a high potential to support each other in a multiple classifier

system (MCS). In such an MCS setting, ideally, one method is able

to correct errors of the other method [16] . 

We have implemented our own DTW reference method, follow-

ing the general ideas of Rath and Manmatha [21] and using the

features proposed by Marti and Bunke [18] . Image preprocessing

includes skew and slant correction as well as height and width

normalization. Afterwards, a sliding window of one pixel width ex-

tracts a sequence of nine geometric features. They are aligned by

means of DTW using a Sakoe-Chiba band [28] with a width of 


percent to speedup the alignment and to exclude unusual warping
7 A direct quantitative comparison is not feasible due to different experimental 

conditions. 
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aths. The parameter 
 is optimized on the validation set over a

ange of 
 ∈ { 0 . 20 , 0 . 25 , . . . , 0 . 70 } . The resulting cost of the warp-

ng path is normalized with the length of the warping path to ob-

ain a keyword spotting score. This DTW system achieves a MAP

f 64.00 on GW and 71.74 on PAR, which is comparable with the

ther reference methods listed in Table 5 . 

After normalizing the HED and the DTW scores to zero mean

nd unit standard deviation, they are combined with a weighted

um hed + ω · dtw . The weight ω is optimized on the validation set

ver a range of ω ∈ { 0 . 1 , 0 . 2 , . . . , 2 . 0 } . 
Table 6 reports the combination result on the GW and PAR test

ets. Although DTW has a lower performance than HED, the com-

ination leads to a significant increase in MAP by 8.55% and 4.18%,

espectively, emphasizing the complementary properties of the two

ethods. 

.7. Comparison with learning-based keyword spotting 

Our proposed HED method follows the template-based ap-

roach to keyword spotting, which has minimum requirements re-

arding human interaction. Even if only a single template image of

he keyword is provided to the system, it can search for it in a col-

ection of scanned documents without requiring a human to anno-

ate part of the collection. The low requirements of template-based

eyword spotting are especially useful in the context of historical

anuscripts, where obtaining labeled training data often requires

uman experts and thus becomes time-consuming and costly. 

However, if labeled training data can be made available to the

ystem, learning-based approaches can profit from this knowledge

nd build more robust spotting systems. In Table 7 , we compare

ur proposed template-based method with recent learning-based

ethods from the ICFHR2016 competition [20] , viz. CVCDAG [1] ,

RG [33] , and QTOB [38] . CVCDAG is based on Pyramidal Histogram

f Characters (PHOC) features in conjunction with an SVM, PRG is

ased on the same features in conjunction with a Convolutional

eural Network (CNN), called PHOCNet, and QTOB is based on an-

ther CNN following a triplet network approach. 

As expected, the learning-based methods achieve a higher per-

ormance in general and especially PRG significantly outperforms

he proposed HED-based method. Nevertheless, it is interesting to

bserve that HED can keep up with the performance of QTOB and

utperforms CVCDAG in one out of three cases, despite the fact

hat no learning has been performed for HED. This observation

emonstrates the high potential of HED as a template-based key-

ord spotting method. 
potting in historical manuscripts using Hausdorff edit distance, 
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Note that template-based and learning-based methods have

omplementary properties and can be used together in the digital-

zation process of historical manuscripts. At the beginning, when

o labeled data is available, template-based method can be used

o cluster similar words that are then labeled conjointly and ef-

ciently by a human expert. As soon as enough training samples

ecome available, learning-based methods can be trained to per-

orm a more accurate search. Finally, when enough labeled data is

vailable to train robust character models, a full transcription can

e attempted together with a word dictionary [11] . 

. Conclusion and outlook 

The HED-based keyword spotting approach presented in this ar-

icle has demonstrated several promising properties. First, it ap-

roximates the graph edit distance and hence is flexible in the

ense that it allows to represent handwriting with any type of

raph, without constraints on the graph structure or the label al-

habets for nodes and edges. Secondly, it can be computed in

uadratic time with respect to the graph size and hence is efficient

or matching large graphs and large numbers of graphs. Thirdly,

he experimental evaluation on four benchmark datasets for key-

ord spotting in historical manuscripts has demonstrated that it is

ffective in terms of mean average precision and compares favor-

bly with other template-based keyword spotting systems. 

Unlike dynamic time warping, which considers handwriting as

 sequence of feature vectors, HED considers the two-dimensional

lobal structure of the handwriting. The two perspectives are dif-

erent and complementary, which could be demonstrated by com-

ining the two methods into a multiple classifier system that out-

erformed the individual methods. 

There are several promising lines of future research. First, it

ould be interesting to investigate other, potentially more abstract

raph-based representations of handwriting. Secondly, it may be

ewarding to include more information about the global handwrit-

ng structure when matching local substructures with HED. Finally,

iven labeled training data is available, an intriguing open question

s how to perform machine learning on graph-based representa-

ions and graph matching in order to profit from the labeled data. 

cknowledgments 

This work has been supported by the Hasler Foundation (grant

o. 14047) Switzerland and the Natural Sciences and Engineering

esearch Council of Canada ( NSERC ) (grant no. RGPIN-2016-05467).

eferences 

[1] J. Almazan , A. Gordo , A. Fornes , E. Valveny , Word spotting and recognition with
embedded attributes, IEEE Trans. Pattern Anal. Mach. Intell. 36 (12) (2014)

2552–2566 . 

[2] M. Ameri , M. Stauffer , K. Riesen , T. Bui , A. Fischer , Keyword spotting in histor-
ical documents based on handwriting graphs and Hausdorff edit distance, in:

International Graphonomics Society Conference, 2017, pp. 105–108 . 
[3] Q.A. Bui , M. Visani , R. Mullot , Unsupervised word spotting using a graph repre-

sentation based on invariants, in: International Conference on Document Anal-
ysis and Recognition, 2015, pp. 616–620 . 

[4] H. Bunke , G. Allermann , Inexact graph matching for structural pattern recog-

nition, Pattern Recognit. Lett. 1 (4) (1983) 245–253 . 
[5] D. Conte , P. Foggia , C. Sansone , M. Vento , Thirty years of graph matching

in pattern recognition, Int. J. Pattern Recognit. Artif. Intell. 18 (03) (2004)
265–298 . 

[6] A. Fischer , E. Indermühle , H. Bunke , G. Viehhauser , M. Stolz , Ground truth
creation for handwriting recognition in historical documents, in: International

Workshop on Document Analysis Systems, 2010, pp. 3–10 . 
[7] A . Fischer , A . Keller , V. Frinken , H. Bunke , Lexicon-free handwritten word spot-

ting using character HMMs, PRL 33 (7) (2012) 934–942 . 

[8] A. Fischer , K. Riesen , H. Bunke , Improved quadratic time approximation of
graph edit distance by combining Hausdorff matching and greedy assignment,

Pattern Recognit. Lett. 87 (2017) 55–62 . 
[9] A. Fischer , C.Y. Suen , V. Frinken , K. Riesen , H. Bunke , Approximation of graph

edit distance based on Hausdorff matching, PR 48 (2) (2015) 331–343 . 
Please cite this article as: M.R. Ameri et al., Graph-based keyword s

Pattern Recognition Letters (2018), https://doi.org/10.1016/j.patrec.2018.
[10] P. Foggia , G. Percannella , M. Vento , Graph matching and learning in pattern
recognition in the last 10 years, Int. J. Pattern Recognit. Artif. Intell. 28 (01)

(2014) 1450 0 01 . 
[11] V. Frinken , A. Fischer , M. Baumgartner , H. Bunke , Keyword spotting for self-

-training of BLSTM NN based handwriting recognition systems, in: Pattern
Recognition, 47, 2014, pp. 1073–1082 . 

[12] V. Frinken , A. Fischer , R. Manmatha , H. Bunke , A novel word spotting method
based on recurrent neural networks, IEEE Trans. Pattern Anal. Mach. Intell. 34

(2) (2012) 211–224 . 

[13] Z. Guo , R.W. Hall , Parallel thinning with two-subiteration algorithms, Commun.
ACM 32 (3) (1989) 359–373 . 

[14] N.R. Howe , Part-structured inkball models for one-shot handwritten word
spotting, in: Proceedings of the International Conference on Document Anal-

ysis and Recognition, ICDAR, 2013, pp. 582–586 . 
[15] T.C. Koopmans , M. Beckmann , Assignment problems and the location of eco-

nomic activities, Econometrica 25 (1) (1957) 53 . 

[16] L.I. Kuncheva , Combining Pattern Classifiers, John Wiley & Sons, Inc., Hoboken,
NJ, USA, 2004 . 

[17] R. Manmatha , Chengfeng Han , E. Riseman , Word spotting: a new approach
to indexing handwriting, in: Computer Vision and Pattern Recognition, IEEE,

1996, pp. 631–637 . 
[18] U.-V. Marti , H. Bunke , Using a statistical language model to improve the per-

formance of an HMM-based cursive handwriting recognition systems, IJPRAI

15 (01) (2001) 65–90 . 
[19] F. Perronnin , J.A. Rodríguez-Serrano , Fisher kernels for handwritten word-spot-

ting, in: International Conference on Document Analysis and Recognition,
2009, pp. 106–110 . 

20] I. Pratikakis , K. Zagoris , B. Gatos , J. Puigcerver , A.H. Toselli , E. Vidal , ICFHR2016
handwritten keyword spotting competition (H-KWS 2016), in: ICFHR, IEEE,

2016, pp. 613–618 . 

[21] T.M. Rath , R. Manmatha , Word spotting for historical documents, Int. J. Docu-
ment Anal.Recognit. 9 (2–4) (2007) 139–152 . 

22] P. Riba , J. Llados , A. Fornes , Handwritten word spotting by inexact matching
of grapheme graphs, in: International Conference on Document Analysis and

Recognition, 2015, pp. 781–785 . 
23] K. Riesen , Structural Pattern Recognition with Graph Edit Distance, Advances

in Computer Vision and Pattern Recognition, Springer International Publishing,

Cham, 2015 . 
24] K. Riesen , H. Bunke , Approximate graph edit distance computation by means

of bipartite graph matching, Image Vision Comput. 27 (7) (2009) 950–959 . 
25] J.A. Rodríguez-Serrano , F. Perronnin , Local gradient histogram features for word

spotting in unconstrained handwritten documents, in: International Confer-
ence on Frontiers in Handwriting Recognition, 2008, pp. 7–12 . 

26] L. Rothacker , G.A. Fink , Segmentation-free query-by-string word spotting with

Bag-of-Features HMMs, in: International Conference on Document Analysis
and Recognition, IEEE, 2015, pp. 661–665 . 

[27] M. Rusiñol , D. Aldavert , R. Toledo , J. Lladós , Efficient segmentation-free key-
word spotting in historical document collections, PR 48 (2) (2015) 545–555 . 

28] H. Sakoe , S. Chiba , Dynamic programming algorithm optimization for spoken
word recognition, IEEE Trans. Acoust. Speech Signal Process. 26 (1) (1978)

43–49 . 
29] M. Stauffer , A. Fischer , K. Riesen , A novel graph database for handwritten word

images, in: International Workshop on Structural, Syntactic, and Statistical Pat-

tern Recognition, 2016, pp. 553–563 . 
30] M. Stauffer , A. Fischer , K. Riesen , Graph-based keyword spotting in historical

handwritten documents, in: International Workshop on Structural, Syntactic,
and Statistical Pattern Recognition, 2016, pp. 564–573 . 

[31] M. Stauffer , A. Fischer , K. Riesen , Ensembles for graph-based keyword spot-
ting in historical handwritten documents, in: International Conference on Doc-

ument Analysis and Recognition, 2017, pp. 714–720 . 

32] M. Stauffer , T. Tschachtli , A. Fischer , K. Riesen , A survey on applications of bi-
partite graph edit distance, in: Graph-Based Representations in Pattern Recog-

nition, 2017, pp. 242–252 . 
33] S. Sudholt , G.A. Fink , PHOCNet: adeep convolutional neural network for word

spotting in handwritten documents, in: International Conference on Frontiers
in Handwriting Recognition, IEEE, 2016, pp. 277–282 . 

34] K. Terasawa , Y. Tanaka , Slit style HOG feature for document image word

spotting, in: International Conference on Document Analysis and Recognition,
2009, pp. 116–120 . 

35] P. Wang , V. Eglin , C. Garcia , C. Largeron , J. Llados , A. Fornes , A coarse-to-fine
word spotting approach for historical handwritten documents based on graph

embedding and graph edit distance, in: International Conference on Pattern
Recognition, IEEE, 2014, pp. 3074–3079 . 

36] P. Wang , V. Eglin , C. Garcia , C. Largeron , J. Llados , A. Fornes , A novel learn-

ing-free word spotting approach based on graph representation, in: DAS, 2014,
pp. 207–211 . 

[37] B. Wicht , A. Fischer , J. Hennebert , Deep learning features for handwritten
keyword spotting, in: International Conference on Pattern Recognition, 2016,

pp. 3423–3428 . 
38] T. Wilkinson , A. Brun , Semantic and verbatim word spotting using deep neural

networks, in: International Conference on Frontiers in Handwriting Recogni-

tion, 2016, pp. 307–312 . 
potting in historical manuscripts using Hausdorff edit distance, 

05.003 

https://doi.org/10.13039/501100003475
https://doi.org/10.13039/501100000038
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0004
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0004
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0004
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0007
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0007
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0007
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0007
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0007
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0010
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0010
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0010
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0010
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0013
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0013
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0013
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0016
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0016
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0018
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0018
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0018
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0019
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0019
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0019
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0021
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0021
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0021
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0022
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0022
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0022
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0022
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0023
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0023
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0024
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0024
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0024
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0025
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0025
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0025
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0026
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0026
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0026
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0027
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0027
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0027
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0027
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0027
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0028
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0028
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0028
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0029
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0029
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0029
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0029
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0030
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0030
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0030
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0030
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0031
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0031
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0031
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0031
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0032
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0032
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0032
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0032
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0032
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0033
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0033
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0033
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0034
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0034
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0034
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0035
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0035
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0035
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0035
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0035
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0035
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0035
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0036
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0036
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0036
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0036
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0036
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0036
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0036
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0037
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0037
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0037
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0037
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0038
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0038
http://refhub.elsevier.com/S0167-8655(18)30169-7/sbref0038
https://doi.org/10.1016/j.patrec.2018.05.003

	Graph-based keyword spotting in historical manuscripts using Hausdorff edit distance
	1 Introduction
	2 Handwriting graphs
	2.1 Image preprocessing
	2.2 Graph extraction
	2.3 Graph normalization

	3 Graph-based keyword spotting
	3.1 Graph edit distance
	3.2 Hausdorff edit distance
	3.3 Keyword spotting score

	4 Experimental evaluation
	4.1 Datasets
	4.2 Reference methods
	4.3 Experimental setup
	4.4 Comparison with graph edit distance approximations
	4.5 Comparison with dynamic time warping
	4.6 Combination of HED and dynamic time warping
	4.7 Comparison with learning-based keyword spotting

	5 Conclusion and outlook
	 Acknowledgments
	 References


